

Ecosystem for COllaborative Manufacturing PrOceSses ï Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D5.3 Continuous Deep Learning Toolkit for Real Time
Adaptation I

Date: 2018-01-05

Version 1.1

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Unionôs Horizon 2020 Framework Programme for Research and Innovation under Grant
Agreement No 723145

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 2 of 72 Submission date: 2018-01-052018-01-05

Document control page

Document file: D5.3 Continuous deep learning toolkit for real time adaptation I v1.1.docx
Document version: 1.1
Document owner: ISMB

Work package: WP5 ï Key Enabling Technologies for Intra- and Interfactory Interoperability and
Data Analysis

Task: T5.2 ï Continuous Deep Learning Toolkit for real time adaptation
Deliverable type: R

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Paolo Vergori 04-10-2017 Definition of table of contents

0.2 Luca Boulard 30-10-2017 Reporting of first experiments on synthetic data

0.3 Luca Boulard 05-11-2017 Framework comparison

0.4 Nadir Raimondo 30-11-2017 Reporting of latest experiments on real data

0.5 Paolo Vergori 07-11-2017 Introduction and data assessment

0.6 Nadir Raimondo 13-11-2017 Chapter 6 refinement and introduction.
Conclusions

0.9 Paolo Vergori 19-12-2017 Final version for internal peer reviewer #1

1.0 Paolo Vergori 22-12-2017 Final version for review peer reviewer #2

1.1 Paolo Vergori 05-01-2018 Submitted to EC

Internal review history:

Reviewed by Date Summary of comments

Diaz Rodriguez, Rodrigo (ATOS) 2017-12-21 The document is well written and structured, providing
enough details of the work done in this activity. I think
it should be defined, in this document or in the next
one, a detailed plan for mitigating risks.

Willie Lawton (TNI-UCC) 2018-01-04 In general it looks a very good deliverable.

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the COMPOSITION Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely the views
of its authors. The European Commission is not liable for any use that may be made of the information contained
therein.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 3 of 72 Submission date: 2018-01-052018-01-05

Contents

1 Executive Summary ... 4

2 Abbreviations and acronyms .. 5

3 Introduction .. 6
3.1 Summary .. 6
3.2 Background .. 6

4 State-Of-The-Art analysis .. 7
4.1 Intro to machine learning .. 7
4.2 Intro to neural network and deep learning .. 8
4.3 Deep Feed Forward NN ... 8
4.4 Recurrent neural network and long-short term memory network 9

5 Frameworks comparison ...10
5.1 Introduction to deep learning frameworks ..10
5.2 Evaluation criteria ...10
5.3 Comparison ..11

6 Inter and Intra-factory end usersô historical data assessment ..20
6.1 Predictive maintenance (UC-BSL-2) ..21

6.1.1 Background ..21
6.1.2 Data Overview ...21
6.1.3 Fitness for usage ...24
6.1.4 Data assessment ...24

6.2 Maintenance Decision Support (UC-KLE-1) ..24
6.2.1 Background ..24
6.2.2 Data Overview ...24
6.2.3 Fitness for usage ...24
6.2.4 Data assessment ...24

6.3 Fill level and classification use cases (UC-KLE-3 UC-KLE-4 UC-ELDIA-1 UC-ELDIA-2)25
6.3.1 Background ..25
6.3.2 Data Overview ...25
6.3.3 Fitness for usage ...25
6.3.4 Data assessment ...25

6.4 Prices and logistics (UC-KLE-4, UC-KLE-5, UC-KLE-6) ..25
6.4.1 Background ..25
6.4.2 Data Overview ...25
6.4.3 Fitness for usage ...26
6.4.4 Data assessment ...26

7 Deep Learning Toolkit for continuous learning design and testing27
7.1 Introduction ...27
7.2 Feed Forward NN in TensorFlow ...28

7.2.1 TensorFlow introduction...28
7.2.2 Comparison of different TensorFlow API ...29
7.2.3 Preliminary comparison of CPU and GPU training ..29

7.3 Feed Forward NN in H2O ...33
7.3.1 H2O introduction ...33
7.3.2 Regression tests ..33
7.3.3 First prices prediction demo ...34
7.3.4 Updated demonstration on prices prediction ...37

7.4 Recurrent NN for time series regression ..38
7.4.1 LSTM regression on univariate time series ...38
7.4.2 Designing LSTM for multivariate data and multiple time steps predictions46
7.4.3 Forecasting with untrained LSTM and continuous learning.....................................52

8 Conclusions and future work..69

9 List of Figures and Tables ...70
9.1 Figures ..70
9.2 Tables ...71

10 References ..72

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 4 of 72 Submission date: 2018-01-052018-01-05

1 Executive Summary

The present document named ñD5.3 Continuous deep learning toolkit for real time adaptation I v1.1ò is a public
deliverable of the COMPOSITION project, co-funded by the European Unionôs Horizon 2020 Framework
Programme for Research and Innovation under Grant Agreement No 723145. It reports the results of task ñ5.2
ï Continuous Deep Learning Toolkit for real time adaptationò that foresees its development in work package 5
ñKey Enabling Technologies for Intra- and Interfactory Interoperability and Dataò.

The document owner is ISMB and in this version 1.1, submitted at M16, are highlight the results of the first
iteration of projectôs task 5.2, regarding the development of a Deep Learning Toolkit for real time adaptation.
A comprehensive data assessment is provided alongside prove of concept results are provided for each of the
addressed projectôs use cases. A second iteration of this document, named ñD5.4 Continuous deep learning
toolkit for real time adaptation IIò will be submitted at M30 and will update the results of task ñ5.2 ï Continuous
Deep Learning Toolkit for real time adaptationò through an iterative approach.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 5 of 72 Submission date: 2018-01-052018-01-05

2 Abbreviations and acronyms

Acronym Description

AI Artificial Intelligence

ANN Artificial Neural Network

API Application programming interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DoW Document of Work

DLT Deep Learning Toolkit

GPU Graphical Processing Unit

HDFS Hadoop Distributed File System

LSTM Long-Short Term Memory

MAE Mean Absolute Error

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NN Neural Network

OGC Open Geospatial Consortium

OpenCL Open Computing Language

OpenMP Open Multi-Processing

RMSE Root-Mean Squared error

RMSLE Root-Mean Squared Logarithmic Error

RNN Recurrent Neural Network

TRL Technology Readiness Level

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 6 of 72 Submission date: 2018-01-052018-01-05

3 Introduction

3.1 Summary

In this document it is described the development carried out in COMPOSITIONôs project task 5.2, named
Continuous Learning Toolkit for Real Time Adaptation.

The document is structured in seven sections and after a comprehensive analysis of the state-of-the-art of
relevant fields; a comparison among existing frameworks of interest is presented. The COMPOSITION
projectôs use cases, in which this task has been involved, have been evaluated and the end usersô historical
datasets have been assessed through a qualitative based validation process. The main chapter (7) is the one
relative to the analysis of the Deep Learning Toolkit component that was developed within T5.2. The developed
component is going to be deployed in the aforementioned use cases, in which all projectôs end users are going
to be involved. In this chapter, results will be presented alongside the used methodology. In specific, at first
results on extensive tests on synthetic data representing multiple possible scenarios are going to be reported,
followed up by real data from one of the end users. At last, in the final section, a comprehensive analysis of
the achieved results is presented. Furthermore, a detailed report of required work that will be necessary to
complete this activity and tackle future challenges is included in the final section.

It is worth mentioning that the expected TRL of the component developed in task 5.2 is four, according to the
DoW.

3.2 Background

As the challenges of the Industry 4.0 are absorbed by the research word, bringing together world-class
manufactures and the academic world. Science fiction movies has drawn for decades a dystopian research
reality in which the machines take over the men labour and even worse. The COMPOSITION project treats AI
as a powerful source and tackles real world problems, such as predictive maintenance and raw material market
prices estimations, advancing the state-of-the-art of current technologies.

As algorithms are progressing their time efficiency and resource consumption is progressively decreasing, the
number of possible applications in which AI is applicable is becoming almost endless. It is clear to the scientific
community that real power over Artificial Neural Networks (ANNs) will not be achieved by withholding
intellectual proprieties over algorithms or frameworks, that in fact are released open source and progressively
updated by the community, but this true power over predictionsô accuracy dwells in the data ownership.

Regarding the toolôs development described in this document, it is worth mentioning that the aim is not to
create a Swiss knife tool for every application, but a tailored solution that fits a complex ecosystem from its
roots to its leaves. After outlining these scenarios, it is easy to understand why the Deep Learning Toolkit
(DLT), described in this document, will have as many declinations as the use cases in which it will be deployed.
Each solution will be specifically developed for the actions that will be required to take and will be based on
historical data availability. As it will be clear at the end of this reading, the success rate and the convergence
period will be drastically dependent by the amount of data available in each of the scenarios.

The focus for this first deliverable has been put on data analysis and assessment from historical datasets and
on synthetic data demonstration of the potential of ANNs. In the end, a first deployment of a trained ANN that
uses real world data is also described in its deployment in the lab-scale testing environment.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 7 of 72 Submission date: 2018-01-052018-01-05

4 State-Of-The-Art analysis

4.1 Intro to machine learning

Machine Learning (ML) is the branch of computer science concerned with the development of algorithms and
techniques allowing computers to learn from experience/data.

ML arise at the intersection of a number of different research fields:

¶ Artificial intelligence: smart algorithms to successfully interact with the environment.

¶ Statistics: inference from samples.

¶ Data mining: search through large volumes of data.

¶ Computer science: efficient algorithm and complex models.

¶ Pattern recognition: analyse and interpret data looking for recurrent structures.

A well-known and widely accepted ML definition, due to [1] and dating batch to 1997 states that:

«A computer program is said to learn from experience E with respect to some task T and some performance
measure P, if its performance on T, as measured by P, improves with experience E»

The ML approach is conceptually structured in two independent stages:

¶ Training: analyse input dataset Ÿ gain understanding Ÿ fit a model that explains the data.

¶ Deploy: use the model to make prediction of new data.

Figure 1 illustrates both Mitchellôs definition and the two stages in the real case example. The task T is to
predict the content of a picture. The experience E is the input dataset composed of a list of pictures and the
associated expected labels. The computer program is the model trained with the dataset in the first stage: it is
a trial and error process in which the model is used to predict the content of pictures. The prediction is
compared to the target label computing an error metric (the performance measure P) and finally the error is
used to perform a finer tuning of the model. Repeating this process iteratively progressively improve the model
performance until it can be deployed and applied to predict the content of new unseen and unlabelled images.

Figure 1: example of machine learning stages for the task of image content prediction

ML is therefore a good approach in a plethora of different situations and is preferable to the traditional computer
science paradigm of sequential and object oriented programming where each problem require a custom
application.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 8 of 72 Submission date: 2018-01-052018-01-05

4.2 Intro to neural network and deep learning

Artificial Neural Networks are defined in [2] as a computing systems inspired by the biological neural networks
that constitute mammalian cerebral cortex. Such systems learn (progressively improve performance on) tasks
by considering examples, generally without task-specific programming.

An ANN is based on a collection of connected units or nodes called artificial neurons (analogous to biological
neurons in an animal brain). Each connection (synapse) between neurons can transmit a signal from one to
another. The receiving (postsynaptic) neuron can process the signal(s) and then signal neurons connected to
it. In common ANN implementations, the synapse signal is a real number, and the output of each neuron is
calculated by a non-linear function of the sum of its inputs. Neurons and synapses typically have a weight that
adjusts as learning proceeds. The weight increases or decreases the strength of the signal that it sends across
the synapse.

Neural Network models normally have a hierarchical organization into distinct layers of neurons. Each layer of
neurons represents a level in that hierarchy. The number of layers supported by a model is theoretically non-
limited but it was generally restricted to few layers. The limitations were overcome in recent algorithms
evolution that rely on:

1. The increased availability of data.

2. The enhancement of computing resources.

Neural networks with multiple hidden layers are referred to as Deep Neural Networks.

4.3 Deep Feed Forward NN

A feed forward neural network is a collections of neurons connected in an acyclic graph. The data travel
forward, from the first (input), to the hidden nodes (if any) and finally through the output nodes. In other words,
the outputs of the neurons of a layer can only become inputs of a deeper layer.

This network type came from a Frank Rosenblatt machine-learning algorithm named ñPerceptronò [3]. Two
kind of perceptron have been generated as described in [2] [4]:

¶ Single-layer perceptron network: single layer of output nodes; the inputs are fed directly to the outputs
via a series of weights. In this way, it can be considered the simplest kind of feed-forward network.
Single-unit perceptronôs are only capable of learning linearly separable patterns.

¶ Multi-layer perceptron networks or feed forward neural networks: multiple layers of interconnected
computational unit. Each neuron in one layer has directed connections to the neurons of the
subsequent layer.

Figure 2 shows an example of 3-layer Feed Forward Multi-layer perceptron with two inputs, two hidden layers
of 3 neurons each and one output layer. All the connections are between adjacent layers and neurons within
a single layer share no connections.

Figure 2: network layers

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 9 of 72 Submission date: 2018-01-052018-01-05

4.4 Recurrent neural network and long-short term memory network

The excerpt from literature continues in [5], where all this information is widely available. A brief and concise
dissertation continues in the followings.

A Recurrent Neural Network (RNN), as defined in [5], is a class of artificial neural networks where connections
between units form a directed cycle. This allows it to exhibit dynamic temporal behaviour. Unlike feed forward
neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs.

The back-propagation of information, using gradient descent, is used to move the networkôs weights to move
better guesses. As described in [6], artificial neural networks with gradient-based learning methods and back
propagation can suffer some difficulties in training due to the vanishing gradient problem. In such methods,
each of the neural network's weights receives an update proportional to the gradient of the error function with
respect to the current weight in each iteration of training. The problem is that in some cases, the gradient will
be vanishingly small, effectively preventing the weight from changing its value. In the worst case, this may
completely stop the neural network from further training.

Long-Short Term Memory (LSTM) network [7] was introduced by Hochreiter and Schmidhuber in 1997 [8] to
overcome the vanishing gradient problem of traditional RNNs. An LSTM network contains a (memory) cell. An
LSTM cell "remembers" a value for either long or short time periods. The key to this ability is that it uses the
identity or no activation function within its recurrent connection. In other words, the remembered value of the
cell is not iteratively modified because there is the identity or no activation function through which the value
flows. This is the key for the gradient not to tend to vanish when an LSTM network is trained with back
propagation through time.

A "standard" LSTM block contains three gates that control or regulate information flow: an input gate, an output
gate and a forget gate. These gates compute an activation often using the logistic function. These gates can
be thought as conventional artificial neurons. Thus, each of the gates has its own parameters (i.e. weights and
biases from possibly other units outside the LSTM block). Their output is multiplied with the output of the cell
or the input to the LSTM to partially allow or deny information to flow into or out of the memory. More
specifically, the input gate controls the extent to which a new value flows into the memory, the forget gate
controls the extent to which a value remains in memory and the output gate controls the extent to which the
value in memory is used to compute the output activation of the LSTM block.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 10 of 72 Submission date: 2018-01-052018-01-05

5 Frameworks comparison

5.1 Introduction to deep learning frameworks

Even well-known machine learning algorithms are quite complex to implement from scratch, itôs not unlikely to
get lost in maths details and computational technicalities. To address this issue, in recent years a plethora of
software frameworks dedicated to machine learning and deep learning emerged, allowing for simplified API
and efficient code reuse. Some of them come from academia while other are released from global companies
such as Google and Microsoft. Each one has specific features, pros and cons: there is no such a thing as the
absolute best framework. As a result, a convenient framework choice has to be taken based on the specific
requirements to fulfil and task to address.

Hands-on comparison and benchmark of so many heterogeneous frameworks would require a lot of effort to
set up different development environments each with its own API. A feature-based review has been carried
out to narrow down the number of candidates.

As part of task 5.2 we conducted an extensive review of the most recent and popular frameworks supporting
deep learning algorithms. The results are presented in the following sections.

The considered candidates include:

¶ Caffe

¶ CNTK

¶ Deeplearning4j

¶ TensorFlow

¶ Theano

¶ Torch

¶ H2O.ai

¶ Wolfram Mathematica

¶ Neural Designer

¶ Apache Singa

¶ Chainer

¶ OpenNN

¶ MXNet

5.2 Evaluation criteria

Several different criteria have to be considered to evaluate frameworks for machine learning. The most relevant
are listed below.

¶ Date of first and last release: older frameworks have better chances to be mature, consolidated, stable
and support a wider number of algorithms. On the other hand, recent frameworks have good chances
to focus on state of the art algorithm and have more modern overall architecture. In any case, actively
developed frameworks are to be preferred.

¶ Usage licence: In COMPOSITION, we are interested to the open/closed source dichotomy as well as
to the possibility of embedding in commercial products with a view to commercial exploitation.

¶ Documentation, adoption and commercial support: the availability of a detailed and up to date
documentation is an important consideration for ML framework adoption as for any other piece of
software. The same applies for dimension of the adopting community, which correlates to the
availability of tutorials examples and blog posts.

¶ Supported hardware: while the model training based on historical data can be carried out offline with
workstations providing the necessary computational power (usually Intel x64 CPUs, with the optional
support of GPU computing), once deployed the model has to be able to deliver prediction and perform
continuous learning. These activities are less computationally intensive than the initial training and can

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 11 of 72 Submission date: 2018-01-052018-01-05

be carried out on cheaper hardware: such as SoC, embedded or mobile devices, which may use ARM
CPUs, offer no support to GPU computing. This is possible only if the framework supports the target
hardware platform, therefore it is desirable to adopt a framework with the widest possible hardware
support.

¶ Supported platform: the same considerations related to supported hardware applies to software
platforms: in order to allow deployment of a wide range of different devices, the adopted framework
has to be multiplatform.

¶ Algorithm supports: frameworks offer different support to various families of machine learning
algorithms. This is a multifaceted issue as the implementation can be, not just either present or
missing, but partial as well as sub-optimal under many different aspects. Another related feature is the
availability of pre-trained models (not just the algorithm itself, but also a trained version of it to tackle
specific tasks); this allows it to work in incremental way, building on top of previous successful models
with efficient reuse of training effort.

¶ Core Language: the language in which the core of the framework is implemented. Typically affects
training speed as both low-level languages and languages targeted to numerical computation are
faster to execute that high level, general-purpose languages.

¶ API language: frameworks usually offer APIs in different languages for convenience of usage. High-
level languages such as python are faster to write and easier to read with respect to C/C++ so that
such APIs bring a consistent speedup in model design. The higher number of supported languages,
the better.

¶ Auto-differentiation support: most neural networks rely on variations of Gradient Descent algorithm to
perform training. In particular, the gradient of a cost function has to be evaluated many times. This can
be done either analytically or numerically. In the first case the gradient function has to be known and
provided to the framework by the programmer, while in the second case the framework is able
numerically approximate with no additional knowledge. The latter is less precise and slightly slower
but applies to much more wide range of real problems.

¶ API abstraction level: the frameworks can provide APIs at different abstraction levels. The lower the
level, the greatest the control over the algorithmic details. The higher the level, the shorter and most
readable the code, resulting in faster test and comparison of different models.

¶ Parallel/GPU computing support: given that the training of Deep Neural Network over large datasets
is incredibly computationally eager, it is possible to contain the execution time by multithreading: the
computation workload is delegated to multicore hardware such as CPUs where is can be massively
parallelized.

¶ Distributed architectures support: another way to approach computational workload of training is to
split it across a cluster of machines exploiting the network infrastructure. This approach can be
combined with GPU computing for even higher speedup.

5.3 Comparison

In this section, the comparison of frameworks is detailed. Only actively developed frameworks were
considered. Furthermore, being interested in deep neural network state of the art, a bigger attention has been
devoted to neural network capabilities, and in particular to Feed Forward NN and Recursive NN. Convolutional
NN and Auto encoders, despite being innovative algorithms are less relevant for the COMPOSITION use cases
and are not explicitly considered in the comparison tables.

The original assessment was created in October 2016 (M2) but the data reported in this document has been
updated at September 2017 (M13).

In Table 1 to Table 5 compares the frameworks under different features:

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 12 of 72 Submission date: 2018-01-052018-01-05

Framework Creator Year first release Year last release

Apache Singa Apache Incubator 2015 2017

Caffe Berkeley Vision and
Learning Center

2013 2017

Caffe2 Facebook 2017 2017

Chainer PFI/PFN 2015 2017

Deeplearning4j Skymind engineering team 2014 2017

H2O H2O.ai 2011 2017

Microsoft Cognitive
Toolkit

Microsoft Research 2016 2017

MXNet Distributed (Deep)
Machine Learning

Community

2015 2017

Neural Designer Artelnics 2014 2017

OpenNN Artelnics 2003 2017

TensorFlow Google Brain team 2015 2017

Theano Université de Montréal 2008 2017

Torch Ronan Collobert, Koray
Kavukcuoglu, Clement

Farabet

2002 2017

Wolfram Mathematica Wolfram Research 1988 2017

Table 1: comparison of frameworks - creator, first and last releases

Framework Licence Private & Commercial
use

Open source

Apache Singa Apache 2.0 Yes Yes

Caffe BSD 2-Clause Yes Yes

Caffe2 BSD 2-Clause Yes Yes

Chainer MIT Yes Yes

Deeplearning4j Apache 2.0 Yes Yes

H2O Apache 2.0 Yes Yes

Microsof Cognitive Toolkit MIT Yes Yes

MXNet Apache 2.0 Yes Yes

Neural Designer Proprietary --- No

OpenNN GNU LGPL Yes Yes

TensorFlow Apache 2.0 Yes Yes

Theano BSD 3-Clause Yes Yes

Torch BSD License Yes Yes

Wolfram Mathematica Proprietary --- No

Table 2: comparison of frameworks ï licensing

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 13 of 72 Submission date: 2018-01-052018-01-05

Framework Platform Core Language API Language

Apache Singa Linux, Mac OS X C++,Python Python, C++

Caffe Windows, Linux, OS X C++,Python C++, command line,
Python, Matlab

Caffe2 Windows, Linux, OS X C++,Python Python, Matlab

Chainer Linux Python Python

Deeplearning4j Windows, Linux, OS X,
Android

C, C++ Java, Scala, Clojure,
Python (via Keras)

H2O Windows, Linux, OS X Java Java, Python, R, Scala

Microsof Cognitive Toolkit Windows, Linux C++ Python, C++, Command
line, BrainScript

MXNet Windows, Linux, OS X C++, Python, Julia, Matlab,
Go, R, Scala

C++, Python, Julia, Matlab,
JavaScript, Go, R, Scala,
Perl, Wolfram Language

Neural Designer Windows, OS X, Linux C++ Graphical user interface

OpenNN Windows, Linux, OS X C++ C++

TensorFlow Windows, Linux, OS X C++,Python Python, (C/C++public API
only for executing graphs)

Theano Windows, OS X, Linux Python Python

Torch Linux, Android, OS X, iOS C, Lua Lua, LuaJIT

Wolfram Mathematica Windows, OS X ,Linux C++ Command line, Java, C++

Table 3: comparison of frameworks - supported platforms & languages

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 14 of 72 Submission date: 2018-01-052018-01-05

Framework Parallel/GPU
Computing

Distributed
Architecture

Apache Singa Yes (CUDA) Yes

Caffe Yes (CUDA, OpenMP) Yes

Caffe2 Yes (CUDA, OpenMP) Yes

Chainer Yes (CUDA) Yes (with ChainerMN)

Deeplearning4j Yes (CUDA, OpenMP) Yes (Apache Spark)

H2O Not directly Yes (Apache HDFS, Apache
Spark; Cloud: Amazon EC2,
Google Compute Engine,

and Microsoft Azure)

Microsof Cognitive Toolkit Yes (CUDA, OpenMP) Yes

MXNet Yes (CUDA, OpenMP) Yes

Neural Designer Yes (CUDA, OpenMP) Yes (Amazon WS)

OpenNN Yes (CUDA, OpenMP) No

TensorFlow Yes (CUDA) Yes

Theano Yes (CUDA, OpenMP) Partial

Torch Yes (CUDA, OpenMP) Partial

Wolfram Mathematica Yes (CUDA, OpenMP,
OpenCL)

Yes

Table 4: comparison of frameworks - GPU & distributed computing

Framework Auto
Differentiation

Pre-trained
models

RNN CNN

Apache Singa Yes Yes Yes Yes

Caffe Yes Yes Yes Yes

Caffe2 Yes Yes Yes Yes

Chainer Yes Through Caffe's
model zoo

Yes Yes

Deeplearning4j Computational
Graph

Yes Yes Yes

H2O Yes No Not directly Not directly

Microsof Cognitive
Toolkit

Yes No Yes Yes

MXNet Yes Yes Yes Yes

Neural Designer Yes ? No No

OpenNN Yes No No No

TensorFlow Yes Yes Yes Yes

Theano Yes Through Lasagne's
model zoo

Yes Yes

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 15 of 72 Submission date: 2018-01-052018-01-05

Torch Through Twitter's
Autograd

Yes Yes Yes

Wolfram
Mathematica

Yes Yes No Yes

Table 5: comparison of frameworks - algorithm support

In order to compare the popularity and the level of development activity around each framework, several charts
are reported.

Figure 3 compares the trends of number of questions asked about frameworks over the popular platform Stack
Overflow along several years. Only few frameworks are considered.

Figure 3: trends of Stack Overflow questions

A more comprehensive popularity comparison was obtained through the statistics of GitHub.com where all
open source frameworks have their public repository. Weekly number of commits along a one-year period
(09/2016 to 09/2017) in Figure 4 gives a detailed insight about recent development trends, while the average
values reported in Figure 5 let the most active frameworks emerge.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 16 of 72 Submission date: 2018-01-052018-01-05

Figure 4: trends of weekly GitHub commits across the last year

Figure 5: average numbers of weekly GitHub commits in the last year

Another widely adopted popularity metric is the trend of a topic in Google search. In Figure 6 the frameworks
are compared in terms of weekly search interest (normalized to the range [0-100]) since 2013.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 17 of 72 Submission date: 2018-01-052018-01-05

Figure 6: Google search trends

Some considerations emerged from the data reported so far.

The majority of deep learning frameworks is open source and can be used free of charge even for commercial
purposes (as long as the original code is not modified). On the other hands, the most famous commercial
framework: Wolfram Mathematica (and more in general the whole ecosystem of Wolfram products) is up to
date and full featured but the licence pricing options, ranging from 3000 to over 9000 euros per license,
discourage from adoption since there are valid free alternatives.

In particular, open source frameworks are developed, maintained and used by top universities machine
learning research groups, software foundationôs/communities and, more and more frequently, from global tech
companies such as Google and Facebook. The resulting frameworks are the ones adopted both for research
purposes and for the implementation and deployment of industrial-grade commercial products with global
distribution.

Because of these reasons, an open source framework has been preferred for the development of the
COMPOSITION Deep Learning Toolkit. During the drafting of this assessment in October 2016, the number
of candidates has been reduced to a restricted pool based on the features and popularity at that date.

Additional advantages and disadvantages were individuated as in Table 6 to support the final framework
choice. Anyway, it is worth noting that the framework evolution is very fast and new features are incorporated
every few months so that the trade-off of pros and cons of each solution are likely to be changed by time
writing.

Framework Advantages Disadvantages Notes

Caffe Many extensions
C++ --> multiplatform.

Lots of pretrained model
on its ModelZoo site.

Most command line
interface.

Need to write CUDA for
GPU layers.

Not good for recurrent
networks.

Most popular for
Computer Vision tasks and

CNN.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 18 of 72 Submission date: 2018-01-052018-01-05

Not extensible, may be
difficult to apply outside

Computer Vision.

H2O Fast and scalable.
Very well documented

API.
High level API --> easy to

use.
Very convenient Grid

Search across
hyperparameters space.

Limited choice of ANN
models: no RNN and CNN
(but can handle arbitrarily
complex model by using

other frameworks as
core).

Other companion
products allow extending
H2O functionalities for
GPU computing and for

scaling on Apache HDFS &
Spark. In addition, it is

possible to deploy on most
famous commercial cloud

services.

Microsoft Cognitive
Toolkit

C++ --> multiplatform (but
not working on ARM).

Good RNN
implementation.

Not yet usable for a
variety of tasks.

Most command line
interface.

In the beginning, mainly
adopted for speech

recognition and natural
language processing (NLP)

tasks.

TensorFlow Python and C++ interface
C++ --> multiplatform.
Faster than Theano.

Industrial grade
deployment system.

Most popular framework,
extremely actively

developed.

RNN are still suboptimal.
Bidirectional RNN not yet

available.
Slower than other

framework and fatter than
Torch.

Few pre-trained models.

Meant as a replacement of
Theano.

Theano Has implementation of
most SoA networks

directly or as higher-level
framework.

Python interface.

Deployment require
python interpreter -->

overhead (less attractive
for industrial use).

Untidy legacy architecture.
Steep learning curve for
low-level Theano api.

Long compile time (fatter
than Torch).

First learning framework,
mainly used in academic

On-top framework: Keras,
Lasagne, Blocks.

Torch Lots of modular pieces
easy to combine, and
pretrained models.

Excellent for convolutional
network (better than

TensorFlow or Theano).
Good for RNN through an

extension.
More flexible than TF/Th:

no graph --> better for
beam search.

Lua is fast.

Lua is not mainstream
language.

Maybe difficult to
integrate with other

software components.
Need to write code for

training.
Spotty documentation.

Very popular for
Computer Vision tasks and

CNN.

Table 6: pros and cons of open source frameworks

As for the final choice of frameworks to adopt in COMPOSITION:

¶ Theano was discarded since TensorFlow is more advanced

¶ Torch and Caffe were discarded since more focused on Computer Vision tasks and more suitable to
academic research purposes than deployment in production contexts.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 19 of 72 Submission date: 2018-01-052018-01-05

¶ Microsoft Cognitive Toolkit was discarded because at the time had limited functionalities and was
mainly focused on NPL tasks.

In the end, TensorFlow was chosen as the main development environment, due to its growing popularity, to
its APIs operating different abstraction level allowing to trade-off between ease of coding and control of
algorithm detail. Being developed and adopted by Google for its AI projects seemed to offer good prospects
over community width, continuous development, quality of the documentation, efficiency of deployment
systems.

In addition, H2O, were included for fast testing of Feed Forward Deep Neural Network do to its training speed,
ease of use, and to the powerful built-in Grid Search functionality.

When, in a second time as clearly stated in future sections 6 and 7.4, the need for Recurrent Neural Network
clearly emerged, a new evaluation was carried on. By the time, TensorFlow passed from version 0.8 to version
1.3, adding more features and improvements under many aspects, including RNN support, so that it seemed
inconvenient to switch to a very different framework such as Microsoft Cognitive Toolkit (which has gone
through major improvements and seems now to be a very convenient, flexible and fast library too).

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 20 of 72 Submission date: 2018-01-052018-01-05

6 Inter and Intra-factory end usersô historical data assessment

In this chapter, the results of the assessment conducted over the historical datasets provided by industrial
partners are reported. These datasets are mandatory for a component such as the Deep Learning Toolkit
whose core is mainly composed of deep artificial neural network models.

In fact, in order to achieve a state of the art prediction accuracy, artificial neural networks need to be extensively
trained over large datasets. There is a linear dependency between the model complexity and the amount of
data required: the deeper and more complex the model, the larger the training set is required. The Deep
Learning Toolkit is going to be deployed in an already trained form, based on the addressed use case scenario.
Once deployed, it will process live data streams provided by the Big Data Analytics component, producing
meaningful predictions and updating them whenever enough information is processed and a new one is
available. In order to adapt to future variations of patterns and trends, the deep learning toolkit bases its
implementation on continuous learning, refining its training analysing small batches of live data.

In order to be used in a supervised machine learning framework, each historical dataset has to be organized
as a list of samples. Each sample list is made of two parts: a vector of features, named X (e.g. values sampled
from different sensors at the same time) and a corresponding scalar target value Y. The number of features
and their type (int, float, string) can be various, but it must be fixed for all the samples of a dataset: consistency
in mandatory and any kind of heterogeneity within a dataset is not allowed. The scalar vector Y also demands
consistency and represents a target that is compulsory for each sample. Below a graphical representation of
X and Y:

Figure 7: dataset structure

The rest of this chapter is structured per use case: for each use case in which the deep learning toolkit is
involved, and therefore one or more artificial neural network is going to be deployed, an in depth analysis is
performed. In the following sections is then discussed whether the provided data are adequate for the deep
learning toolkit to perform its training actions, and if not, which aspects of the datasets are unfit, highlighting
possible solutions to tackle the problem.

The references made in this document refer to the updated use casesô list, as defined in the most recent
version of deliverable D2.1. In the following section the assumptions made are highlighted:

¶ Only the use cases in which the DLT is expected to contribute has been considered.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 21 of 72 Submission date: 2018-01-052018-01-05

¶ All the use cases where the DLT will contribute are discussed (the DLT will not be part of other use
cases).

¶ There is no assessment of non-tabular data such as pictures, maps, and textual descriptions.

¶ In the followings are linked the pages in which the corresponding data and use cases are assessed:

o Predictive maintenance (UC-BSL-2)

o Mainten ance Decision Support (UC-KLE-1)

o Scrap metal / Fill bin (UC-KLE-3, UC-KLE-4, UC-ELDIA-1, UC-ELDIA-2)

o Prices and Collection (UC-KLE-4, UC-KLE-5, UC-KLE-6)

In the (hopefully) unlikely event where an historical dataset is missing and therefore the action of performing
the initial training would not be possible, a model can be deployed untrained. It then would use only live data
streams to perform both the training and the learning phases. In this case, a quite considerable amount of time
must be considered as a transitional period that is required to reach the performance of an equivalent trained
model and therefore being able to deliver any meaningful prediction. Nevertheless, it is demonstrated in
literature by the ANNs guru Simon Haykin in its biblical manual Neural Networks and Learning Machines [9]
on page 187 where he states that back propagation always converges, although the rate can be slow and in
its own words: it "can be excruciating". This is also proved in chapter 7 by the experiments on the synthetic
data. It is therefore safe to assume that a good level of accuracy, and therefore convergence, is reachable in
a finite time by using specific topologies and models of artificial neural networks.

Occasional missing values for some features for a small amount of samples can be dealt with, as long as they
are minimal. Data series can be easily chunked and converted to a dataset format, but in order to be relevant
for supervised learning they have to be sampled with a fixed frequency: sparse occasional samples are of
limited or no use. As a rule of thumb, medium sized dataset counts 10K or more samples. Depending on the
specific challenge the component will required to address, as the current state of the art performance of any
deep learning algorithm, 100K or more balanced samples are required for providing a more relevant training.

Particular relevance is required when considering the word balanced because it is the key in this topic here,
because feeding models with millions of samples in normal state and hundreds of samples in fault state is not
an option. In those cases, it is required to under sample the amount of data in the normal state, balancing the
input for the model. Hence, when we talk about the category of classification problems, like the ones it is
possible to reduce most of the intra-factory use cases, if we want to have 100K balanced samples, it is required

to have for each class the model is required to identify.

6.1 Predictive maintenance (UC-BSL-2)

6.1.1 Background

The Deep Learning Toolkit component is expected to distribute the latest prediction on the next expected
failure of the oven blower machine, based on the continuous input stream of sensors data streams.

6.1.2 Data Overview

BSL provided a large dataset related to four reflow ovens (Brady, Tachy, Rhythmia and NMD). For each oven,
the dataset encompasses data files, one per day, covering the period 2008-2017. Actually, the beginning of
the recording, the time span is different for each oven, varying between 2008 and 2013. Each file is structured
as a list of records, one per row. Records are sampled every 5 minutes and contain, in addition to the
timestamp, the logs of all the blowers inside machine. The number of blowers differ from reflow to reflow (e.g.
Brady has 111, NMD has 66). Each blower logs three values:

¶ The temperature set by the user [°C] (only for Brady oven).

¶ The measured temperature [°C].

¶ The output power at the solid-state relay of the reflow.

Random inspection of this huge dataset showed that usually only a subset of blowers log significant data, while
the others report zero, negative or out-of-range values.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 22 of 72 Submission date: 2018-01-052018-01-05

Event files are also provided. They are referenced one per day, matching one to one the data files. Each event
file contains a list of logs related to the oven. Each event has a timestamp and a textual description. Key to the
predictive maintenance scenario are the failures of each blower. Unluckily the event logs do not specify which
of the blowers failed. Furthermore, at a purely ballpark analysis, the number of faults seems to be unbalanced
compared to the number of samples. In details:

¶ Brady Ÿ 15 failures.

¶ Tachy Ÿ 0 failures.

¶ Rhythmia Ÿ 1 failure.

¶ NMD Ÿ 7 failures.

The data files globally contain 2725344 samples distributed as follow:

¶ Brady Ÿ 649152 samples.

¶ Tachy Ÿ 652032 samples.

¶ Rhythmia Ÿ 366912 samples.

¶ NMD Ÿ 942048 samples.

Additionally, BSL provided an excel table of blower failure records. Each failure has:

¶ A numeric ID, we assumed to be the blowerôs ID.

¶ The description of the intervention (which is always the substitution of the blower).

¶ The intervention timestamp.

¶ The name of the oven the blower belongs to.

Figure 8 below show some plots of the Brady oven blowers corresponding to faults. The color meaning is the
following:

¶ Orange plot is the temperature set by the user.

¶ Blue plot is the temperature measured.

¶ Green plot is the output power.

¶ Red plot marks the points where faults occurred.

Figure 8: Brady oven dataset from 04/15/2011 to 04/18/2011

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 23 of 72 Submission date: 2018-01-052018-01-05

Figure 9: Brady oven dataset from 05/15/2011 to 05/18/2011

Figure 10: Brady oven dataset from 04/27/2014 to 04/30/2014

It is worth noticing that, for both Figure 9 and Figure 10 it doesnôt seem to exist or cannot be seen with the
naked eye a characterization pattern that makes an ovenôs fault prediction possible. In fact, unlike what
happens in Figure 8, where the measured temperature (orange line in the plot) steeply decreases, dropping
to zero before the recorded fault event, in the other plots the temperature starts decreasing only after the fault
event. This is an asymptomatic issue of the input data which steepen the problem curve tackled by the DLT
and highlights a trend of non-correlation to the problem class that the component is aiming to solve.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 24 of 72 Submission date: 2018-01-052018-01-05

6.1.3 Fitness for usage

The dataset focus and size is suitable for predictive maintenance task. Still some major issues remain. The
number of failure events is way too low: the best case oven has 15 failures over more than 500K samples. As
a consequence, the sampling frequency results too high and the single samples become irrelevant and results
in an unbalanced situation in which sample aggregation and under sampling are inevitable. The dataset
cardinality will be therefore strongly reduced, which will affect its usefulness, based on the number of discarded
samples.

Moreover, while data samples report measures of tens blowers, the failure events do not provide any
information for identifying the damaged blower. This may affect the capability to correctly predict future failures.

6.1.4 Data assessment

Given the provided data, the best possible approach to predictive maintenance use case is to train a LSTM
Neural Network (the state of the art of Recurrent Neural Networks) on the data related to Brady oven which
provide the highest number of failures. Subsampling/aggregation of data is indispensable. The other criticalities
to deal with are the large quota of missing/invalid data and the absence of correlation of failures and blowers.
Because of this, it is not straightforward to tell beforehand whether the trained model will achieve an acceptable
prediction accuracy.

Continuous learning on live data is expected to relieve the low accuracy problems over time, as long as the
data provided by the oven blowers will be valid in live situations.

6.2 Maintenance Decision Support (UC-KLE-1)

6.2.1 Background

The Deep Learning Toolkit component is expected to distribute the latest prediction on the next expected
failure of a BOSSI machine (used for metal surface finishing of pipes), based on the continuous input stream
of sensors' data stream.

6.2.2 Data Overview

Kleemann provided a historical dataset of failures featuring:

¶ About 650 samples.

¶ About 20 features.

¶ Spanning 11 years, from 2007 to 2017.

6.2.3 Fitness for usage

Despite the consistent number of failures recorded (one per sample) and the congruous number of features
over the entire time span, the dataset is unfit to be used on predictive maintenance and in general on every
deep learning tasks, because of the following reasons:

¶ The dataset is just about failures but has no extensive collections of machine attached sensors where
to look for patterns anticipating the failures.

¶ Data are sparse in time (opposed to sampled at constant frequency).

This data could probably be used with some success within a statistical data analytic framework, but this is out
of scope for the Deep Learning Toolkit component.

6.2.4 Data assessment

Given the absence of a real dataset, DLT-based predictive maintenance in Kleemann seems not to be
straightforward to implement. An untrained approach can be tried, inspired to the model setup that will be
adopted for UC-BSL-2 after learning the related dataset. This might result in non-optimal model and will
probably require long time to converge to an acceptable accuracy.

Anyway, the precondition and also major criticality for this approach is the availability of live data streams from
relevant machine attached sensors. At the present time (M16), such a sensors network does not exist in
Klemann, so the evaluation for applicability of the Deep Learning Toolkit in this use case is deferred to the next
iteration of this document. Even if, sensors will be deployed and will provide meaningful live data streams, it is

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 25 of 72 Submission date: 2018-01-052018-01-05

not granted that the recurrent neural network that could be used in an untrained environment would converge
to meaningful results, within the project timeframe.

6.3 Fill level and classification use cases (UC-KLE-3 UC-KLE-4 UC-ELDIA-1 UC-ELDIA-2)

6.3.1 Background

The Deep Learning Toolkit component is expected to distribute the latest prediction on the fill level of waste
material within a bin/container, in order to allow for optimization of timing and logistics of collections as well as
improve any related commercial aspect. The prediction is based on a dataflow from one or more bin mounted
sensors, monitoring its fill level.

6.3.2 Data Overview

Kleemann provided a minimal scrap metal dataset containing only 12 samples. They are equally distributed:
one for each month of 2016. Each sample has 11 features, including the quantity of eight different metal scrap
types and of 3 other materials (plastic, wood and paper) produced along one month. A consistent part of the
data for forming a usable dataset is missing.

6.3.3 Fitness for usage

The data provided are currently unfit for the task of live prediction. The number of samples is several orders
of magnitude too low and the time span is insufficient to detect long-term trends and seasonal patterns.
Relevant data for this task would require one or more than one, time series of values acquired from bin-
mounted sensors, related to its filling level, plus the collection events from the same container needs to be on
record as well.

These data are not available, historically or live because both end users involved (Klemann and Eldia) do not
have any kind of sensors mounted on their bins nor their containers at the moment (M16). This action is
planned to happen in the next months, so the evaluation of the applicability of the Deep Learning Toolkit in this
use case is deferred to the next iteration of this document.

6.3.4 Data assessment

Given that no useful historical data are available, the only possible prediction task could be fulfilled leveraging
on untrained Artificial Neural Network (or with Artificial Neural Network trained over a synthetic dataset).
Nevertheless, although sensors will be deployed and will provide meaningful live data streams, it is not granted
that the recurrent neural network that could be used in an untrained environment would converge within the
project timeframe.

6.4 Prices and logistics (UC-KLE-4, UC-KLE-5, UC-KLE-6)

6.4.1 Background

This use case is the only one listed in this chapter that is not related to the intra-factory scenarios, but instead
is more related to the inter-factory environment. The Deep Learning Toolkit component is expected to distribute
the latest prediction on at what price per ton at which specific commercial partners are likely to accept to
buy/sell scrap metal within fixed timeframe in the future. This information in the formed of predictions are
intended to support the agent intelligence in order to improve the decision system that is in charge of
accept/emit commercial offers about scrap metal.

6.4.2 Data Overview

Both the end users involved in this use case (Klemann and Eldia) have contributed providing data about waste
management.

Klemann provided a minimal scrap metal dataset containing only 12 samples. They are equally distributed:
one for each month of 2016. Each sample has 11 features, including the quantity of 8 different metal scrap
types and of 3 other materials (plastic, wood and paper) produced along one month (measure unit is not clear).
A consistent part of the data is missing.

Eldia provided its historical data in the form of four excel tables from which two datasets can be extracted. The
first is related to transactions on scrap metal whereas the second is related to transactions of other materials.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 26 of 72 Submission date: 2018-01-052018-01-05

The scrap metal dataset accounts for sales and purchases: each record summarize the transactions between
Eldia and one commercial partner over a single month. In particular, the dataset contains 144 samples sales
samples (3 clients x 12 month x 4 years) and 192 purchases samples (4 suppliers x 12 month x 4 years)
accounting for the period [2013-2016]. Each sample has six features:

¶ Type of transaction.

¶ Timestamp.

¶ Client id.

¶ Scrap metal quantity (ton).

¶ Number of trips for collection/delivery.

¶ Price per ton.

The dataset relative to other kind of waste contains records of purchases aggregated by month for the period
2015-2016: 192 samples (4 suppliers x 12 month x 2 years). Each sample has 10 features:

¶ timestamp

¶ suppliersô id

¶ wood: waste quantity (ton)

¶ wood: number of trips for collection/delivery

¶ plastic: waste quantity (ton)

¶ plastic: number of trips for collection/delivery

¶ paper: waste quantity (ton)

¶ paper: number of trips for collection/delivery

¶ general waste: waste quantity (ton)

¶ general waste: number of trips for collection/delivery

Considering that only one of the suppliers provide all waste categories, the dataset has a relevant amount of
missing data.

6.4.3 Fitness for usage

None of the provided dataset is suitable for training a price-based prediction model. Appropriate data would
be a data set that includes, for each type of waste and each commercial partner, a time series of waste
offer/transaction prices covering the wider possible period. The scrap metal dataset by Eldia is close to fit the
aforementioned format, but the number of samples is excessively small and the price trends is negligible.
Moreover, the results of transactions under long-term partnership prices are almost constant: adjustment only
happens on a yearly basis. Despite this being very understandable from the commercial point of view, it
precludes the fitness for usage in a dynamic marketplace scenario that encompasses frequent price
fluctuations due to constant negotiations.

6.4.4 Data assessment

Eldia is updating the prices over time and recording every fluctuation. The data are aggregated sales statistics
spanning the first three quarter of 2017. All records relate to the same customer, but differentiate in terms of
material type (paper, PET, HDPE, scrap metal) and timespan. The samples have the following features:
material type, date start, date end, tons, price per ton. Indeed, these data contains price fluctuations, which
make more sensible to train predictive models on them. Still, the number of samples is very limited (ranging
from two samples for PET to 16 records for paper), at least three orders of magnitude too low to perform a
significant training.

In the next iteration of this document, it will be possible to see a leap forward in the applicability of the Deep
Learning Toolkit in this use case, when enough data will be collected. Detailed action plan on how this problem
is going to be addressed is presented in chapter 8.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 27 of 72 Submission date: 2018-01-052018-01-05

7 Deep Learning Toolkit for continuous learning design and testing

7.1 Introduction

This is the main chapter of this document and provides an in depth review to all the experiments that has been
conducted from M5 up to M15. During this reporting period, Task 5.2 has put a lot of effort gathering data from
end users, collaborating identifying suitable data sources matching projectôs use case. These data collection
activity has been assessed in this document in chapter 6. In the meanwhile, extensive research on frameworks
and technologies has been conducted, extensively described in chapter 5. On the top of all that, experiments
on synthetic data has been conducted in order to identify technologies and testing different implementations
of suitable artificial neural networks and corresponding algorithms in each of the frameworks. This activity has
been conducted in parallel to the data analysis because creating realistic datasets is a huge time consuming
activity. The aim is to analytically demonstrate that chosen elements of the artificial neural networks used to
approach real world data, such as algorithms, activation functions, gradient descending iterative optimizations,
balanced matrix of weights and so on, would converge to accurate results in a finite time span.

The first network topology investigated has been the Feed Forward Artificial Neural Network. It is a well-known
approach in literature and widely adopted for solving classification challenges, like the one the use cases
analysed can be broken down to. It has been investigated in all of the two very promising frameworks H2O and
Tensor Flow. Both frameworks provide an implementation for it that is not very dissimilar from one another.
The advantage of using Tensor Flow in this situation, resides in the GPU availability for incrementing speed
scalar matrix operations, whereas H2O provides portable executable for easy testing and deployment.
Moreover. Tensor Flow is the only one of the two that, thanks to third-party APIs allows a comprehensive
implementation of Recurrent Neural Networks in all their topologies. Results are reported in section 7.2.

Tests continued with the two demos that has been presented to the consortium at M7 and at the first project
review meeting at M9. The former in the form of a first demo, the latter using more accurate dataset in order
to better mimicking the prices in the inter-factory scenario addressed.

In the meanwhile, some data that started flowing into the system and by becoming part of specifications, they
took shape and therefore the need of advancing the network topology risen. In section 7.4 it is explained how
time series has been shaped and modified to form the possible input for Recurrent Artificial Neural Network.
The powerful regression that this ductile instrument could provide has been clear since the very beginning.
The state-of-the-art analysis provided the result that the Long Short-Term Memory (LSTM) were the topology
to look for in the combination of surveys and extensive results that taxonomy provides. At first, the focus has
been put on the simplest and most used of this relatively new topology, the univariate variant. All experiments
on synthetic data, real data based on the London metal exchange of aluminium prices and sinusoids
trigonometric series are reported.

Despite the promising results provided by the LSTM univariate, the urge of adopting a more malleable topology
arose when the data for the predictive maintenance scenario got tackled in. In fact, the number of features and
the multidimensional model required by the input data for providing time step repetition over time and
organizing incoming batches in a meaningful manner, has required the use of the multivariate version of this
artificial neural network topology. In fact, the multivariate version has been used directly on real world data and
the results are described in section 7.4.2. In specific, data from BLS and the Brady oven re-flower has been
used for creating the first lab scale deployment of the Deep Learning Toolkit, leveraging on the LSTM Artificial
Neural Network topology and models in its multivariate declination. Progressively better results have been
achieved by improving the first attempt to use incoming data as-is by implementing clusterization of input data,
and by imposing balanced classes constrains before feeding the Artificial Neural Network. Finally, the data
normalization process has provided the last cog in the complex system in which the Deep Learning Toolkit
design has resulted to be.

Finally, the chapter ends by briefly describing the lab scale deployment in a Docker container that has been
provided as software output for this first delivery as a private image. The description concludes with four rounds
of tests that has been performed on a periodical signal, in order to analytically prove the convergence of the
model deployed in a finite time span.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 28 of 72 Submission date: 2018-01-052018-01-05

7.2 Feed Forward NN in TensorFlow

7.2.1 TensorFlow introduction

TensorFlow is Googleôs own software framework for machine and deep learning. It is free, open source
(Apache 2.0) and actively developed. It was created by the Google Brain team for internal use and first released
on 9 November 2015.

Despite being a flexible and general purpose numerical computation tool, Tensor flow is mainly oriented to
Neural Networks since its architecture is based on the computational graph paradigm: each algorithm is
defined as a graph whose nodes represent mathematical operations, while the graph edges represent the
multidimensional data arrays (tensors) communicated between them.

TensorFlow is multiplatform: on 64-bit Linux, macOS, Windows, Android and iOS. Furthermore, it supports
GPU computing via CUDA and since version 1.0 can run on multiple devices in parallel.

TensorFlow can also run on distributed clusters and process Big Data from Apache HDFS. It also features a
flexible, high-performance serving system for machine-learned models designed for production environments.

The TensorFlow core is written in C++ for better performances, but for the sake of usability the main API is
Python; C++, Java, Go are supported as well and many more unofficial binding exists including C#, Ruby and
Scala. Furthermore, TensorFlow can be used as computational core from other high-level machine learning
libraries including H2O and Keras.

The Python API has been used for COMPOSITION, with the option of adopting the C++ serving API for
deploying in case the Python one should not perform fast enough. The API are layered in three different
abstraction levels detailed in the following sections.

7.2.1.1 Low-level API

This is the base API: the most flexible and most expressive. The computational graph of the desired machine
learning algorithm has to be created programmatically step by step, specifying each basic operation leading
from the input tensor to the output tensor. To allow for evaluation and training nodes must be added to the
graph implementing error metric computation and minimization.

Once the graph is finalized, it can be executed multiple times, with variable inputs. The typical use case for
supervised learning is the following:

¶ Based on task to address and on the format of the dataset, choose model and hyperparameters:

o NN type: topology.

o NN size: number of layers, numbers of neurons per layer.

o Optimization algorithm and training parameters (batch size, learning rate,).

¶ Implement the computational graph for the model and finalize it.

¶ Train on historical data by running the graph multiple times. For each training epoch:

o For each batch in the training set:

Á Train the NN (execute the graph asking for the optimization node).

o Evaluate the NN over a big batch of training data (execute the graph asking for the metric
nodes).

o Evaluate the NN over the validation dataset (execute the graph asking for the metric nodes).

¶ Plot training and validation metric trends:

o To ensure the training process is sensible.

o To detect criticalities in the model definition or in the dataset.

o To assess if the training has converged or whether additional training epochs are needed.

The previous process is usually repeated multiple times with different hyper parameter values, and then the
best trained model with best validation scores is retained and finally evaluated over a test set.

The resulting model can be deployed, used for prediction and periodically updated by incrementally training
on batches of live data

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 29 of 72 Submission date: 2018-01-052018-01-05

7.2.1.2 Mid-level API

In this API the algorithm is still specified in terms of a computational graph, but its construction is eased by
wrapper nodes representing different NN layer types. Each layer can enclose several operations: linear
combination of inputs through weights and biases, activation function filtering, dropout, pooling, etc. So the
layer API allow to write less code which is both more compact and more readable, at the price of a reduction
of control over some details of internal nodes (such as weights and bias initialization).

Referring to python APIs, the official layer API is contained in the tf.contrib.layers package. Last TensorFlow
version also natively integrated a popular machine learning API, named Keras. Keras is a mid-level python
API too and is a convenient choice since it widely adopted even prior to TensorFlow so has solid documentation
and a large community behind. Keras API in TensorFlow is located in the package tf.contrib.keras.

7.2.1.3 High-level API

TensorFlow also provide a higher level API, contained in the package tf.contrib.learn. This API totally give up
the control over the computation graph and provide the data scientist with a restricted bunch of classes, each
implementing a machine learning algorithm. Only a subset of algorithms is covered and advanced NN
topologies are not available. Nevertheless, deep feed forward classifiers and regressors are featured.

These classes can be instantiated by providing the desired hyper parameter values and just work out of the
box, providing methods such as train, evaluate and predict.

They both allow for quick tests with minimal coding effort and for usage without deep knowledge of
computational graph mechanics. The major drawbacks are that there is no visibility on the finer details of the
internal model.

7.2.2 Comparison of different TensorFlow API

Initially several supervised learning tests were conducted with TensorFlow to better understand it and assess
its performances in different situations.

An open dataset dealing with industrial data was adopted at this stage. The dataset is related to a gas sensor
array exposed to turbulent gas mixtures and is better described and fully available at [10].

For the purposes of this document, it is enough to know that the raw data were pre-processed so to obtain a
dataset with ~3.45M samples and 11 features (timestamp, temperature, humidity and the reading of 8 gas
sensors). For each sample, the target value was the Ethylene level, quantized in four classes (zero, low,
medium and high). Time sequentially was broken with shuffling, and finally the samples were split into training,
validation and test set (60%, 20%, and 20%). A first round of tests was conducted to compare the different
Tensor Flow APIs so to get a gist of prediction accuracy, training time and to ensure that low, medium and
high level APIs behave consistently to the finer grained low-level option. This can be considered a tie,
performance wise, so the preferences is left to the implementation to perform technical decisions based on
third party APIs features required and their compatibility.

7.2.3 Preliminary comparison of CPU and GPU training

Despite being extremely time consuming, training of Neural Networks is inherently highly parallelizable. This
is why demanding the bulk of computing to multi core GPU is reported to speed up training up to a couple
orders of magnitude.

Some preliminary tests about CPU vs GPU computing have been performed by training over the previously
described gas dataset in order to assess the speed up magnitude.

The details of the two setup are described in Table 7.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 30 of 72 Submission date: 2018-01-052018-01-05

CPU setup GPU setup

Hardware

 CPU: Intel Core i5-3570 @3.40GHz
 ֙ # cores: 4

 RAM: 8GB

 CPU: Dual Intel Xeon 2620 @2.10GHz
 ֙ # total cores: 12

 RAM: 32GB
 GPU: NVIDIA GeForce GTX 960 (AsusTeK)

 ֙ # CUDA cores: 1024
 GPU RAM: 2GB

Software

 OS: Windows 10 Pro
 Python: 2.7
 TensorFlow: v0.8

 OS: Ubuntu 14.4
 Python: 2.7
 TensorFlow: v0.8, GPU enabled

Test specs

¶ task type: classification

¶ model type: deep feed forward neural network

¶ # input features: 11

¶ # output classes: 4

¶ hiddŜƴ ƭŀȅŜǊǎΩ ǎƛȊŜΥ ώмнуΣ сп Σонϐ ƴŜǳǊƻƴǎ

¶ optimizer: Adagrad

¶ training batch size: 50 samples

¶ # training batches: 2000

Table 7: CPU vs GPU setup

When dealing with GPU computing of repetitive tasks, bottlenecks move from computation to data copying.
Indeed, so to be available to GPU cores, the input data has to be copied from common RAM memory to the
dedicated GPU memory. The same way, output data has to be copied back to the main memory to be logged
or handled in any other way. Because of this, a special attention has to be paid to how the input data set is
loaded from disk and fed to the training process. Tensor Flow offer various mechanisms for data loading. The
most general one is the Dataset API suitable to build complex input pipelines and to deal with huge datasets
that cannot fit entirely in the memory. These datasets usually come as large collections of binary (or less
frequently textual) files, which may reside on multiple hard disks, either locals or NAS, potentially abstracted
by a distributed file system layer such as Apache HDFS. Given the manageable size of the adopted dataset
that entirely fits in memory this mechanism is disproportionate: simpler data acquisition is desirable. This may
be implemented in different ways also depending on the chosen API as discussed in the next sections.

7.2.3.1 Low and mid-level API

Two types of approach to data loading are available:

¶ Placeholder: in the tensor flow graph, tf.placeholder objects, whose value can be fed at runtime,
represent the batch of input samples and the related targets. With this approach, the dataset is loaded
at once as a plain python numpy.ndarray. At each training step, a minibatch is sliced by the ndarray
and internally converted in the tensor form to replace the placeholders.

¶ Tensor: in this approach the whole dataset, samples and targets, is loaded to tf.tensor objects since
the beginning. Other tensors are defined to represent the batch. This can be more time efficient since
no format conversion is required at run time but it has several practical disadvantages:

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 31 of 72 Submission date: 2018-01-052018-01-05

o The batch size has to be predetermined so that the significance of validation metrics is
severely compromised because of the limited number of samples. Alternatively, it is possible
to define a conditional graph, which depending on run time flags can behave differently (e.g.
training, validation and test). Anyway, this makes the code mode complex and bug prone, less
readable and reusable.

o Additional operations must be added to the graph to bridge the dataset tensors and the batch
tensors, resulting in reduced flexibility. In particular, two choices are available:

Á Filling the batch with consecutive slices of the dataset.

Á Filling the batch with picking random samples from the dataset.

The first way requires minimal computational overhead, while the second make easier to have
different batches across different training epochs, potentially leading to a better accuracy.

Table 8, reports results of tests performed with the three described data feeding strategies, each performed
with three different hardware setups: the CPU and GPU configuration described before plus a second CPU
setup running on Dual Intel Xeon 2620 @2.10GHz (12 total cores) with 32GB of memory.

Data loading mode CPU [ms/batch] Dual CPU [ms/batch] GPU [ms/batch]

numpy.ndarray 65 68 67

tf.tensor, random pick 0.49 0.94 1.8

tf.tensor, slicing 0.47 0.86 1.45

Table 8: Low-level API - CPU vs GPU

Unexpected considerations emerge from these data:

¶ The placeholder plus numpy.ndarray approach is on average two orders of magnitude slower when
compared to tf.tensor data loading, meaning that the on-the-fly conversion of batches from Numpy
[11] to TensorFlow data format is very taxing or prevent some optimized behaviour from taking place.
In this kind of approach, the time cost of data conversion prevails so that almost no differences
between different hardware setups can beidentified.

¶ The tf.tensor-based data feeding lead to significant speedup, the slicing version being slightly faster
that the random picking one.

¶ The first unexpected outcome is that comparing CPU executions, the consumer targeted Intel Core i5
with 4 cores and 8GB of memory performs twice better than a couple of server meant Intel Xeon 2620
with 12 cores and 32GB of memory.

¶ The second unexpected outcome is that comparing CPU and GPU executions, the latter performs up
to 4 times slower than the former, suggesting a severe bottleneck due to copying the dataset chunks
from the CPU memory to the GPU one, which can hardly affect the training time.

Further investigations will be probably performed in the next iterations of this document in order to understand
if further software releases of used APIs and frameworks will address the GPU compatibility in a more
consistent manner or if this is dependent by the used hardware that is not capable to exploit latest compilation
options and drivers features.

7.2.3.2 High level API

For the high level API, the data loading alternatives are quite similar to the previous case, but there are less
flexibility drawbacks are using the tensor approach. In the tests, we compared three different loading
approaches:

¶ The dataset is loaded as numpy.ndarray objects and passed to the fit method of the Neural Network
object.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 32 of 72 Submission date: 2018-01-052018-01-05

¶ The dataset is loaded as tf.tensor objects, and a function is passed to the fit method of the Neural
Network object, which compose the next batch by random sample picking.

¶ The dataset is loaded as tf.tensor objects, and a function is passed to the fit method of the Neural
Network object, which compose the next batch by consecutive slicing of the dataset.

The results of the test are detailed in

Table 9: training time are reported per batch and expressed in milliseconds. The validation has been disabled
during the tests not to distort the time measurements. External times are computed as the total training time
divided by the number of training steps and directly compares to the one reported is the previous round of
tests, while the internal times are the average of per step times as obtained through call-backs provided by the
Neural Network object.

Data loading mode CPU [ms/batch] GPU [ms/batch]

 external internal external internal

numpy.ndarray 2.3 0.8 11 9.5

tf.tensor, random pick 9.1 0.7 12 3

tf.tensor, slicing 10.4 0.6 11.7 2.6

Table 9: High-level API - CPU vs GPU

These are surprising and unexpected results: in the given setup, CPU computing performs systematically
faster than GPU. Furthermore, in the CPU tests, the Neural Network object train significantly slower if fed with
tf.tensor batches, which should be the faster approach not requiring additional conversion from numpy formats.

In CPU tests there are major discrepancies between time measured internally and externally to the training
session, probably meaning that internal measurements do not include overhead tasks such as saving model
checkpoints and above all assembling the batch to process from the dataset; this could explain why the internal
time is mostly constant while external time can increase up to 5 times between different data loading
approaches.

Externally measured GPU time is very similar internal one when the dataset is provided as numpy.ndarray.
Contrary, when the dataset is provided as tf.tensor objects the internal batch time is greatly reduced while the
external one does not vary significantly.

There are different hypothesis that could explain the weird CPU better than GPU results:

¶ TensorFlow version 0.8 might have buggy implementation of GPU computing, leading to unnecessary
slowdowns. It would be interesting to perform a new set of tests with the most recent version.

¶ There might have been issues in the test workstation or in the GPU environment setup even is the
installation procedure reproduced step by step the official instructions and even if execution logs did
not let any issue or criticality emerge.

¶ Most likely there is a major bottleneck due to copying the dataset chunks from the CPU memory to the
GPU one, which can hardly impact the training time, independently from the data structure adopted
(numpy.ndarray vs tf.tensor)

Finally, by globally comparing training times on CPU using high level API with those obtained with low level
API, it can be seen that low level API train about one order of magnitude faster when using tf.tensor dataset
and about one order of magnitude slower when using numpy.ndarray dataset. So when training time become
an issue, either because the datasets are large or because multiple experiments with different
hyperparameters (e.g. grid search) are to be done, it seems better to use CPU computing, with low level Tensor
Flow API and fed the dataset as slices from tf.tensor objects. As a matter of fact, the high level APIs provided
by Keras had provided the best and more ductile approach for the problem classes that the COMPOSITION
use cases required.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 33 of 72 Submission date: 2018-01-052018-01-05

Despite these not so promising results, the GPU training will be further investigated in the next iteration of this
document because it is common practice and well agreed among insiders that is the way to go. Problems may
reside in the version of the APIs used or in some missing compilation flag of the correspondent modules.

7.3 Feed Forward NN in H2O

Given the partially inconsistent outcomes from TensorFlow in the tests previously described, it seemed
desirable to try and compare a different framework in order to check is similar issues persists and if TensorFlow
result are reproducible with a different framework or if better results can be achieved. In order to provide
consistency across comparisons the same problem class is addressed.

H2O was chosen as secondary framework. Experiments are detailed in the following sections.

7.3.1 H2O introduction

H2O is a multiplatform java-based open source toolkit for machine learning and big-data analysis. Its API is
high level and extremely user friendly featuring a web-based GUI and bindings for Python, R and Scala. It can
target other frameworks as computational core, including TensorFlow, but its native java core is extremely fast
and scalable, being able to handle large datasets.

The plethora of supported ML algorithms is wide but, concerning deep neural networks, only feed forward
classifier/regressors and auto encoders are supported.

Since trained models can be exported as plain java classes, it is easy and fast to integrate and deploy them in
any java pipeline.

While GPU computing is not straightforward, distributed clusters are natively supported and H2O seamlessly
integrates with cloud computing technologies such as Apache Hadoop Distributed File System and commercial
services such as Amazon Web Services.

7.3.2 Regression tests

A number of experiments with increasing complexity were carried out. In depth review of each of them would
be of limited significance. Nevertheless, it is worth to briefly describe them to report the progression from
simpler tests to more complex use cases that led to the first demo presented at M7 review meeting and
discussed in depth in the next section. All tests are concerned with the supervised regression task over
synthetic data.

¶ Test H2O 01: the dataset is generated from univariate exponentially decreasing trend, corrupted with
additive uniform noise.

¶ Test H2O 02: same as Test H2O 01 but grid search approach has been used to extensively explore
and select hyperparameters best values.

¶ Test H2O 03: similar to H2O 01 but the dataset is multivariate: additional random features are added
to the significant one in order to increase the difficulty of training.

¶ Test H2O 04: same as Test H2O 03 but grid search approach has been used to extensively explore
and select hyperparameters best values.

¶ Test H2O 05: the univariate dataset is generated from a trend that combines an exponential decay and
a sinusoid and corrupted with additive uniform noise.

¶ Test H2O 06: given the problems in the previous test, here the dataset is generated from a single
univariate sinusoid trend, corrupted with additive uniform noise.

¶ Test H2O 07: similar to H2O 01, but the dataset is multivariate by assuming the independent variable
to be a time measure and decomposing it into 3 features: year, month and day.

¶ Test H2O 08: similar to previous test, but comparing results obtained by training over dataset of
different dimensions (varying the sampling frequency).

¶ Test H2O 09: two different exponential trend are mixed in the same dataset and a second feature flags
has been added to each sample, specifying the trend it belongs to. The regressor must learn the two
different trends and to discriminate between them based on the additional feature.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 34 of 72 Submission date: 2018-01-052018-01-05

7.3.3 First prices prediction demo

At M7 it has been demonstrated to the consortium the first draft component for predicting prices within a range
in a controlled environment. This demonstration has been performed on synthetic data and without using
continuous learning techniques.

The sequence of test previously described culminated in the development of a synthetic price regression demo
based on a deep feed forward network trained on a synthetic dataset. This demo was presented to
COMPOSITION partners at M7 project meeting.

The addressed use case was UC-KLE-3 (Based on D2.1 v0.7), concerned with determining price for scrap
metal. In this context the DLT can provide previsions of price fluctuation per scrap type per commercial partner.

In particular, Eldia provides price offer to Klemann for exact tonnage of scrap and determines the price based
on quotes from its customers, aiming to optimal scrap reselling with minimal storage. Forecasting of quote
prices from various customers can support Eldia agent in timely decision making:

¶ Asking for less, but more relevant quotes

¶ Adopting estimated quotes instead of real ones in case of lack of time

¶ Providing past interpolated and future estimated price trajectories

The simulated historical dataset of quotes gives a full knowledge of the ground truth generating function
allowing for better performance evaluation.

The dataset spans over 70 years from 1950 to 2019, each sample is a quotation for a specific scrap type (out
of 4) and from a specific customer (out of 4). Also each quotation is relative to a specific quantity of scrap,
ranging from 1 to 10 tons, which nonlinearly impacts the target price.

As shown in Figure 11 price trends along time (per scrap, per customer) follow an asymptotic growth to emulate
inflation and is corrupted by additive uniform noise in range [-1,+1]ú as can be seen in Figure 12. The dataset
contains 48 different trends, each contributing about 300 samples and resulting is a total size of 14400 samples
corresponding to 16 quotations per month. The datasets have been split respecting the proportion of 80% for
training, 20% for validation and 20% for testing.

Figure 11: ground truth generating function of a single price trend

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 35 of 72 Submission date: 2018-01-052018-01-05

Figure 12: four different price trends: ground truth function and noise corrupted samples

Each sample composed of eight features, plus the target price, namely: year, month, day, scrap type, customer
id, scrap quantity, scrap colour and quote time to live.

The last two features are uncorrelated to the target price and are intended as a disturbance co complicate the
regression task.

The regression network is a feed forward deep multi-layer perceptron (MLP). A satisfactory arrangement
concerning hyperparameters have been determined through a grid search over them, leading to the following
choices:

¶ 4 hidden layers

¶ Neurons per layer: [8, 128, 64, 32, 16, 1]

¶ Activation function: f(x) = tanh(x)

¶ Automatic metric selection for error evaluation

¶ No regularization

The adopted training specification are:

¶ Training epochs: 30

¶ Minibatch size: 5 samples

¶ Learning rate: 0.1

¶ Adaptive learning algorithm: adadelta

¶ Data normalization: enabled

The monitoring was carried out at each epoch with training batch size of 4000 samples and validation batch
size of about 2000 samples.

The scoring history shows a significant reduction of overall error, as shown in Figure 13, and a continuous
convergence of training and validation error.

COMPOSITION D5.3 Continuous Deep Learning Toolkit for Real Time Adaptation I

Document version: 1.1 Page 36 of 72 Submission date: 2018-01-052018-01-05

Figure 13: variation of mean absolute error (MAE) along training epochs

A number of final performance metrics are reported in

Table 10 for the train, validation and test data. As expected the test errors are wider that validation and training,
but the increase is very slight to demonstrate the good generalization capability of this model.

Error metric Training set Validation set Test set

Mean Squared Error (MSE) 8.871 8.836 10.034

Root Mean Squared Error
(RMSE)

2.978 2.972 3.167

Mean Absolute Error
(MAE)

1.979 2.0315 2.018

Root Mean Squared
Logarithmic Error (RMSLE)

0.00914 0.00887 0.00959

Table 10: final performances of the trained neural network

It is worth considering that the theoretical minimal MAE is bound to 0.5ú by the additive noise and that the
obtained results are higher but comparable with this value, while they stay two orders of magnitude below than
the average price along the dataset which is about 250ú (so that the average relative error is about 1%).

The good overall performance of the network in discriminating between the 48 trends and make sensible
predictions for each is well depicted in Figure that shows for a subset of the trends, the ground truth function
and the predictions made by the network, the two curves are in good agreement.

