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1 Executive Summary 

The present document named ñD5.3 Continuous deep learning toolkit for real time adaptation I v1.1ò is a public 
deliverable of the COMPOSITION project, co-funded by the European Unionôs Horizon 2020 Framework 
Programme for Research and Innovation under Grant Agreement No 723145. It reports the results of task ñ5.2 
ï Continuous Deep Learning Toolkit for real time adaptationò that foresees its development in work package 5 
ñKey Enabling Technologies for Intra- and Interfactory Interoperability and Dataò.  

The document owner is ISMB and in this version 1.1, submitted at M16, are highlight the results of the first 
iteration of projectôs task 5.2, regarding the development of a Deep Learning Toolkit for real time adaptation. 
A comprehensive data assessment is provided alongside prove of concept results are provided for each of the 
addressed projectôs use cases. A second iteration of this document, named ñD5.4 Continuous deep learning 
toolkit for real time adaptation IIò will be submitted at M30 and will update the results of task ñ5.2 ï Continuous 
Deep Learning Toolkit for real time adaptationò through an iterative approach. 
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2 Abbreviations and acronyms 

Acronym Description 

AI Artificial Intelligence  

ANN Artificial Neural Network 

API Application programming interface 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

DoW Document of Work 

DLT Deep Learning Toolkit 

GPU Graphical Processing Unit 

HDFS Hadoop Distributed File System 

LSTM Long-Short Term Memory 

MAE Mean Absolute Error 

ML Machine Learning 

MLP Multi-Layer Perceptron 

MSE Mean Squared Error 

NN Neural Network 

OGC Open Geospatial Consortium 

OpenCL Open Computing Language 

OpenMP Open Multi-Processing 

RMSE Root-Mean Squared error 

RMSLE Root-Mean Squared Logarithmic Error 

RNN Recurrent Neural Network 

TRL Technology Readiness Level 
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3 Introduction 

3.1 Summary 

In this document it is described the development carried out in COMPOSITIONôs project task 5.2, named 
Continuous Learning Toolkit for Real Time Adaptation. 

The document is structured in seven sections and after a comprehensive analysis of the state-of-the-art of 
relevant fields; a comparison among existing frameworks of interest is presented. The COMPOSITION 
projectôs use cases, in which this task has been involved, have been evaluated and the end usersô historical 
datasets have been assessed through a qualitative based validation process. The main chapter (7) is the one 
relative to the analysis of the Deep Learning Toolkit component that was developed within T5.2. The developed 
component is going to be deployed in the aforementioned use cases, in which all projectôs end users are going 
to be involved. In this chapter, results will be presented alongside the used methodology. In specific, at first 
results on extensive tests on synthetic data representing multiple possible scenarios are going to be reported, 
followed up by real data from one of the end users. At last, in the final section, a comprehensive analysis of 
the achieved results is presented. Furthermore, a detailed report of required work that will be necessary to 
complete this activity and tackle future challenges is included in the final section.  

It is worth mentioning that the expected TRL of the component developed in task 5.2 is four, according to the 
DoW. 

3.2 Background 

As the challenges of the Industry 4.0 are absorbed by the research word, bringing together world-class 
manufactures and the academic world. Science fiction movies has drawn for decades a dystopian research 
reality in which the machines take over the men labour and even worse. The COMPOSITION project treats AI 
as a powerful source and tackles real world problems, such as predictive maintenance and raw material market 
prices estimations, advancing the state-of-the-art of current technologies. 

As algorithms are progressing their time efficiency and resource consumption is progressively decreasing, the 
number of possible applications in which AI is applicable is becoming almost endless. It is clear to the scientific 
community that real power over Artificial Neural Networks (ANNs) will not be achieved by withholding 
intellectual proprieties over algorithms or frameworks, that in fact are released open source and progressively 
updated by the community, but this true power over predictionsô accuracy dwells in the data ownership. 

Regarding the toolôs development described in this document, it is worth mentioning that the aim is not to 
create a Swiss knife tool for every application, but a tailored solution that fits a complex ecosystem from its 
roots to its leaves. After outlining these scenarios, it is easy to understand why the Deep Learning Toolkit 
(DLT), described in this document, will have as many declinations as the use cases in which it will be deployed. 
Each solution will be specifically developed for the actions that will be required to take and will be based on 
historical data availability. As it will be clear at the end of this reading, the success rate and the convergence 
period will be drastically dependent by the amount of data available in each of the scenarios. 

The focus for this first deliverable has been put on data analysis and assessment from historical datasets and 
on synthetic data demonstration of the potential of ANNs. In the end, a first deployment of a trained ANN that 
uses real world data is also described in its deployment in the lab-scale testing environment. 
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4 State-Of-The-Art analysis 

4.1 Intro to machine learning 

Machine Learning (ML) is the branch of computer science concerned with the development of algorithms and 
techniques allowing computers to learn from experience/data. 

ML arise at the intersection of a number of different research fields: 

¶ Artificial intelligence: smart algorithms to successfully interact with the environment. 

¶ Statistics: inference from samples. 

¶ Data mining: search through large volumes of data. 

¶ Computer science: efficient algorithm and complex models. 

¶ Pattern recognition: analyse and interpret data looking for recurrent structures. 

A well-known and widely accepted ML definition, due to [1] and dating batch to 1997 states that: 

«A computer program is said to learn from experience E with respect to some task T and some performance 
measure P, if its performance on T, as measured by P, improves with experience E» 

The ML approach is conceptually structured in two independent stages: 

¶ Training: analyse input dataset Ÿ gain understanding Ÿ fit a model that explains the data. 

¶ Deploy: use the model to make prediction of new data. 

Figure 1 illustrates both Mitchellôs definition and the two stages in the real case example. The task T is to 
predict the content of a picture. The experience E is the input dataset composed of a list of pictures and the 
associated expected labels. The computer program is the model trained with the dataset in the first stage: it is 
a trial and error process in which the model is used to predict the content of pictures. The prediction is 
compared to the target label computing an error metric (the performance measure P) and finally the error is 
used to perform a finer tuning of the model. Repeating this process iteratively progressively improve the model 
performance until it can be deployed and applied to predict the content of new unseen and unlabelled images. 

 

Figure 1: example of machine learning stages for the task of image content prediction 

 

ML is therefore a good approach in a plethora of different situations and is preferable to the traditional computer 
science paradigm of sequential and object oriented programming where each problem require a custom 
application. 
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4.2 Intro to neural network and deep learning 

Artificial Neural Networks are defined in [2] as a computing systems inspired by the biological neural networks 
that constitute mammalian cerebral cortex. Such systems learn (progressively improve performance on) tasks 
by considering examples, generally without task-specific programming. 

An ANN is based on a collection of connected units or nodes called artificial neurons (analogous to biological 
neurons in an animal brain). Each connection (synapse) between neurons can transmit a signal from one to 
another. The receiving (postsynaptic) neuron can process the signal(s) and then signal neurons connected to 
it. In common ANN implementations, the synapse signal is a real number, and the output of each neuron is 
calculated by a non-linear function of the sum of its inputs. Neurons and synapses typically have a weight that 
adjusts as learning proceeds. The weight increases or decreases the strength of the signal that it sends across 
the synapse.  

Neural Network models normally have a hierarchical organization into distinct layers of neurons. Each layer of 
neurons represents a level in that hierarchy. The number of layers supported by a model is theoretically non-
limited but it was generally restricted to few layers. The limitations were overcome in recent algorithms 
evolution that rely on: 

1. The increased availability of data. 

2. The enhancement of computing resources. 

Neural networks with multiple hidden layers are referred to as Deep Neural Networks.  

4.3 Deep Feed Forward NN 

A feed forward neural network is a collections of neurons connected in an acyclic graph. The data travel 
forward, from the first (input), to the hidden nodes (if any) and finally through the output nodes. In other words, 
the outputs of the neurons of a layer can only become inputs of a deeper layer. 

This network type came from a Frank Rosenblatt machine-learning algorithm named ñPerceptronò [3]. Two 
kind of perceptron have been generated as described in [2] [4]: 

¶ Single-layer perceptron network: single layer of output nodes; the inputs are fed directly to the outputs 
via a series of weights. In this way, it can be considered the simplest kind of feed-forward network. 
Single-unit perceptronôs are only capable of learning linearly separable patterns. 

¶ Multi-layer perceptron networks or feed forward neural networks: multiple layers of interconnected 
computational unit. Each neuron in one layer has directed connections to the neurons of the 
subsequent layer. 

Figure 2 shows an example of 3-layer Feed Forward Multi-layer perceptron with two inputs, two hidden layers 
of 3 neurons each and one output layer. All the connections are between adjacent layers and neurons within 
a single layer share no connections. 

 

 

Figure 2: network layers 
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4.4 Recurrent neural network and long-short term memory network 

The excerpt from literature continues in [5], where all this information is widely available. A brief and concise 
dissertation continues in the followings. 

A Recurrent Neural Network (RNN), as defined in [5], is a class of artificial neural networks where connections 
between units form a directed cycle. This allows it to exhibit dynamic temporal behaviour. Unlike feed forward 
neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs.  

The back-propagation of information, using gradient descent, is used to move the networkôs weights to move 
better guesses. As described in [6], artificial neural networks with gradient-based learning methods and back 
propagation can suffer some difficulties in training due to the vanishing gradient problem. In such methods, 
each of the neural network's weights receives an update proportional to the gradient of the error function with 
respect to the current weight in each iteration of training. The problem is that in some cases, the gradient will 
be vanishingly small, effectively preventing the weight from changing its value. In the worst case, this may 
completely stop the neural network from further training. 

Long-Short Term Memory (LSTM) network [7] was introduced by Hochreiter and Schmidhuber in 1997 [8] to 
overcome the vanishing gradient problem of traditional RNNs. An LSTM network contains a (memory) cell. An 
LSTM cell "remembers" a value for either long or short time periods. The key to this ability is that it uses the 
identity or no activation function within its recurrent connection. In other words, the remembered value of the 
cell is not iteratively modified because there is the identity or no activation function through which the value 
flows. This is the key for the gradient not to tend to vanish when an LSTM network is trained with back 
propagation through time. 

A "standard" LSTM block contains three gates that control or regulate information flow: an input gate, an output 
gate and a forget gate. These gates compute an activation often using the logistic function. These gates can 
be thought as conventional artificial neurons. Thus, each of the gates has its own parameters (i.e. weights and 
biases from possibly other units outside the LSTM block). Their output is multiplied with the output of the cell 
or the input to the LSTM to partially allow or deny information to flow into or out of the memory. More 
specifically, the input gate controls the extent to which a new value flows into the memory, the forget gate 
controls the extent to which a value remains in memory and the output gate controls the extent to which the 
value in memory is used to compute the output activation of the LSTM block. 
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5 Frameworks comparison 

5.1 Introduction to deep learning frameworks 

Even well-known machine learning algorithms are quite complex to implement from scratch, itôs not unlikely to 
get lost in maths details and computational technicalities. To address this issue, in recent years a plethora of 
software frameworks dedicated to machine learning and deep learning emerged, allowing for simplified API 
and efficient code reuse. Some of them come from academia while other are released from global companies 
such as Google and Microsoft. Each one has specific features, pros and cons: there is no such a thing as the 
absolute best framework. As a result, a convenient framework choice has to be taken based on the specific 
requirements to fulfil and task to address. 

Hands-on comparison and benchmark of so many heterogeneous frameworks would require a lot of effort to 
set up different development environments each with its own API. A feature-based review has been carried 
out to narrow down the number of candidates. 

As part of task 5.2 we conducted an extensive review of the most recent and popular frameworks supporting 
deep learning algorithms. The results are presented in the following sections. 

The considered candidates include: 

¶ Caffe 

¶ CNTK 

¶ Deeplearning4j 

¶ TensorFlow 

¶ Theano 

¶ Torch 

¶ H2O.ai 

¶ Wolfram Mathematica 

¶ Neural Designer 

¶ Apache Singa 

¶ Chainer 

¶ OpenNN 

¶ MXNet 

5.2 Evaluation criteria 

Several different criteria have to be considered to evaluate frameworks for machine learning. The most relevant 
are listed below. 

¶ Date of first and last release: older frameworks have better chances to be mature, consolidated, stable 
and support a wider number of algorithms. On the other hand, recent frameworks have good chances 
to focus on state of the art algorithm and have more modern overall architecture. In any case, actively 
developed frameworks are to be preferred. 

¶ Usage licence: In COMPOSITION, we are interested to the open/closed source dichotomy as well as 
to the possibility of embedding in commercial products with a view to commercial exploitation. 

¶ Documentation, adoption and commercial support: the availability of a detailed and up to date 
documentation is an important consideration for ML framework adoption as for any other piece of 
software. The same applies for dimension of the adopting community, which correlates to the 
availability of tutorials examples and blog posts. 

¶ Supported hardware: while the model training based on historical data can be carried out offline with 
workstations providing the necessary computational power (usually Intel x64 CPUs, with the optional 
support of GPU computing), once deployed the model has to be able to deliver prediction and perform 
continuous learning. These activities are less computationally intensive than the initial training and can 



COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I  
 

Document version: 1.1 Page 11 of 72 Submission date: 2018-01-052018-01-05 

be carried out on cheaper hardware: such as SoC, embedded or mobile devices, which may use ARM 
CPUs, offer no support to GPU computing. This is possible only if the framework supports the target 
hardware platform, therefore it is desirable to adopt a framework with the widest possible hardware 
support. 

¶ Supported platform: the same considerations related to supported hardware applies to software 
platforms: in order to allow deployment of a wide range of different devices, the adopted framework 
has to be multiplatform. 

¶ Algorithm supports: frameworks offer different support to various families of machine learning 
algorithms. This is a multifaceted issue as the implementation can be, not just either present or 
missing, but partial as well as sub-optimal under many different aspects. Another related feature is the 
availability of pre-trained models (not just the algorithm itself, but also a trained version of it to tackle 
specific tasks); this allows it to work in incremental way, building on top of previous successful models 
with efficient reuse of training effort. 

¶ Core Language: the language in which the core of the framework is implemented. Typically affects 
training speed as both low-level languages and languages targeted to numerical computation are 
faster to execute that high level, general-purpose languages. 

¶ API language: frameworks usually offer APIs in different languages for convenience of usage. High-
level languages such as python are faster to write and easier to read with respect to C/C++ so that 
such APIs bring a consistent speedup in model design. The higher number of supported languages, 
the better.  

¶ Auto-differentiation support: most neural networks rely on variations of Gradient Descent algorithm to 
perform training. In particular, the gradient of a cost function has to be evaluated many times. This can 
be done either analytically or numerically. In the first case the gradient function has to be known and 
provided to the framework by the programmer, while in the second case the framework is able 
numerically approximate with no additional knowledge. The latter is less precise and slightly slower 
but applies to much more wide range of real problems. 

¶ API abstraction level: the frameworks can provide APIs at different abstraction levels. The lower the 
level, the greatest the control over the algorithmic details. The higher the level, the shorter and most 
readable the code, resulting in faster test and comparison of different models. 

¶ Parallel/GPU computing support: given that the training of Deep Neural Network over large datasets 
is incredibly computationally eager, it is possible to contain the execution time by multithreading: the 
computation workload is delegated to multicore hardware such as CPUs where is can be massively 
parallelized. 

¶ Distributed architectures support: another way to approach computational workload of training is to 
split it across a cluster of machines exploiting the network infrastructure. This approach can be 
combined with GPU computing for even higher speedup. 

5.3 Comparison 

In this section, the comparison of frameworks is detailed. Only actively developed frameworks were 
considered. Furthermore, being interested in deep neural network state of the art, a bigger attention has been 
devoted to neural network capabilities, and in particular to Feed Forward NN and Recursive NN. Convolutional 
NN and Auto encoders, despite being innovative algorithms are less relevant for the COMPOSITION use cases 
and are not explicitly considered in the comparison tables. 

The original assessment was created in October 2016 (M2) but the data reported in this document has been 
updated at September 2017 (M13). 

In Table 1 to Table 5 compares the frameworks under different features: 
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Framework Creator Year first release Year last release 

Apache Singa Apache Incubator 2015 2017 

Caffe Berkeley Vision and 
Learning Center 

2013 2017 

Caffe2 Facebook 2017 2017 

Chainer PFI/PFN 2015 2017 

Deeplearning4j Skymind engineering team 2014 2017 

H2O H2O.ai 2011 2017 

Microsoft Cognitive 
Toolkit 

Microsoft Research 2016 2017 

MXNet Distributed (Deep) 
Machine Learning 

Community 

2015 2017 

Neural Designer Artelnics 2014 2017 

OpenNN Artelnics 2003 2017 

TensorFlow Google Brain team 2015 2017 

Theano Université de Montréal 2008 2017 

Torch Ronan Collobert, Koray 
Kavukcuoglu, Clement 

Farabet 

2002 2017 

Wolfram Mathematica Wolfram Research 1988 2017 

Table 1: comparison of frameworks - creator, first and last releases 

 

Framework Licence Private & Commercial 
use 

Open source 

Apache Singa Apache 2.0 Yes Yes 

Caffe BSD 2-Clause Yes Yes 

Caffe2 BSD 2-Clause Yes Yes 

Chainer MIT Yes Yes 

Deeplearning4j Apache 2.0 Yes Yes 

H2O Apache 2.0 Yes Yes 

Microsof Cognitive Toolkit MIT Yes Yes 

MXNet Apache 2.0 Yes Yes 

Neural Designer Proprietary --- No 

OpenNN GNU LGPL Yes Yes 

TensorFlow Apache 2.0 Yes Yes 

Theano BSD 3-Clause Yes Yes 

Torch BSD License Yes Yes 

Wolfram Mathematica Proprietary --- No 

Table 2: comparison of frameworks ï licensing 
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Framework Platform Core Language API Language 

Apache Singa Linux, Mac OS X C++,Python Python, C++ 

Caffe Windows, Linux, OS X C++,Python C++, command line, 
Python, Matlab 

Caffe2 Windows, Linux, OS X C++,Python Python, Matlab 

Chainer Linux Python Python 

Deeplearning4j Windows, Linux, OS X, 
Android 

C, C++ Java, Scala, Clojure, 
Python (via Keras) 

H2O Windows, Linux, OS X Java Java, Python, R, Scala 

Microsof Cognitive Toolkit Windows, Linux C++ Python, C++, Command 
line, BrainScript 

MXNet Windows, Linux, OS X C++, Python, Julia, Matlab, 
Go, R, Scala 

C++, Python, Julia, Matlab, 
JavaScript, Go, R, Scala, 
Perl, Wolfram Language 

Neural Designer Windows, OS X, Linux C++ Graphical user interface 

OpenNN Windows, Linux, OS X C++ C++ 

TensorFlow Windows, Linux, OS X C++,Python Python, (C/C++public API 
only for executing graphs) 

Theano Windows, OS X, Linux Python Python 

Torch Linux, Android, OS X, iOS C, Lua Lua, LuaJIT 

Wolfram Mathematica Windows, OS X ,Linux C++ Command line, Java, C++ 

 

Table 3: comparison of frameworks - supported platforms & languages 

 

  



COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I  
 

Document version: 1.1 Page 14 of 72 Submission date: 2018-01-052018-01-05 

Framework Parallel/GPU 
Computing 

Distributed 
Architecture 

Apache Singa Yes (CUDA) Yes 

Caffe Yes (CUDA, OpenMP) Yes 

Caffe2 Yes (CUDA, OpenMP) Yes 

Chainer Yes (CUDA) Yes (with ChainerMN) 

Deeplearning4j Yes (CUDA, OpenMP) Yes (Apache Spark) 

H2O Not directly Yes (Apache HDFS, Apache 
Spark; Cloud: Amazon EC2, 
Google Compute Engine, 

and Microsoft Azure) 

Microsof Cognitive Toolkit Yes (CUDA, OpenMP) Yes 

MXNet Yes (CUDA, OpenMP) Yes 

Neural Designer Yes (CUDA, OpenMP) Yes (Amazon WS) 

OpenNN Yes (CUDA, OpenMP) No 

TensorFlow Yes (CUDA) Yes 

Theano Yes (CUDA, OpenMP) Partial 

Torch Yes (CUDA, OpenMP) Partial 

Wolfram Mathematica Yes (CUDA, OpenMP, 
OpenCL) 

Yes 

 

Table 4: comparison of frameworks - GPU & distributed computing 

 

Framework Auto 
Differentiation 

Pre-trained 
models 

RNN CNN 

Apache Singa Yes Yes Yes Yes 

Caffe Yes Yes Yes Yes 

Caffe2 Yes Yes Yes Yes 

Chainer Yes Through Caffe's 
model zoo 

Yes Yes 

Deeplearning4j Computational 
Graph 

Yes Yes Yes 

H2O Yes No Not directly Not directly 

Microsof Cognitive 
Toolkit 

Yes No Yes Yes 

MXNet Yes Yes Yes Yes 

Neural Designer Yes ? No No 

OpenNN Yes No No No 

TensorFlow Yes Yes Yes Yes 

Theano Yes Through Lasagne's 
model zoo 

Yes Yes 
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Torch Through Twitter's 
Autograd 

Yes Yes Yes 

Wolfram 
Mathematica 

Yes Yes No Yes 

 

Table 5: comparison of frameworks - algorithm support 

 

In order to compare the popularity and the level of development activity around each framework, several charts 
are reported. 

Figure 3 compares the trends of number of questions asked about frameworks over the popular platform Stack 
Overflow along several years. Only few frameworks are considered. 

 

Figure 3: trends of Stack Overflow questions 

 

A more comprehensive popularity comparison was obtained through the statistics of GitHub.com where all 
open source frameworks have their public repository. Weekly number of commits along a one-year period 
(09/2016 to 09/2017) in Figure 4 gives a detailed insight about recent development trends, while the average 
values reported in Figure 5 let the most active frameworks emerge. 
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Figure 4: trends of weekly GitHub commits across the last year 

 

 

Figure 5: average numbers of weekly GitHub commits in the last year 

 

Another widely adopted popularity metric is the trend of a topic in Google search. In Figure 6 the frameworks 
are compared in terms of weekly search interest (normalized to the range [0-100]) since 2013. 
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Figure 6: Google search trends 

 

Some considerations emerged from the data reported so far. 

The majority of deep learning frameworks is open source and can be used free of charge even for commercial 
purposes (as long as the original code is not modified). On the other hands, the most famous commercial 
framework: Wolfram Mathematica (and more in general the whole ecosystem of Wolfram products) is up to 
date and full featured but the licence pricing options, ranging from 3000 to over 9000 euros per license, 
discourage from adoption since there are valid free alternatives. 

In particular, open source frameworks are developed, maintained and used by top universities machine 
learning research groups, software foundationôs/communities and, more and more frequently, from global tech 
companies such as Google and Facebook. The resulting frameworks are the ones adopted both for research 
purposes and for the implementation and deployment of industrial-grade commercial products with global 
distribution. 

Because of these reasons, an open source framework has been preferred for the development of the 
COMPOSITION Deep Learning Toolkit. During the drafting of this assessment in October 2016, the number 
of candidates has been reduced to a restricted pool based on the features and popularity at that date. 

Additional advantages and disadvantages were individuated as in Table 6 to support the final framework 
choice. Anyway, it is worth noting that the framework evolution is very fast and new features are incorporated 
every few months so that the trade-off of pros and cons of each solution are likely to be changed by time 
writing. 

 

Framework Advantages Disadvantages Notes 

Caffe Many extensions 
C++ --> multiplatform. 

Lots of pretrained model 
on its ModelZoo site. 

Most command line 
interface. 

Need to write CUDA for 
GPU layers. 

Not good for recurrent 
networks. 

Most popular for 
Computer Vision tasks and 

CNN. 
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Not extensible, may be 
difficult to apply outside 

Computer Vision. 

H2O Fast and scalable. 
Very well documented 

API. 
High level API --> easy to 

use. 
Very convenient Grid 

Search across 
hyperparameters space. 

Limited choice of ANN 
models: no RNN and CNN 
(but can handle arbitrarily 
complex model by using 

other frameworks as 
core). 

Other companion 
products allow extending 
H2O functionalities for 
GPU computing and for 

scaling on Apache HDFS & 
Spark. In addition, it is 

possible to deploy on most 
famous commercial cloud 

services. 

Microsoft Cognitive 
Toolkit 

C++ --> multiplatform (but 
not working on ARM). 

Good RNN 
implementation. 

Not yet usable for a 
variety of tasks. 

Most command line 
interface. 

In the beginning, mainly 
adopted for speech 

recognition and natural 
language processing (NLP) 

tasks. 

TensorFlow Python and C++ interface 
C++ --> multiplatform. 
Faster than Theano. 

Industrial grade 
deployment system. 

Most popular framework, 
extremely actively 

developed. 

RNN are still suboptimal. 
Bidirectional RNN not yet 

available. 
Slower than other 

framework and fatter than 
Torch. 

Few pre-trained models. 

Meant as a replacement of 
Theano. 

Theano Has implementation of 
most SoA networks 

directly or as higher-level 
framework. 

Python interface. 

Deployment require 
python interpreter --> 

overhead (less attractive 
for industrial use). 

Untidy legacy architecture. 
Steep learning curve for 
low-level Theano api. 

Long compile time (fatter 
than Torch). 

First learning framework, 
mainly used in academic 

On-top framework: Keras, 
Lasagne, Blocks. 

Torch Lots of modular pieces 
easy to combine, and 
pretrained models. 

Excellent for convolutional 
network (better than 

TensorFlow or Theano). 
Good for RNN through an 

extension. 
More flexible than TF/Th: 

no graph --> better for 
beam search. 

Lua is fast. 

Lua is not mainstream 
language. 

Maybe difficult to 
integrate with other 

software components. 
Need to write code for 

training. 
Spotty documentation. 

Very popular for 
Computer Vision tasks and 

CNN. 

 

Table 6: pros and cons of open source frameworks 

 

As for the final choice of frameworks to adopt in COMPOSITION: 

¶ Theano was discarded since TensorFlow is more advanced 

¶ Torch and Caffe were discarded since more focused on Computer Vision tasks and more suitable to 
academic research purposes than deployment in production contexts. 
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¶ Microsoft Cognitive Toolkit was discarded because at the time had limited functionalities and was 
mainly focused on NPL tasks. 

In the end, TensorFlow was chosen as the main development environment, due to its growing popularity, to 
its APIs operating different abstraction level allowing to trade-off between ease of coding and control of 
algorithm detail. Being developed and adopted by Google for its AI projects seemed to offer good prospects 
over community width, continuous development, quality of the documentation, efficiency of deployment 
systems. 

In addition, H2O, were included for fast testing of Feed Forward Deep Neural Network do to its training speed, 
ease of use, and to the powerful built-in Grid Search functionality. 

When, in a second time as clearly stated in future sections 6 and 7.4, the need for Recurrent Neural Network 
clearly emerged, a new evaluation was carried on. By the time, TensorFlow passed from version 0.8 to version 
1.3, adding more features and improvements under many aspects, including RNN support, so that it seemed 
inconvenient to switch to a very different framework such as Microsoft Cognitive Toolkit (which has gone 
through major improvements and seems now to be a very convenient, flexible and fast library too). 
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6 Inter and Intra-factory end usersô historical data assessment 

In this chapter, the results of the assessment conducted over the historical datasets provided by industrial 
partners are reported. These datasets are mandatory for a component such as the Deep Learning Toolkit 
whose core is mainly composed of deep artificial neural network models. 

In fact, in order to achieve a state of the art prediction accuracy, artificial neural networks need to be extensively 
trained over large datasets. There is a linear dependency between the model complexity and the amount of 
data required: the deeper and more complex the model, the larger the training set is required. The Deep 
Learning Toolkit is going to be deployed in an already trained form, based on the addressed use case scenario. 
Once deployed, it will process live data streams provided by the Big Data Analytics component, producing 
meaningful predictions and updating them whenever enough information is processed and a new one is 
available. In order to adapt to future variations of patterns and trends, the deep learning toolkit bases its 
implementation on continuous learning, refining its training analysing small batches of live data. 

In order to be used in a supervised machine learning framework, each historical dataset has to be organized 
as a list of samples. Each sample list is made of two parts: a vector of features, named X (e.g. values sampled 
from different sensors at the same time) and a corresponding scalar target value Y. The number of features 
and their type (int, float, string) can be various, but it must be fixed for all the samples of a dataset: consistency 
in mandatory and any kind of heterogeneity within a dataset is not allowed. The scalar vector Y also demands 
consistency and represents a target that is compulsory for each sample. Below a graphical representation of 
X and Y: 

 
 

Figure 7: dataset structure 

 
The rest of this chapter is structured per use case: for each use case in which the deep learning toolkit is 
involved, and therefore one or more artificial neural network is going to be deployed, an in depth analysis is 
performed. In the following sections is then discussed whether the provided data are adequate for the deep 
learning toolkit to perform its training actions, and if not, which aspects of the datasets are unfit, highlighting 
possible solutions to tackle the problem. 

The references made in this document refer to the updated use casesô list, as defined in the most recent 
version of deliverable D2.1. In the following section the assumptions made are highlighted: 

¶ Only the use cases in which the DLT is expected to contribute has been considered. 
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¶ All the use cases where the DLT will contribute are discussed (the DLT will not be part of other use 
cases). 

¶ There is no assessment of non-tabular data such as pictures, maps, and textual descriptions. 

¶ In the followings are linked the pages in which the corresponding data and use cases are assessed: 

o Predictive maintenance (UC-BSL-2) 

o Mainten ance Decision Support (UC-KLE-1) 

o Scrap metal / Fill bin (UC-KLE-3, UC-KLE-4, UC-ELDIA-1, UC-ELDIA-2) 

o Prices and Collection (UC-KLE-4, UC-KLE-5, UC-KLE-6) 

 

In the (hopefully) unlikely event where an historical dataset is missing and therefore the action of performing 
the initial training would not be possible, a model can be deployed untrained. It then would use only live data 
streams to perform both the training and the learning phases. In this case, a quite considerable amount of time 
must be considered as a transitional period that is required to reach the performance of an equivalent trained 
model and therefore being able to deliver any meaningful prediction. Nevertheless, it is demonstrated in 
literature by the ANNs guru Simon Haykin in its biblical manual Neural Networks and Learning Machines [9] 
on page 187 where he states that back propagation always converges, although the rate can be slow and in 
its own words: it "can be excruciating". This is also proved in chapter 7 by the  experiments on the synthetic 
data. It is therefore safe to assume that a good level of accuracy, and therefore convergence, is reachable in 
a finite time by using specific topologies and models of artificial neural networks. 

Occasional missing values for some features for a small amount of samples can be dealt with, as long as they 
are minimal. Data series can be easily chunked and converted to a dataset format, but in order to be relevant 
for supervised learning they have to be sampled with a fixed frequency: sparse occasional samples are of 
limited or no use. As a rule of thumb, medium sized dataset counts 10K or more samples. Depending on the 
specific challenge the component will required to address, as the current state of the art performance of any 
deep learning algorithm, 100K or more balanced samples are required for providing a more relevant training.  

Particular relevance is required when considering the word balanced because it is the key in this topic here, 
because feeding models with millions of samples in normal state and hundreds of samples in fault state is not 
an option. In those cases, it is required to under sample the amount of data in the normal state, balancing the 
input for the model. Hence, when we talk about the category of classification problems, like the ones it is 
possible to reduce most of the intra-factory use cases, if we want to have 100K balanced samples, it is required 

to have  for each class the model is required to identify. 

6.1 Predictive maintenance (UC-BSL-2) 

6.1.1 Background 

The Deep Learning Toolkit component is expected to distribute the latest prediction on the next expected 
failure of the oven blower machine, based on the continuous input stream of sensors data streams. 

6.1.2 Data Overview 

BSL provided a large dataset related to four reflow ovens (Brady, Tachy, Rhythmia and NMD). For each oven, 
the dataset encompasses data files, one per day, covering the period 2008-2017. Actually, the beginning of 
the recording, the time span is different for each oven, varying between 2008 and 2013. Each file is structured 
as a list of records, one per row. Records are sampled every 5 minutes and contain, in addition to the 
timestamp, the logs of all the blowers inside machine. The number of blowers differ from reflow to reflow (e.g. 
Brady has 111, NMD has 66). Each blower logs three values: 

¶ The temperature set by the user [°C] (only for Brady oven). 

¶ The measured temperature [°C]. 

¶ The output power at the solid-state relay of the reflow. 

Random inspection of this huge dataset showed that usually only a subset of blowers log significant data, while 
the others report zero, negative or out-of-range values. 
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Event files are also provided. They are referenced one per day, matching one to one the data files. Each event 
file contains a list of logs related to the oven. Each event has a timestamp and a textual description. Key to the 
predictive maintenance scenario are the failures of each blower. Unluckily the event logs do not specify which 
of the blowers failed. Furthermore, at a purely ballpark analysis, the number of faults seems to be unbalanced 
compared to the number of samples. In details: 

¶ Brady Ÿ 15 failures. 

¶ Tachy Ÿ 0 failures. 

¶ Rhythmia Ÿ 1 failure. 

¶ NMD Ÿ 7 failures. 

The data files globally contain 2725344 samples distributed as follow: 

¶ Brady Ÿ 649152 samples. 

¶ Tachy Ÿ 652032 samples. 

¶ Rhythmia Ÿ 366912 samples. 

¶ NMD Ÿ 942048 samples. 

Additionally, BSL provided an excel table of blower failure records. Each failure has: 

¶ A numeric ID, we assumed to be the blowerôs ID. 

¶ The description of the intervention (which is always the substitution of the blower). 

¶ The intervention timestamp. 

¶ The name of the oven the blower belongs to. 

Figure 8 below show some plots of the Brady oven blowers corresponding to faults.  The color meaning is the 
following: 

¶ Orange plot is the temperature set by the user. 

¶ Blue plot is the temperature measured. 

¶ Green plot is the output power. 

¶ Red plot marks the points where faults occurred. 

 

Figure 8: Brady oven dataset from 04/15/2011 to 04/18/2011 
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Figure 9: Brady oven dataset from 05/15/2011 to 05/18/2011 

 

 

Figure 10: Brady oven dataset from 04/27/2014 to 04/30/2014 

 

It is worth noticing that, for both Figure 9 and Figure 10 it doesnôt seem to exist or cannot be seen with the 
naked eye a characterization pattern that makes an ovenôs fault prediction possible. In fact, unlike what 
happens in Figure 8, where the measured temperature (orange line in the plot) steeply decreases, dropping 
to zero before the recorded fault event, in the other plots the temperature starts decreasing only after the fault 
event. This is an asymptomatic issue of the input data which steepen the problem curve tackled by the DLT 
and highlights a trend of non-correlation to the problem class that the component is aiming to solve. 
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6.1.3 Fitness for usage 

The dataset focus and size is suitable for predictive maintenance task. Still some major issues remain. The 
number of failure events is way too low: the best case oven has 15 failures over more than 500K samples. As 
a consequence, the sampling frequency results too high and the single samples become irrelevant and results 
in an unbalanced situation in which sample aggregation and under sampling are inevitable. The dataset 
cardinality will be therefore strongly reduced, which will affect its usefulness, based on the number of discarded 
samples. 

Moreover, while data samples report measures of tens blowers, the failure events do not provide any 
information for identifying the damaged blower. This may affect the capability to correctly predict future failures. 

6.1.4 Data assessment 

Given the provided data, the best possible approach to predictive maintenance use case is to train a LSTM 
Neural Network (the state of the art of Recurrent Neural Networks) on the data related to Brady oven which 
provide the highest number of failures. Subsampling/aggregation of data is indispensable. The other criticalities 
to deal with are the large quota of missing/invalid data and the absence of correlation of failures and blowers. 
Because of this, it is not straightforward to tell beforehand whether the trained model will achieve an acceptable 
prediction accuracy. 

Continuous learning on live data is expected to relieve the low accuracy problems over time, as long as the 
data provided by the oven blowers will be valid in live situations. 

6.2 Maintenance Decision Support (UC-KLE-1) 

6.2.1 Background 

The Deep Learning Toolkit component is expected to distribute the latest prediction on the next expected 
failure of a BOSSI machine (used for metal surface finishing of pipes), based on the continuous input stream 
of sensors' data stream. 

6.2.2 Data Overview 

Kleemann provided a historical dataset of failures featuring: 

¶ About 650 samples. 

¶ About 20 features. 

¶ Spanning 11 years, from 2007 to 2017. 

6.2.3 Fitness for usage 

Despite the consistent number of failures recorded (one per sample) and the congruous number of features 
over the entire time span, the dataset is unfit to be used on predictive maintenance and in general on every 
deep learning tasks, because of the following reasons: 

¶ The dataset is just about failures but has no extensive collections of machine attached sensors where 
to look for patterns anticipating the failures. 

¶ Data are sparse in time (opposed to sampled at constant frequency). 

This data could probably be used with some success within a statistical data analytic framework, but this is out 
of scope for the Deep Learning Toolkit component. 

6.2.4 Data assessment 

Given the absence of a real dataset, DLT-based predictive maintenance in Kleemann seems not to be 
straightforward to implement. An untrained approach can be tried, inspired to the model setup that will be 
adopted for UC-BSL-2 after learning the related dataset. This might result in non-optimal model and will 
probably require long time to converge to an acceptable accuracy. 

Anyway, the precondition and also major criticality for this approach is the availability of live data streams from 
relevant machine attached sensors. At the present time (M16), such a sensors network does not exist in 
Klemann, so the evaluation for applicability of the Deep Learning Toolkit in this use case is deferred to the next 
iteration of this document. Even if, sensors will be deployed and will provide meaningful live data streams, it is 
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not granted that the recurrent neural network that could be used in an untrained environment would converge 
to meaningful results, within the project timeframe. 

6.3 Fill level and classification use cases (UC-KLE-3 UC-KLE-4 UC-ELDIA-1 UC-ELDIA-2) 

6.3.1 Background 

The Deep Learning Toolkit component is expected to distribute the latest prediction on the fill level of waste 
material within a bin/container, in order to allow for optimization of timing and logistics of collections as well as 
improve any related commercial aspect. The prediction is based on a dataflow from one or more bin mounted 
sensors, monitoring its fill level. 

6.3.2 Data Overview 

Kleemann provided a minimal scrap metal dataset containing only 12 samples. They are equally distributed: 
one for each month of 2016. Each sample has 11 features, including the quantity of eight different metal scrap 
types and of 3 other materials (plastic, wood and paper) produced along one month. A consistent part of the 
data for forming a usable dataset is missing. 

6.3.3 Fitness for usage 

The data provided are currently unfit for the task of live prediction. The number of samples is several orders 
of magnitude too low and the time span is insufficient to detect long-term trends and seasonal patterns. 
Relevant data for this task would require one or more than one, time series of values acquired from bin-
mounted sensors, related to its filling level, plus the collection events from the same container needs to be on 
record as well. 

These data are not available, historically or live because both end users involved (Klemann and Eldia ) do not 
have any kind of sensors mounted on their bins nor their containers at the moment (M16). This action is 
planned to happen in the next months, so the evaluation of the applicability of the Deep Learning Toolkit in this 
use case is deferred to the next iteration of this document. 

6.3.4 Data assessment 

Given that no useful historical data are available, the only possible prediction task could be fulfilled leveraging 
on untrained Artificial Neural Network (or with Artificial Neural Network trained over a synthetic dataset). 
Nevertheless, although sensors will be deployed and will provide meaningful live data streams, it is not granted 
that the recurrent neural network that could be used in an untrained environment would converge within the 
project timeframe. 

6.4 Prices and logistics (UC-KLE-4, UC-KLE-5, UC-KLE-6)  

6.4.1 Background 

This use case is the only one listed in this chapter that is not related to the intra-factory scenarios, but instead 
is more related to the inter-factory environment. The Deep Learning Toolkit component is expected to distribute 
the latest prediction on at what price per ton at which specific commercial partners are likely to accept to 
buy/sell scrap metal within fixed timeframe in the future. This information in the formed of predictions are 
intended to support the agent intelligence in order to improve the decision system that is in charge of 
accept/emit commercial offers about scrap metal. 

6.4.2 Data Overview 

Both the end users involved in this use case (Klemann and Eldia) have contributed providing data about waste 
management. 

Klemann provided a minimal scrap metal dataset containing only 12 samples. They are equally distributed: 
one for each month of 2016. Each sample has 11 features, including the quantity of 8 different metal scrap 
types and of 3 other materials (plastic, wood and paper) produced along one month (measure unit is not clear).  
A consistent part of the data is missing. 

Eldia provided its historical data in the form of four excel tables from which two datasets can be extracted. The 
first is related to transactions on scrap metal whereas the second is related to transactions of other materials. 
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The scrap metal dataset accounts for sales and purchases: each record summarize the transactions between 
Eldia and one commercial partner over a single month. In particular, the dataset contains 144 samples sales 
samples (3 clients x 12 month x 4 years) and 192 purchases samples (4 suppliers x 12 month x 4 years) 
accounting for the period [2013-2016]. Each sample has six features:  

¶ Type of transaction. 

¶ Timestamp. 

¶ Client id. 

¶ Scrap metal quantity (ton). 

¶ Number of trips for collection/delivery. 

¶ Price per ton. 

The dataset relative to other kind of waste contains records of purchases aggregated by month for the period 
2015-2016: 192 samples (4 suppliers x 12 month x 2 years). Each sample has 10 features: 

¶ timestamp 

¶ suppliersô id 

¶ wood: waste quantity (ton) 

¶ wood: number of trips for collection/delivery 

¶ plastic: waste quantity (ton) 

¶ plastic: number of trips for collection/delivery 

¶ paper: waste quantity (ton) 

¶ paper: number of trips for collection/delivery 

¶ general waste: waste quantity (ton) 

¶ general waste: number of trips for collection/delivery 

Considering that only one of the suppliers provide all waste categories, the dataset has a relevant amount of 
missing data.  

6.4.3 Fitness for usage 

None of the provided dataset is suitable for training a price-based prediction model. Appropriate data would 
be a data set that includes, for each type of waste and each commercial partner, a time series of waste 
offer/transaction prices covering the wider possible period. The scrap metal dataset by Eldia is close to fit the 
aforementioned format, but the number of samples is excessively small and the price trends is negligible. 
Moreover, the results of transactions under long-term partnership prices are almost constant: adjustment only 
happens on a yearly basis. Despite this being very understandable from the commercial point of view, it 
precludes the fitness for usage in a dynamic marketplace scenario that encompasses frequent price 
fluctuations due to constant negotiations. 

6.4.4 Data assessment 

Eldia is updating the prices over time and recording every fluctuation. The data are aggregated sales statistics 
spanning the first three quarter of 2017. All records relate to the same customer, but differentiate in terms of 
material type (paper, PET, HDPE, scrap metal) and timespan. The samples have the following features: 
material type, date start, date end, tons, price per ton. Indeed, these data contains price fluctuations, which 
make more sensible to train predictive models on them. Still, the number of samples is very limited (ranging 
from two samples for PET to 16 records for paper), at least three orders of magnitude too low to perform a 
significant training. 

In the next iteration of this document, it will be possible to see a leap forward in the applicability of the Deep 
Learning Toolkit in this use case, when enough data will be collected. Detailed action plan on how this problem 
is going to be addressed is presented in chapter 8. 
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7 Deep Learning Toolkit for continuous learning design and testing 

7.1 Introduction 

This is the main chapter of this document and provides an in depth review to all the experiments that has been 
conducted from M5 up to M15. During this reporting period, Task 5.2 has put a lot of effort gathering data from 
end users, collaborating identifying suitable data sources matching projectôs use case. These data collection 
activity has been assessed in this document in chapter 6. In the meanwhile, extensive research on frameworks 
and technologies has been conducted, extensively described in chapter 5. On the top of all that, experiments 
on synthetic data has been conducted in order to identify technologies and testing different implementations 
of suitable artificial neural networks and corresponding algorithms in each of the frameworks. This activity has 
been conducted in parallel to the data analysis because creating realistic datasets is a huge time consuming 
activity. The aim is to analytically demonstrate that chosen elements of the artificial neural networks used to 
approach real world data, such as algorithms, activation functions, gradient descending iterative optimizations, 
balanced matrix of weights and so on, would converge to accurate results in a finite time span. 

The first network topology investigated has been the Feed Forward Artificial Neural Network. It is a well-known 
approach in literature and widely adopted for solving classification challenges, like the one the use cases 
analysed can be broken down to. It has been investigated in all of the two very promising frameworks H2O and 
Tensor Flow. Both frameworks provide an implementation for it that is not very dissimilar from one another. 
The advantage of using Tensor Flow in this situation, resides in the GPU availability for incrementing speed 
scalar matrix operations, whereas H2O provides portable executable for easy testing and deployment. 
Moreover. Tensor Flow is the only one of the two that, thanks to third-party APIs allows a comprehensive 
implementation of Recurrent Neural Networks in all their topologies. Results are reported in section 7.2. 

Tests continued with the two demos that has been presented to the consortium at M7 and at the first project 
review meeting at M9. The former in the form of a first demo, the latter using more accurate dataset in order 
to better mimicking the prices in the inter-factory scenario addressed. 

In the meanwhile, some data that started flowing into the system and by becoming part of specifications, they 
took shape and therefore the need of advancing the network topology risen. In section 7.4 it is explained how 
time series has been shaped and modified to form the possible input for Recurrent Artificial Neural Network. 
The powerful regression that this ductile instrument could provide has been clear since the very beginning. 
The state-of-the-art analysis provided the result that the Long Short-Term Memory (LSTM) were the topology 
to look for in the combination of surveys and extensive results that taxonomy provides. At first, the focus has 
been put on the simplest and most used of this relatively new topology, the univariate variant. All experiments 
on synthetic data, real data based on the London metal exchange of aluminium prices and sinusoids 
trigonometric series are reported. 

Despite the promising results provided by the LSTM univariate, the urge of adopting a more malleable topology 
arose when the data for the predictive maintenance scenario got tackled in. In fact, the number of features and 
the multidimensional model required by the input data for providing time step repetition over time and 
organizing incoming batches in a meaningful manner, has required the use of the multivariate version of this 
artificial neural network topology. In fact, the multivariate version has been used directly on real world data and 
the results are described in section 7.4.2. In specific, data from BLS and the Brady oven re-flower has been 
used for creating the first lab scale deployment of the Deep Learning Toolkit, leveraging on the LSTM Artificial 
Neural Network topology and models in its multivariate declination. Progressively better results have been 
achieved by improving the first attempt to use incoming data as-is by implementing clusterization of input data, 
and by imposing balanced classes constrains before feeding the Artificial Neural Network. Finally, the data 
normalization process has provided the last cog in the complex system in which the Deep Learning Toolkit 
design has resulted to be. 

Finally, the chapter ends by briefly describing the lab scale deployment in a Docker container that has been 
provided as software output for this first delivery as a private image. The description concludes with four rounds 
of tests that has been performed on a periodical signal, in order to analytically prove the convergence of the 
model deployed in a finite time span. 
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7.2 Feed Forward NN in TensorFlow 

7.2.1 TensorFlow introduction 

TensorFlow is Googleôs own software framework for machine and deep learning. It is free, open source 
(Apache 2.0) and actively developed. It was created by the Google Brain team for internal use and first released 
on 9 November 2015.  

Despite being a flexible and general purpose numerical computation tool, Tensor flow is mainly oriented to 
Neural Networks since its architecture is based on the computational graph paradigm: each algorithm is 
defined as a graph whose nodes represent mathematical operations, while the graph edges represent the 
multidimensional data arrays (tensors) communicated between them. 

TensorFlow is multiplatform: on 64-bit Linux, macOS, Windows, Android and iOS. Furthermore, it supports 
GPU computing via CUDA and since version 1.0 can run on multiple devices in parallel. 

TensorFlow can also run on distributed clusters and process Big Data from Apache HDFS. It also features a 
flexible, high-performance serving system for machine-learned models designed for production environments. 

The TensorFlow core is written in C++ for better performances, but for the sake of usability the main API is 
Python; C++, Java, Go are supported as well and many more unofficial binding exists including C#, Ruby and 
Scala. Furthermore, TensorFlow can be used as computational core from other high-level machine learning 
libraries including H2O and Keras. 

The Python API has been used for COMPOSITION, with the option of adopting the C++ serving API for 
deploying in case the Python one should not perform fast enough. The API are layered in three different 
abstraction levels detailed in the following sections. 

7.2.1.1 Low-level API 

This is the base API: the most flexible and most expressive. The computational graph of the desired machine 
learning algorithm has to be created programmatically step by step, specifying each basic operation leading 
from the input tensor to the output tensor. To allow for evaluation and training nodes must be added to the 
graph implementing error metric computation and minimization. 

Once the graph is finalized, it can be executed multiple times, with variable inputs. The typical use case for 
supervised learning is the following: 

¶ Based on task to address and on the format of the dataset, choose model and hyperparameters: 

o NN type: topology. 

o NN size: number of layers, numbers of neurons per layer. 

o Optimization algorithm and training parameters (batch size, learning rate,). 

¶ Implement the computational graph for the model and finalize it. 

¶ Train on historical data by running the graph multiple times. For each training epoch: 

o For each batch in the training set: 

Á Train the NN (execute the graph asking for the optimization node). 

o Evaluate the NN over a big batch of training data (execute the graph asking for the metric 
nodes). 

o Evaluate the NN over the validation dataset (execute the graph asking for the metric nodes). 

¶ Plot training and validation metric trends: 

o To ensure the training process is sensible. 

o To detect criticalities in the model definition or in the dataset. 

o To assess if the training has converged or whether additional training epochs are needed. 

The previous process is usually repeated multiple times with different hyper parameter values, and then the 
best trained model with best validation scores is retained and finally evaluated over a test set. 

The resulting model can be deployed, used for prediction and periodically updated by incrementally training 
on batches of live data 
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7.2.1.2 Mid-level API 

In this API the algorithm is still specified in terms of a computational graph, but its construction is eased by 
wrapper nodes representing different NN layer types. Each layer can enclose several operations: linear 
combination of inputs through weights and biases, activation function filtering, dropout, pooling, etc. So the 
layer API allow to write less code which is both more compact and more readable, at the price of a reduction 
of control over some details of internal nodes (such as weights and bias initialization). 

Referring to python APIs, the official layer API is contained in the tf.contrib.layers package. Last TensorFlow 
version also natively integrated a popular machine learning API, named Keras. Keras is a mid-level python 
API too and is a convenient choice since it widely adopted even prior to TensorFlow so has solid documentation 
and a large community behind. Keras API in TensorFlow is located in the package tf.contrib.keras. 

7.2.1.3 High-level API 

TensorFlow also provide a higher level API, contained in the package tf.contrib.learn. This API totally give up 
the control over the computation graph and provide the data scientist with a restricted bunch of classes, each 
implementing a machine learning algorithm. Only a subset of algorithms is covered and advanced NN 
topologies are not available. Nevertheless, deep feed forward classifiers and regressors are featured. 

These classes can be instantiated by providing the desired hyper parameter values and just work out of the 
box, providing methods such as train, evaluate and predict. 

They both allow for quick tests with minimal coding effort and for usage without deep knowledge of 
computational graph mechanics. The major drawbacks are that there is no visibility on the finer details of the 
internal model. 

7.2.2 Comparison of different TensorFlow API 

Initially several supervised learning tests were conducted with TensorFlow to better understand it and assess 
its performances in different situations. 

An open dataset dealing with industrial data was adopted at this stage. The dataset is related to a gas sensor 
array exposed to turbulent gas mixtures and is better described and fully available at [10].  

For the purposes of this document, it is enough to know that the raw data were pre-processed so to obtain a 
dataset with ~3.45M samples and 11 features (timestamp, temperature, humidity and the reading of 8 gas 
sensors). For each sample, the target value was the Ethylene level, quantized in four classes (zero, low, 
medium and high). Time sequentially was broken with shuffling, and finally the samples were split into training, 
validation and test set (60%, 20%, and 20%). A first round of tests was conducted to compare the different 
Tensor Flow APIs so to get a gist of prediction accuracy, training time and to ensure that low, medium and 
high level APIs behave consistently to the finer grained low-level option. This can be considered a tie, 
performance wise, so the preferences is left to the implementation to perform technical decisions based  on 
third party APIs features required and their compatibility. 

7.2.3 Preliminary comparison of CPU and GPU training 

Despite being extremely time consuming, training of Neural Networks is inherently highly parallelizable. This 
is why demanding the bulk of computing to multi core GPU is reported to speed up training up to a couple 
orders of magnitude. 

Some preliminary tests about CPU vs GPU computing have been performed by training over the previously 
described gas dataset in order to assess the speed up magnitude. 

The details of the two setup are described in Table 7. 

  



COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I  
 

Document version: 1.1 Page 30 of 72 Submission date: 2018-01-052018-01-05 

CPU setup GPU setup 

Hardware 

 CPU: Intel Core i5-3570 @3.40GHz 
 ֙ # cores: 4 

 RAM: 8GB 

 CPU: Dual Intel Xeon 2620 @2.10GHz 
 ֙ # total cores: 12 

 RAM: 32GB 
 GPU: NVIDIA GeForce GTX 960 (AsusTeK) 

 ֙ # CUDA cores: 1024 
 GPU RAM: 2GB 

Software 

 OS: Windows 10 Pro 
 Python: 2.7 
 TensorFlow: v0.8 

 OS: Ubuntu 14.4 
 Python: 2.7 
 TensorFlow: v0.8, GPU enabled 

Test specs 

¶ task type: classification 

¶ model type: deep feed forward neural network 

¶ # input features: 11 

¶ # output classes: 4 

¶ hiddŜƴ ƭŀȅŜǊǎΩ ǎƛȊŜΥ ώмнуΣ сп Σонϐ ƴŜǳǊƻƴǎ 

¶ optimizer: Adagrad 

¶ training batch size: 50 samples 

¶ # training batches: 2000 

 

Table 7: CPU vs GPU setup 

 

When dealing with GPU computing of repetitive tasks, bottlenecks move from computation to data copying. 
Indeed, so to be available to GPU cores, the input data has to be copied from common RAM memory to the 
dedicated GPU memory. The same way, output data has to be copied back to the main memory to be logged 
or handled in any other way. Because of this, a special attention has to be paid to how the input data set is 
loaded from disk and fed to the training process. Tensor Flow offer various mechanisms for data loading. The 
most general one is the Dataset API suitable to build complex input pipelines and to deal with huge datasets 
that cannot fit entirely in the memory. These datasets usually come as large collections of binary (or less 
frequently textual) files, which may reside on multiple hard disks, either locals or NAS, potentially abstracted 
by a distributed file system layer such as Apache HDFS. Given the manageable size of the adopted dataset 
that entirely fits in memory this mechanism is disproportionate: simpler data acquisition is desirable. This may 
be implemented in different ways also depending on the chosen API as discussed in the next sections. 

7.2.3.1 Low and mid-level API 

Two types of approach to data loading are available: 

¶ Placeholder: in the tensor flow graph, tf.placeholder objects, whose value can be fed at runtime, 
represent the batch of input samples and the related targets. With this approach, the dataset is loaded 
at once as a plain python numpy.ndarray. At each training step, a minibatch is sliced by the ndarray 
and internally converted in the tensor form to replace the placeholders. 

¶ Tensor: in this approach the whole dataset, samples and targets, is loaded to tf.tensor objects since 
the beginning. Other tensors are defined to represent the batch. This can be more time efficient since 
no format conversion is required at run time but it has several practical disadvantages: 
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o The batch size has to be predetermined so that the significance of validation metrics is 
severely compromised because of the limited number of samples. Alternatively, it is possible 
to define a conditional graph, which depending on run time flags can behave differently (e.g. 
training, validation and test). Anyway, this makes the code mode complex and bug prone, less 
readable and reusable. 

o Additional operations must be added to the graph to bridge the dataset tensors and the batch 
tensors, resulting in reduced flexibility. In particular, two choices are available: 

Á Filling the batch with consecutive slices of the dataset. 

Á Filling the batch with picking random samples from the dataset. 

The first way requires minimal computational overhead, while the second make easier to have 
different batches across different training epochs, potentially leading to a better accuracy. 

Table 8, reports results of tests performed with the three described data feeding strategies, each performed 
with three different hardware setups: the CPU and GPU configuration described before plus a second CPU 
setup running on Dual Intel Xeon 2620 @2.10GHz (12 total cores) with 32GB of memory. 

 

Data loading  mode CPU [ms/batch] Dual CPU [ms/batch] GPU [ms/batch] 

numpy.ndarray 65 68 67 

tf.tensor, random pick 0.49 0.94 1.8 

tf.tensor, slicing 0.47 0.86 1.45 

 

Table 8: Low-level API - CPU vs GPU 

 

Unexpected considerations emerge from these data: 

¶ The placeholder plus numpy.ndarray approach is on average two orders of magnitude slower when 
compared to tf.tensor data loading, meaning that the on-the-fly conversion of batches from Numpy 
[11] to TensorFlow data format is very taxing or prevent some optimized behaviour from taking place. 
In this kind of approach, the time cost of data conversion prevails so that almost no differences 
between different hardware setups can beidentified. 

¶ The tf.tensor-based data feeding lead to significant speedup, the slicing version being slightly faster 
that the random picking one. 

¶ The first unexpected outcome is that comparing CPU executions, the consumer targeted Intel Core i5 
with 4 cores and 8GB of memory performs twice better than a couple of server meant Intel Xeon 2620 
with 12 cores and 32GB of memory. 

¶ The second unexpected outcome is that comparing CPU and GPU executions, the latter performs up 
to 4 times slower than the former, suggesting a severe bottleneck due to copying the dataset chunks 
from the CPU memory to the GPU one, which can hardly affect the training time. 

Further investigations will be probably performed in the next iterations of this document in order to understand 
if further software releases of used APIs and frameworks will address the GPU compatibility in a more 
consistent manner or if this is dependent by the used hardware that is not capable to exploit latest compilation 
options and drivers features. 

 

7.2.3.2 High level API 

For the high level API, the data loading alternatives are quite similar to the previous case, but there are less 
flexibility drawbacks are using the tensor approach. In the tests, we compared three different loading 
approaches: 

¶ The dataset is loaded as numpy.ndarray objects and passed to the fit method of the Neural Network 
object. 
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¶ The dataset is loaded as tf.tensor objects, and a function is passed to the fit method of the Neural 
Network object, which compose the next batch by random sample picking. 

¶ The dataset is loaded as tf.tensor objects, and a function is passed to the fit method of the Neural 
Network object, which compose the next batch by consecutive slicing of the dataset. 

The results of the test are detailed in  

Table 9: training time are reported per batch and expressed in milliseconds. The validation has been disabled 
during the tests not to distort the time measurements. External times are computed as the total training time 
divided by the number of training steps and directly compares to the one reported is the previous round of 
tests, while the internal times are the average of per step times as obtained through call-backs provided by the 
Neural Network object. 

 

Data loading  mode CPU [ms/batch] GPU [ms/batch] 

 external internal external internal 

numpy.ndarray 2.3 0.8 11 9.5 

tf.tensor, random pick 9.1 0.7 12 3 

tf.tensor, slicing 10.4 0.6 11.7 2.6 

 

Table 9: High-level API - CPU vs GPU 

 

These are surprising and unexpected results: in the given setup, CPU computing performs systematically 
faster than GPU. Furthermore, in the CPU tests, the Neural Network object train significantly slower if fed with 
tf.tensor batches, which should be the faster approach not requiring additional conversion from numpy formats. 

In CPU tests there are major discrepancies between time measured internally and externally to the training 
session, probably meaning that internal measurements do not include overhead tasks such as saving model 
checkpoints and above all assembling the batch to process from the dataset; this could explain why the internal 
time is mostly constant while external time can increase up to 5 times between different data loading 
approaches. 

Externally measured GPU time is very similar internal one when the dataset is provided as numpy.ndarray. 
Contrary, when the dataset is provided as tf.tensor objects the internal batch time is greatly reduced while the 
external one does not vary significantly. 

There are different hypothesis that could explain the weird CPU better than GPU results: 

¶ TensorFlow version 0.8 might have buggy implementation of GPU computing, leading to unnecessary 
slowdowns. It would be interesting to perform a new set of tests with the most recent version. 

¶ There might have been issues in the test workstation or in the GPU environment setup even is the 
installation procedure reproduced step by step the official instructions and even if execution logs did 
not let any issue or criticality emerge. 

¶ Most likely there is a major bottleneck due to copying the dataset chunks from the CPU memory to the 
GPU one, which can hardly impact the training time, independently from the data structure adopted 
(numpy.ndarray vs tf.tensor) 

Finally, by globally comparing training times on CPU using high level API with those obtained with low level 
API, it can be seen that low level API train about one order of magnitude faster when using tf.tensor dataset 
and about one order of magnitude slower when using numpy.ndarray dataset. So when training time become 
an issue, either because the datasets are large or because multiple experiments with different 
hyperparameters (e.g. grid search) are to be done, it seems better to use CPU computing, with low level Tensor 
Flow API and fed the dataset as slices from tf.tensor objects. As a matter of fact, the high level APIs provided 
by Keras had provided the best and more ductile approach for the problem classes that the COMPOSITION 
use cases required. 
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Despite these not so promising results, the GPU training will be further investigated in the next iteration of this 
document because it is common practice and well agreed among insiders that is the way to go. Problems may 
reside in the version of the APIs used or in some missing compilation flag of the correspondent modules. 

7.3 Feed Forward NN in H2O 

Given the partially inconsistent outcomes from TensorFlow in the tests previously described, it seemed 
desirable to try and compare a different framework in order to check is similar issues persists and if TensorFlow 
result are reproducible with a different framework or if better results can be achieved. In order to provide 
consistency across comparisons the same problem class is addressed. 

H2O was chosen as secondary framework. Experiments are detailed in the following sections. 

7.3.1 H2O introduction 

H2O is a multiplatform java-based open source toolkit for machine learning and big-data analysis. Its API is 
high level and extremely user friendly featuring a web-based GUI and bindings for Python, R and Scala. It can 
target other frameworks as computational core, including TensorFlow, but its native java core is extremely fast 
and scalable, being able to handle large datasets. 

The plethora of supported ML algorithms is wide but, concerning deep neural networks, only feed forward 
classifier/regressors and auto encoders are supported. 

Since trained models can be exported as plain java classes, it is easy and fast to integrate and deploy them in 
any java pipeline. 

While GPU computing is not straightforward, distributed clusters are natively supported and H2O seamlessly 
integrates with cloud computing technologies such as Apache Hadoop Distributed File System and commercial 
services such as Amazon Web Services. 

7.3.2 Regression tests 

A number of experiments with increasing complexity were carried out. In depth review of each of them would 
be of limited significance. Nevertheless, it is worth to briefly describe them to report the progression from 
simpler tests to more complex use cases that led to the first demo presented at M7 review meeting and 
discussed in depth in the next section. All tests are concerned with the supervised regression task over 
synthetic data. 

¶ Test H2O 01: the dataset is generated from univariate exponentially decreasing trend, corrupted with 
additive uniform noise. 

¶ Test H2O 02: same as Test H2O 01 but grid search approach has been used to extensively explore 
and select hyperparameters best values. 

¶ Test H2O 03: similar to H2O 01 but the dataset is multivariate: additional random features are added 
to the significant one in order to increase the difficulty of training. 

¶ Test H2O 04: same as Test H2O 03 but grid search approach has been used to extensively explore 
and select hyperparameters best values. 

¶ Test H2O 05: the univariate dataset is generated from a trend that combines an exponential decay and 
a sinusoid and corrupted with additive uniform noise. 

¶ Test H2O 06:  given the problems in the previous test, here the dataset is generated from a single 
univariate sinusoid trend, corrupted with additive uniform noise. 

¶ Test H2O 07: similar to H2O 01, but the dataset is multivariate by assuming the independent variable 
to be a time measure and decomposing it into 3 features: year, month and day. 

¶ Test H2O 08: similar to previous test, but comparing results obtained by training over dataset of 
different dimensions (varying the sampling frequency). 

¶ Test H2O 09: two different exponential trend are mixed in the same dataset and a second feature flags 
has been added to each sample, specifying the trend it belongs to. The regressor must learn the two 
different trends and to discriminate between them based on the additional feature. 
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7.3.3 First prices prediction demo 

At M7 it has been demonstrated to the consortium the first draft component for predicting prices within a range 
in a controlled environment. This demonstration has been performed on synthetic data and without using 
continuous learning techniques. 

The sequence of test previously described culminated in the development of a synthetic price regression demo 
based on a deep feed forward network trained on a synthetic dataset. This demo was presented to 
COMPOSITION partners at M7 project meeting. 

The addressed use case was UC-KLE-3 (Based on D2.1 v0.7), concerned with determining price for scrap 
metal. In this context the DLT can provide previsions of price fluctuation per scrap type per commercial partner. 

In particular, Eldia provides price offer to Klemann for exact tonnage of scrap and determines the price based 
on quotes from its customers, aiming to optimal scrap reselling with minimal storage. Forecasting of quote 
prices from various customers can support Eldia agent in timely decision making: 

¶ Asking for less, but more relevant quotes 

¶ Adopting estimated quotes instead of real ones in case of lack of time 

¶ Providing past interpolated and future estimated price trajectories 

The simulated historical dataset of quotes gives a full knowledge of the ground truth generating function 
allowing for better performance evaluation. 

The dataset spans over 70 years from 1950 to 2019, each sample is a quotation for a specific scrap type (out 
of 4) and from a specific customer (out of 4). Also each quotation is relative to a specific quantity of scrap, 
ranging from 1 to 10 tons, which nonlinearly impacts the target price. 

As shown in Figure 11 price trends along time (per scrap, per customer) follow an asymptotic growth to emulate 
inflation and is corrupted by additive uniform noise in range [-1,+1]ú as can be seen in Figure 12. The dataset 
contains 48 different trends, each contributing about 300 samples and resulting is a total size of 14400 samples 
corresponding to 16 quotations per month. The datasets have been split respecting the proportion of 80% for 
training, 20% for validation and 20% for testing. 

 

 

Figure 11: ground truth generating function of a single price trend 
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Figure 12: four different price trends: ground truth function and noise corrupted samples 

 

Each sample composed of eight features, plus the target price, namely: year, month, day, scrap type, customer 
id, scrap quantity, scrap colour and quote time to live. 

The last two features are uncorrelated to the target price and are intended as a disturbance co complicate the 
regression task. 

The regression network is a feed forward deep multi-layer perceptron (MLP). A satisfactory arrangement 
concerning hyperparameters have been determined through a grid search over them, leading to the following 
choices: 

¶ 4 hidden layers 

¶ Neurons per layer: [8, 128, 64, 32, 16, 1] 

¶ Activation function: f(x) = tanh(x) 

¶ Automatic metric selection for error evaluation 

¶ No regularization 

The adopted training specification are: 

¶ Training epochs: 30 

¶ Minibatch size: 5 samples 

¶ Learning rate: 0.1 

¶ Adaptive learning algorithm: adadelta 

¶ Data normalization: enabled 

The monitoring was carried out at each epoch with training batch size of 4000 samples and validation batch 
size of about 2000 samples. 

The scoring history shows a significant reduction of overall error, as shown in Figure 13, and a continuous 
convergence of training and validation error. 
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Figure 13: variation of mean absolute error (MAE) along training epochs 

 

A number of final performance metrics are reported in 

Table 10 for the train, validation and test data. As expected the test errors are wider that validation and training, 
but the increase is very slight to demonstrate the good generalization capability of this model. 

 

Error metric Training set Validation set Test set 

Mean Squared Error (MSE) 8.871 8.836 10.034 

Root Mean Squared Error 
(RMSE) 

2.978 2.972 3.167 

Mean Absolute Error 
(MAE) 

1.979 2.0315 2.018 

Root Mean Squared 
Logarithmic Error (RMSLE) 

0.00914 0.00887 0.00959 

 

Table 10: final performances of the trained neural network 

 

It is worth considering that the theoretical minimal MAE is bound to 0.5ú by the additive noise and that the 
obtained results are higher but comparable with this value, while they stay two orders of magnitude below than 
the average price along the dataset which is about 250ú (so that the average relative error is about 1%). 

The good overall performance of the network in discriminating between the 48 trends and make sensible 
predictions for each is well depicted in Figure that shows for a subset of the trends, the ground truth function 
and the predictions made by the network, the two curves are in good agreement. 

 










































































