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1 Introduction 

1.1 Summary 

In this deliverable, we present the current development state of the task 5.1. We start by presenting a general 
background in this chapter. In chapter 2, we present the COMPOSITION scenarios where Data Analytics will 
be used, and the place of these techniques in the general COMPOSITION architecture. In chapter 3, we 
present the solution for Big Data Analysis. In chapter 4, we present the analysis of the possible representation 
of the Big Data Analysis. Finally, we end with a short conclusion in chapter 5. 

 1.2 Background 

The manufacturing industry is being disrupted in what is already known as the 4th industrial revolution or 
Industry 4.0. This revolution is driven by the need of reduction of the time-to-market [1], increment of 
complexity, (mass customization) [2] [3], and added value services  [4] around the products -- all together in a 
competitive globalized world [4]. To solve these challenges, this revolution is introducing a set of new advanced 
networking technology, hardware, and more important, intelligent software. While in the 3rd industrial 
revolution, the manpower was replaced by simple "hardwired" automatization [5], which could not adapt to 
market trends fast enough - e.g. in mass customization where almost unlimited variations of a product can be 
produced [1], [6], [7], [8], [9] - the current revolution is creating so-called cyber-physical systems, where 
machines collect data, communicate with each other and jointly take decisions [10]. To succeed in this new 
industry, the technologies must be highly adaptable, manageable, and in many cases even self-managed and 
self-configured [11], [12].  

To achieve this degree of intelligence, advanced algorithms have been incorporated into the production 
process to achieve embedded artificial intelligence (AI) within the process. This embedded AI has been 
constructed from the experiences obtained by the machines and usually designed by data scientists [13]. 
These techniques can be used in several manufacturing challenges such as predictive maintenance or product 
defect detection.  

However, while many efforts has been invested in tackling these challenges, few works has been done in 
developing an integrated manageable platform to solve these problems [14], [15], [16], [17], [18]. Most of the 
solutions propose a heterogeneous set of technologies to achieve the goals, and mostly none provide tooling 
for a deployment or to manage the solution in a deployed running system. Most existing solutions do not 
provide any tooling for collecting data and management for AI technologies, such as online machine learning 
(ML). Additionally, the solutions provide very little integrated deployment tools for the reproduction of ML 
methods or models in other deployment environments. 

We believe in the need of an integrated extensible solution that provides runtime management tools and is 
able to manage and configure itself. A platform that provides a set of mechanisms for real-time data collection, 
processing, and analysis. In this manner, it is possible to create common methodologies to reproduce and 
redeploy ML and other AI technologies reducing their cost and increasing their usage.  

In this deliverable, we present our solution first shown in [19], within a manufacturing environment. More 
specifically, we deploy the solution in Surface-Mount Technology production in BLS plant and in other process 
in the KLE production plant.  
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2 COMPOSITION Context 

2.1 Scenarios 

As stated in the deliverable D2.1, the COMPOSITION IIMS will apply business intelligence to provide improved 
coordination mechanisms of collaborative manufacturing processes. It will be based on continuous real-time 
monitoring and the control of underlying complex collaborative industrial and logistics processes. 

The Intra-factory scenarios will demonstrate the value added to services that address fundamental challenges 
in the pilot organisations by matching requirements to capabilities for internal and external processes and 
addressing emerging issues. The scenarios will aim at boosting collaborative manufacturing and intra-factory 
interoperability in marketplaces to the next level of knowledge management, agility, reliability, security, 
responsiveness, and cost-efficiency. 

In close dialogue with the pilot owners, four Intra-factory scenarios were defined: 

¶ Scenario INTRA-1: Production Floor Monitoring and Visualisation 

¶ Scenario INTRA-2: Predictive Maintenance 

¶ Scenario INTRA-3: Material Management 

¶ Scenario INTRA-4: Automatic Data Conversion 

For now, big data analytic tools and services will be needed only for INTRA-2 accordingly to the amount of 
data and the data generation rates. 

2.2 Scenario INTRA-2: Predictive maintenance.  

The COMPOSITION IIMS collects historical information as well as real-time information about the 
performance. E.g. speed (RPM), power (Watts) or decibel levels (dbis captured at machine level (laser power, 
soldering paste, fans, mechanical conveyers, etc. 

The actual status is compared to static data models (performance specs, history, costs) about the optimum 
process performance and algorithms can predict the likely point in time where critical components in the 
machine or process may fail thus causing the manufacturing process to be disrupted or products to be 
scrapped. Based on historic performance the prediction of failures can further be improved using different 
machine learning technologies.  

The predictions are presented to the operator to support their decision about when and what to replace before 
failure occurs, saving costs. The operator will thus see a selection of critical components and their estimated 
time of failure. 

The COMPOSITION IMMS will help the pilots to efficiently and effectively manage machine downtimes and 
failures based on the prediction of failures of critical components. Information such as levels and temperature 
of solvents, vibration of machines, etc., will be provided in the IMMS. Prediction of the Blower motors within 
the Heller Ovens are very important to BSL from a quality and cost perspective. Potential cost of a non-
recoverable oven alarm (motor/blower failure) resulting in non-conforming product being scrapped is estimated 
as $60K 
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2.2.1 COMPOSITION Data Analytics View: Intra-factory Interoperability Layer 

 

Figure 1. Intra-factory interoperability layer components and dependencies. 

 

In this chapter, we will address the architecture of the Big Data Analytics module in the COMPOSITION 
context. As it was mentioned before, the INTRA-2 is currently the only scenario with big data characteristics. 
The INTRA-2 scenario is an Intra-Factory scenario. Therefore, we will focus in this chapter on the Intra-Factory 
architecture, known as intra-factory interoperability layer.   

The intra-factory interoperability layer has two main goals: the first one is to provide a model for interconnecting 
the COMPOSITION ecosystem in the intra-factory scenario, the second one is to ensure the conformity 
between communications among interconnected components. The involved technology is provided by 
development partners of COMPOSITION and the connectors that will be defined, developed and deployed to 
integrate these. 

Individual partnersô responsibilities and work package outputs are highlighted in the followings: 

¶ Sensors, Sensor Buffering and Sensor Gateways will be developed and adopted from existing 
technology. Consideration will be taken to Technical Objective 1.1 (see D2.3). 

¶ The BMS is provided by a project development stakeholder (NXW) and is the translation layer 
providing shop floor connectivity from sensors to the COMPOSITION system. Raw data storage will 
be added for offline debug purposes. 

¶ The middleware is the main recipient in which the interoperability single components act 

o LinkSmart is a well-known middleware solution per se and will be customized to satisfy 
COMPOSITION requirements. Components include  

Á Service Catalog, works as service index, and provides security information for service 
intercommunication.  

Á Event Aggregator, parse messages to ensure homogeneity in data streams 

o Keycloak is a virtual layer that ensures authorization and authentication. Like all security 
related measures, it will be deployed by the Security Framework. 

o The broker-based intra-factory communication system manages all internal communication in 
COMPOSITION. 
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¶ The Big Data Analytics component provides Complex Event Processing (CEP) capabilities for the data 
provided by the intra-factory integration layer 

¶ The Hidden Storage is a storage not accessible from the outside in which aggregated data are stored 
for debug purposes, i.e. re-bootstrapping already trained artificial neural networks belonging to the 
Deep Learning Toolkit and to the Dynamic Reasoning Engine. 

¶ The Deep Learning toolkit component for this intra-factory scenario and an example will be described 
in D5.3. 

¶ The Visual Analytics component is the reporting interface of the Decision Support System and 
Simulation and Forecasting Toolkit. 

¶ The Dynamic Reasoning Engine is part of the Simulation and Forecasting Toolkit. 

¶ The Decision Support System uses process models to guide the production process. 
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3 Big Data Analytics provided by the LinkSmart® IoT Learning Agent  

In this chapter, we present the selected solution and the development of the solution in the context of 
COMPOSITION. The chapter starts with an introduction of the solution. In subsection 3.2, the new 
developments in the COMPOSITION context  

3.1 Introduction 

Manufacturing in assembly lines consist in a set of hundreds, thousands or millions of small discrete steps 
aligned in a production process. Automatized production processes or production lines thereby produce for 
each of those steps small bits of data in form of events. Although the events possess valuable information, this 
information loses its value over time. Additionally, the data in the events usually are meaningless if they are 
not contextualized, either by other events, sensor data or process context. To extract most value of the data, 
it must be processed as it is produced, to be more precise in real-time and on demand. Therefore, in case of 
Big Data Analysis we propose the usage of Complex-Event Processing for the data management coming from 
the production facilities. In this manner, the data is processed at the moment when it is produced extracting 
the maximum value, reducing latency, providing reactivity, giving it context and avoiding the need of archiving 
unnecessary data.  

The Complex-Event Processing service is provided by the LinkSmart® Learning Agent (LA). The LA is a 
Stream Mining service that provides the utilities to manage real-time data for several purposes. On the one 
hand, the LA provides a set of tools to collect, annotate, filter, aggregate, or cache the real-time data incoming 
from the production facilities. This set of tools facilitates the possibility to build applications on top of real-time 
data. On the other hand, the LA provides a set of APIs to manage the real-time data lifecycle for continuous 
learning. Moreover, the LA can process the live data to provide complex analysis creating real-time results for 
alerting or informing about important conditions in the factory, that may be not be seen at first glance. Finally, 
the LA allows the possibility to adapt to the productions needs during the production process. 

Itôs worth mentioning that the LA does not learn from the data, it just facilitates the data to the models. In other 
words, the LA connects externally to the models for the learning process. By this, the LA enables the online 
real-time learning process and data deliverable for training the model. In COMPOSITION, the external learning 
models will be provided by a Deep Learning Toolkit. Nevertheless, the LA is capable of doing on-the-run 
analytics using less historical data intensive algorithms such as Random Forests, Gradient Boosting, Kalman 
Filters, Particle Filter, Hidden Markov Models, boosted Artificial Neural Networks. With them it may be possible 
to predict certain phenomenon without the need of historical data.  

The LA has been developed and tested in different EU projects such as ALMANAC1 and IMPReSS2. However, 
the use cases where in the scope of Smart Cities or Smart Buildings, and it must be tailored for more Industry 
4.0 oriented use cases where the events are driven by business processes and data intensive. 

3.2 Whatôs new in the LinkSmartÈ IoT Learning Agent 

The LA start to be developed in 2014 in the ALMANAC project as a simple CEP for Smart Cities and presented 
in [20]. Since then, the LA has being developed and transformed in a self-managed learning orchestrator 
service that combined Complex-Event Processing and Machine Learning and other techniques. Specifically in 
COMPOSITION there had being following improvements: 

¶ Python interoperability layer for programmers or Python SDK 

¶ Micro-batch learning handling for non-iterative learning models 

¶ Implementation and testing of a default detection model for SMTs using the Python SDK and Random 
Forest model.  

¶ Implementation of the JWS standard for the I/O API. 

¶ Full Dockerized distribution 

¶ Introduction of CI for quality assurance using automatic testing. This includes 

                                                      
1 http://cordis.europa.eu/project/rcn/109709_en.html 
2 http://cordis.europa.eu/project/rcn/185510_en.html 
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o Development of Docker based Integration Test for Statement API 

o Development of Docker based Integration Test for CEML API 

¶ Other smaller improvements and fixes had been done. For more detailed information, please check 
the LinkSmart® project documentation3 and source4 code release notes. 

3.3 The Complex-Event Machine Learning methodology 

The Complex-Event Machine Learning (CEML) [19] is a framework that combines Complex-Event Processing 
(CEP) [21]  and Machine Learning (ML) [22] applied to the IoT. This means that the framework was developed 
to be deployed everywhere, from the edge of the network to the cloud. Furthermore, the framework can 
manage itself and works autonomously. The following section briefly describes the different aspects that CEML 
covers. The framework must automate the learning process and the deployment management. This process 
can be broken down in different phases: (1) the data must be collected from different sensors, either from the 
same device or in a local network. (2) The data must be pre-processed for attribute extraction. (3) The learning 
process takes place. (4) The learning must be evaluated. (5) When the evaluation shows that the model is 
ready, the deployment must take place. Finally, all these phases happen continuously and repetitively, while 
the environment constantly changes. Therefore, the model and the deployment must adapt as well. 

3.3.1 Data Propagation Phase 

Data in the IoT is produced in several places, protocols, formats, and devices. Although this deliverable does 
not address the problem of data heterogeneity in detail, the learning agents require a mechanism to acquire 
and manage the heterogeneity of the data. The mechanism must be scalable and, at the same time, the 
protocol should handle the asynchronous nature of IoT. Finally, the protocol must provide tools to handle the 
pub/sub characteristics of the CEP engines. Therefore, we have chosen MQTT5, a well-established Client 
Server publish/subscribe messaging transport protocol. The topic based message protocol provides a 
mechanism to manage the data heterogeneity by making a relation between topics and payloads. It allows 
deployments in several architectures, OS, and hardware platforms; basic constraints at the edge of the 
network. The protocol is payload agnostic and as such allows for maximum flexibility to support several types 
of payloads. 

3.3.2 Data Pre-Processing (Munging) Phase 

Usually ML is tied to stored datasets, which incurs several drawbacks. Firstly, the learning can take place only 
with persistent data. Secondly, usually the models generated are based on historical data, not current data. 
Both constrains, in the IoT, have dire consequences. It is neither feasible nor profitable to store all data. Also, 
embedded devices do not have much storage capacity which makes it impossible to use ML algorithms on 
them. Furthermore, IoT deployments are commonly exposed to ever-changing environments. 

Using historical data for off-line learning could cause outdated models learning old patterns rather than current 
ones, producing drifted models. Although some IoT platforms like COMPOSITION support storage of historical 
data, it may be too time and space consuming to create large enough times series. Therefore, there is also a 
need for non-persistence manipulation tools. This is precisely what the CEP engine provides in the CEML 
framework. This means, the CEP engine decides which and how the data is manipulated using predefined 
CEP statements deployed in the engine. Each statement can be seen as a topic, to which each learning model 
is subscribed. Any update of the subscribers provides a sample to be learnt in the learning phase. 

3.3.3 Learning Phase 

There is no pre-selection of algorithms in the framework. They are selected by the restrictions imposed by the 
problem domain. For example, in extreme constrained devices, algorithms such as Algorithm Output 
Granularity (AOG) [23] may be the right choice. In other cases where the model changes quickly, one-shot 
algorithms may be the best fit. Artificial Neural Networks are good for complex problems but only with stable 
phenomena. This means that the algorithm selection should be made case-by-case. Our framework provides 
mechanisms for the management and deployment of the learning models, and the process of how the model 
is fed with samples. In general, the process is based on incremental learning [24] albeit with online and non-

                                                      
3 https://docs.linksmart.eu/display/LA 
4 https://code.linksmart.eu/projects/LA/ 
5 MQTT is a machine - to -machine (M2M)/"Internet of Things" connectivity protocol. Source http://mqtt.org/  
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persistent data. The process can be summarized as follows: the samples, without the target provided in the 
last phase, are used to generate a prediction. The prediction will then be sent to the next phase. Thereafter, 
the sample is applied to update the model. Thus, all updates are used for the learning process. 

3.3.4 Continuous Validation Phase 

This section describes how the validation of the learning models is done inside the CEML. This phase does 
not influence the learning process nor validate the CEML framework itself. 

ML model validation is a challenging topic in real-time environments and the evaluation for distributed 
environments or embedded devices is not addressed extensively in the literature, which is why we think it 
needs further research. There are two addressed strategies. Either we holdout an evaluation dataset by taking 
a control subset for given time-frame (time window), or we use Predictive Sequential, also known as 
Prequential [25], in which we asses each sequential prediction against the observation. The following section 
describes the continuous validation we applied for a classification problem, even though it can be applied for 
other cases as well.  

Instead of accumulating a sample for validation, we analyse the predictions made before the learning takes 
place. All predictions are assessed each time an update arrives. The assessment is an entry for the confusion 
matrix [26] which is accumulated in an accumulated confusion matrix. The matrix contains the accumulation 
of all assessed predictions done before. In other words, the matrix does not describe the current validation 
state of the model, but instead the trajectory of it. Using this matrix, the accumulated validation metrics (e.g. 
Accuracy, Precision, Sensitivity, etc.) are being calculated. This methodology does have some drawbacks and 
advantages, explained more extensively in [19].  

3.3.5 Deployment Phase 

The continuous validation opens the possibility for making an assessment of the status of the model each time 
a new update arrives, e.g. if it is accrued or not. Using this information, the CEML framework has the capability 
to decide if the model should or should not be deployed into the system at any time. If the model is behaving 
well, then it should be deployed, otherwise it should be removed from the deployment. The decision is made 
by user-provided thresholds w.r.t. evaluation metrics. If a threshold is reached, the CEML inserts the model 
into the CEP engine and starts processing the streams using the model. Otherwise, if the model do not reach 
the threshold then its remove form the CEP engine. 

3.4 Design Perspective 

In this subsection, we will discuss the design considerations taken to develop the LA as a data-processing and 
data analysis platform for big data and machine learning processes.  

The envision platform, should allow self-managed data process mining and which can distribute the processing 
power over the network by creating a scalable processing overlay. As a first step, we envision the possibility 
of describing the complete representation of the process, namely the Complex-Event Machine Learning 
Request (CEMLR), we need to describe in computer readable manner, the CEML processes according to their 
parts, namely: Pre-Processing Rules and Feature Extraction Rules (for Data Pre-Processing 
Phase): Learning Description (Learning Phase), Evaluation Description (Continuous Validation Phase), 
and Actuation Rules (Deployment Phase). The Pre-Processing Rules describes how the fragmented raw 
input data or data streams are processed and aggregated. The Feature Extraction Rules define how features 
are extracted from pre-processed data. The Learning Description defines the selection of 
an Algorithm, Parameters, and the Feature Space for construction of a model.  

The Evaluation Description is used to construct an Evaluator. The Evaluator is attached to the model and 
is responsible for providing real-time performance metrics about the model and deciding if it reaches the 
expected scores. Finally, the Actuation Rules describe actuation of the system whenever the model reaches 
the expected performance scores. All steps are performed in an Execution Pipeline Environment (EPE) or 
distributed in a set of interconnected EPE over the network. The output of the platform is the smart actuation 
of the system based on the predictions of the trained model. Moreover, a real-time monitoring infrastructure 
enabled tracking of the distributed process. Lastly, the platform allows the export of a trained CEMLR, in order 
to redistribute and replicate the process elsewhere. 
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Table 1 Analysis between the phase who captures, where are executed and implemented 

 
  

 
Figure 2 Design view of a single instance of CEML execution system 

 

The possibility of describing the processes and executing them in execution pipelines allows for a reallocation 
and distribution of the computations according to available applications and resources. In particular, it allows 
to split the processes and to redistribute them among the available computational power regardless of the 
actual location. In parts, this enables the applications to spread them along the communication path and to 
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use the resources available, while reducing the costs. Nevertheless, spreading the processes inevitably adds 
more complexity to the applications and therefore, a new set of APIs for managing and monitoring the 
processes is needed. 

 
Figure 3 Design perspective of multiple CEML execution units 

This set must be available for the different applications and stakeholders addressing their needs and fulfilling 
the different requirements to achieve the individual application goals. The APIs can be divided in the I/O, 
Management, Monitoring, and ML Process, each interacting with different parts of the application processes, 
which are Application Environment, Application Developer, System Monitor, and the External Model Backends, 
respectively.  Moreover, each API should adapt to the users System Integrator, Application Developer, System 
Administrator, and Data Scientist and the goals like interconnect the data and responses, develop the 
application, monitor the status of the system and integrate new algorithms into the system, respectively. The 
I/O API allows the input of raw streams to the EPE and the output of the already processed information. The 
Management API is a CRUD API for the CEMLR. The Monitoring API provides tools to monitor the system 
performance and the machine learning processes in real-time. The ML Process API allows to connect to the 
execution process to add new ML models to the system.  
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Figure 4 Structure of the API 

 

 

 
Table 2 Mapping between users and APIs 

 
 
 
 
 
 
 
 
Finally, the APIs should adapt to the deployment of the system and the deployment should adapt to the 
applications needs. On the one hand, the degree of distribution of the system brings a different set of 
requirements for the APIs. On the other hand, a distribution of the system provides advantages and 
disadvantages. When processing data that is closer to the data sources, metrics like latency, privacy, 
confidentiality concerns and networking dependencies are reduced. On the other hand, if the data is processed 
closer to the cloud, a higher availability, computation power and reliable energy power sources are given. 
Thus, all this must be taken into consideration at the moment of building new systems. 
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For building the platform, we will build up using a set of state-of-the-art technologies and best practices in the 
Internet of Things. For the data and metadata representation and management, we may consider standards 
such as OGC SensorThing. For the data streams as well as for the multicast APIs in highly distributed 
deployments the pub/sub protocol such as MQTT is intended. For uni-cast requests, a RESTful API is 
considered. For the data ubiquitous data sources, lightweight JSON payloads could be used. In case of heavy 
data load, Google Buffers protocol could be an alternative. On the system side, Docker based technology as 
well as Docker Swarm or Prometheus could provide the necessary tools for deployment and monitoring. On 
the computational part, Complex-Event Processing (CEP) or BPMN engines could serve as Execution Pipeline 
Environment for the execution of rules. The Rules can be described by the CEP DSL or BPMN as a description 
language. Additionally, the engines should be extended to support analysis frameworks such as TensorFlow 
or DeepLearning4J. Moreover, we will consider incorporating well-known developer environments for data 
scientist such as Weka, R, python tools. However, there are no standardized way to describe a Machine 
Learning model, which requires fundamental research and development. Finally, security can be added using 
TLS for channel encryption, XAML for policy management and SAML for authentication. 

 

Figure 5 Deployment view of the CEML distributed system 
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3.5 Functional view: Capabilities 

 

 

Figure 6. LinkSmart® Learning Service Enabling Use Cases. 

3.5.1  Stream 

The LA works executing process pre-defined processes which are triggered by incoming streams. Therefore, 
all operation take part inside the LA are applied on streams.  

3.5.1.1 Processing 

This functional use case represents requests or operations that can be Created, Read, Updated, or Delete 
(CRUD).  

3.5.1.1.1 Aggregate 

It generates a new stream with enriched information out of the original stream. E.g. calculate the average water 
consumption. 

3.5.1.1.2 Fuse 

It uses several streams and fuse them generating a new stream. As an example, the data streams of the fill 
level sensor of smart bins as well as the data stream of their temperature sensors can be combined to generate 
a smell virtual sensor or smell stream. 

3.5.1.1.3 Query 

This use case identifies one or several streams that fulfill a certain condition, e.g. using the fill level sensors of 
the bins the LA generates a new stream, which represents collection routes. 

Translate 
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3.5.1.1.4 Route 

This use case takes one stream, channeled to another stream (either by changing the stream id, or by changing 
the publishing output). E.g. forward an internal event in the Intra-Factory Interoperability Layer to the 
visualization service 

3.5.1.1.5 Annotate  

In this use case an event or an event stream is republished under another topic. Before being republished 
additional information might be added to original event. E.g. a welding gun energy consumption event is 
annotated with the business step.   

3.5.1.1.6 Translate 

Similar route, but in this UC the event is translated into another communication protocol. E.g. forward an 
internal event in the IIMS to a cellphone as SMS message.  

3.5.1.2 I/O 

This operation addresses the management of a datastream fed into the system and the output of the results 
of the processes in the system. 

3.5.1.2.1 Pub  

After any of the processes takes place, the result must be distributed. The distribution of the result depends of 
the target protocol where the result will be published.  

3.5.1.2.2 Sub 

The datastreams are unbounded data series. This series of data comes as a continuous flow of data. 
Therefore, the system must provide a mechanism of how the continuous data flow is inserted into the system.  

3.5.1.3 Analyse 

Some computational applications on the data are more complex than just applying an operation from the input 
data and allocate the result in the output bus. In some computation applications, the processes have states 
and steps and each process influences the data flow. This is the case for machine learning, and this use case 
is to address such process. We will call the state or ñmemoryò of the process the model. 

3.5.1.3.1 Online Manage Model  

This use case addresses the actions that change the processes or algorithms that change the model.  

3.5.1.3.1.1 Request to Learn Phenomena 

The system receives a full detail process definition to construct and manage a model. The system ñbuildsò the 
model out of the description and start to feed the model whit the data accordingly.  

3.5.1.3.1.2 Learning  

Here the system executes the continuous learning process and feeds the data to train the model every time 
new data arrives according to the current description of the process. The learning process can happen in two 
distinctively ways: Incrementally or Batch-wise.   

3.5.1.3.1.2.1 Incremental Learning 

The incremental learning is the training process where the model is fed with information one-by-one. This 
means, as soon a new data-point can be constructed the model is trained and the state of the model is evaluate 
afterwards.  

3.5.1.3.1.2.2 Batch Learning  

The incrementally learning is the training process where the model is fed with information using blocks of data. 
This means, the model is trained using a dataset constructed from several data-points that had being 
accumulated from the input data, where the model is evaluated afterwards.  
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3.5.1.3.2 Online Usage Model 

The solely propose of a model is to be used in an environment. This uses case describe the ñuseò or 
management of the model in the environment.  

3.5.1.3.2.1 Deploy 

After the model has reach the desired state, the model is introduced to the active environment to execute the 
specified task in the learning request. If the performance of the model drops, the model is removed from the 
environment.   

3.5.1.3.2.2 Predict 

In any moment a user can specify requests to a model to provide a prediction (providing the input 
corresponding) to the model regardless of the performance state of the model.   

3.6 Architecture 

We utilize LinkSmart® LA following a modular architecture with loosely coupled modules responsible for 
different tasks. Figure 7 illustrates the architecture of the LA. The data and commands come via 
communication protocols implemented by Connectors (in Figure 7 shows two example implementations, REST 
and MQTT). The connectors transfers the information to the Feeders, which process the data accordingly to 
the API logic. This logic depends on whether it is an insertion of new Raw data, request of simple data 
processing (statement) or a machine learning request (CEML request). The data is inserted into the execution 
environment (in this case EsperEngine6), while the data processing requests are deployed in the same engine 
for the processing of the raw data. The CEML request have a more complex behaviour. Each CEML request 
is managed by its own CEMLManager, which contains and coordinates the model(s), evaluator for each model, 
and several statements. Finally, all outputs of any process (Statement) in the execution pipeline (EsperEgnine) 
is capture or managed by a Handler. If the process should be prepare and send through a communication 
protocol, then will be handle by a Complex-Event Handler: An Asynchronous Handler, if the protocol is 
asynchronous (e.g. MQT); or Synchronous Handler, if the protocol is synchronous (e.g. HTTP). 

3.7 Scalability 

In everyday growing amount of data, the scalability of the data procesing system is pramount. Therefore, it is 
not only relevant but essential that the scalability of the system is accouted and tested. In this chapter, we 
revise the scalability of the system; while in next revision of this deliverable the scalability will be tested.  

We will start by analysing the internal scalability of the a single instance. The LA is a hiper-mulithreaded service 
in which all operation are parallelized. For instance, each I/O operation is managed in individual thread, without 

                                                      
6 Esper is an open-source Java-based software product for Complex event processing (CEP) and Event stream processing (ESP) that 
analyzes series of events for deriving conclusions from them. See http://www.espertech.com/ 

Figure 7. LinkSmart® Learning Service Architecture Sketch. 
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waisting costly resources such as network NIC, sockets, and the thread itself. That a thread is reused means, 
each thread is not destroyed and reused for process new request after had finished to process the current 
one, saving the highly cost of building threads. Regarding network conectivity, the connections are shared to 
avoid the costly process of open sockets. On the other hand, the execution process are also parallelized per 
process. In summary, this allows a single instance to take all resources at hand in a machine as the data 
processing demands grows. 

As the processing demands grows, it might be impossible or highly-conslty to address them in a single 
instance. Memory, CPU or NIC broadband usage can grow indefendly and scale them in a single server might 
not be the best approach. In such cases, the LA should be arranged in a mesh of data processing systems in 
a map-reduce fashion within the network. Such an arragenment allows to scale the infrastrucure depending 
on data processing demands, either by distribution or parallelization of the processing task (shown in figure 
below). 

 

3.8 APIs Implementation 

This chapter will describe the current API of the LA. To do so, we will describe the endpoints, operations and 
the payload send in the operation as following: 

RES [PAYLOAD] DIR 

OP URI PAYLOAD 

OP = operation to execute to operate with the LA.  

URI = localization of the part of the API wants to be access. The URI may have values surrounded 
by ó<ô and ó>ô, this are meta-values that describe values that the user must be field accordingly. 

PAYLOAD = the document format use or returned in the operation. The format will have a suffix 
ending with ó:ô indicating the specification where the format is coming from, e.g. LS for LinkSmart or 
OGC for OGC SensorThings.  

DIR = it is the direction of the communication. In some protocols the response of a request can be 
provided in the same operation, in other this is not possible. If Ą means that the communication is 
from the client to the LA. If ă means that the communication is from the LA to the client, usually a 

Figure 8 Scalability analys in a multi-instace processing platform 
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late response of a request. ăĄ Means that the response of the operations will be returned 
immediately after the operation overs.  

[] = if the operation returns a payload, here is specified. 

RES = result of the operation if successful. 

 

3.8.1 I/O API:  

The I/O APIs can be divided in two viewpoints. On one the hand, in networking communication protocols, and 
document event/message format. On the other hand, in the management of input or output information.  

Regarding communication and format, the IoT Learning Agent builds upon standards; for both in and output. 
For network communications, currently, the LA supports MQTT and HTTP RESTful input/output messages, 
due to both are widely popular in IoT environments. In the messaging formats and endpoints definition, the LA 
base on OGC SensorThing, due to its wide and flexible description of the data. Moreover, the LA supports 
other formats, e.g. SenML, and the architecture is built to incorporate other network protocols. Although the 
LA supports several protocols, for simplicity this document just addresses the OGC SensorThings format 
(suffix OGC) and endpoints, and MQTT and HTTP.   

Regarding the management of the Input and Output, the API is divided in two the Event API, and the Handling 
API, respectively.  

3.8.1.1 Event API 

This API allows events to be inserted in the ñComputational Pipelineò/òComplex-Processing Engineò using their 
endpoints. Due to the asynchronicity nature of MQTT handles more properly this kind of operations. 

MQTT Implementation 

        Ą 

PUB  LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/  OGC:Observation 

RESTful Implementation 

200 [LS:Responses]  ăĄ 

POST  LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/  OGC:Observation 

Legend: 

SW-Code = Accordingly to LinkSmart specification all component that sends data to the broker should have a 
software code. This can be a generic code ósenô from sensor.  

SW-ID = Accordingly to LinkSmart specification all component that sends data to the broker should have a 
unique ID.  

DS-ID = Accordingly to OGC SensorThings specification the Observation should be send in a path/topic that 
contains the DataStream ID as is shown above.  

3.8.1.2 Handling API 

This API propagates the response of the result of the processing inside the ñComputational 
Pipelineò/òComplex-Processing Engineò. In some sense, this API is the real return response of the Event API 

MQTT Implementation 

[OGC:Observation] ă 

PUB  LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/   

RESTful Implementation 

[OGC:Observation] ăĄ 

POST  LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/  OGC:Observation 
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3.8.2 Process API: 

The process API has two aspects. Firstly, the external API that is use to define and deploy processing request 
of any kind. The internal API is serve by the Statement API for the simpler processing use cases, and the 
CEML API for the analysis use cases. Secondly, the internal API or SDK is used to add functionality to the LA 
that can be used in the external API.  

3.8.2.1 Statement API 

This API allows the user deploy instruction to process data on-demand on-the-fly. This operations can be 
Aggregations, Annotation, Routing, Fusion, and Translation of data streams as is explain in the use case 
chapter. Itôs important to mention that the requests are just that, requests to future process all incoming data. 
This means, the data will be process when and as it arrives and not when the request is deployed.  

RESTful Implementation 

Gets all statements created in the LA. 

200 [LS:Responses] ăĄ 

GET  statement/  LS:Statement 

Gets the statement with the given ID. 

200 [LS:Responses] ăĄ 

GET  statement/<ID>  LS:Statement 

Inserts a statement with the given ID. 

201 [LS:Responses] ăĄ 

PUT  statement/<ID>/  LS:Statement 

Inserts new or changes an existing a statement (the id is auto-generated and returned). 

201 [LS:Responses] ăĄ 

POST  statement/  LS:Statement 

Deletes a statement with the given ID. 

200 [LS:Responses] ăĄ 

DELETE statement/<ID>/  LS:Statement 

MQTT Implementation 

Inserts a statement with the given ID. 

Ą 

PUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/new/  LS:Statement 

Inserts new or changes an existing a statement (the id is auto-generated and returned). 

Ą 

PUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/add/  LS:Statement 

Deletes a statement with the given ID. 

Ą 

PUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/delete/  LS:Statement 

 

To receive the responses of any of the MQTT requests described above, one of the following actions must 
have taken place before.  

Subscribe to errors of specific Statement 

 [LS:Responses] ă 

SUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/errors/<ID>   
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Subscribe to errors all errors related to the Statement API 

 [LS:Responses] ă 

SUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/errors/#   

LA-ID = the unique ID of the addresses LA. 

LS-API-VER = the current API version number of LinkSmart. 

ID = the unique ID of the Statement. 

3.8.2.2 CEML API 

RESTful Implementation 

Gets all CEML requests created in the LA. 

200 [LS:Responses] ăĄ 

GET  ceml/   

Gets the CEML request with the given ID. 

200 [LS:Responses] ăĄ 

GET  ceml/<ID>   

Creates or changes a CEML request with the given ID. 

201 [LS:Responses] ăĄ 

PUT  ceml/<ID>/  LS:Statement 

Inserts a new CEML request (the id is auto-generated and returned). 

201 [LS:Responses] ăĄ 

POST  ceml/  LS:Statement 

Deletes a CEML request with the given ID. 

200 [LS:Responses] ăĄ 

DELETE ceml/<ID>/  LS:Statement 

MQTT Implementation 

Inserts a statement with the given ID. 

Ą 

PUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/ceml//add/  LS:CEMLR 

Deletes a statement with the given ID. 

Ą 

PUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/ceml/remove/ LS:CEMLR 

To receive the responses of any of the MQTT requests described above, one of the following actions must 
have taken place before.  

Subscribe to errors related to CEML Requests 

 [LS:Responses] ă 

SUB LS/LA/<LA-ID>/SER/<LS-API-VER>/ceml/errors/   

Subscribe the progress of the learning models 

 [LS:Prediction] ă 

SUB  LS/LA/<LA-ID>/SER/<LS-API-VER>/output/<id>   
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LA-ID = the unique ID of the addresses LA. 

LS-API-VER = the current API version number of LinkSmart. 

ID = the unique ID of the CEML request. 

3.8.2.3 Extensible Model framework  

The amount of models that can be applied varies widely depending on the application. I.e. in COMPOSITION 
the models are mostly provide by the Deep Learning Toolkit. This are external components that connect in 
some manner to the IoT Learning Agent framework. Therefore, the IoT Learning Agent provides an initial set 
of models to use; additionally, the LA provides two set of SDK to interconnect the external developed models.  

3.8.2.3.1 GeneralWekaModel 

Waikato Environment for Knowledge Analysis (Weka) is a suite of machine learning software written in Java, 
developed at the University of Waikato, New Zealand. It is free software licensed under the GNU General 
Public License. This model allows to use any model or algorithm available in Weka suite that implements an 
óUpdateableClassifierô.  

3.8.2.3.2 AutoRegressiveNeuralNetworkModel 

In statistics and signal processing, an autoregressive (AR) model is a representation of a type of random 
process; as such, it is used to describe certain time-varying processes in nature, economics, etc. The 
autoregressive model specifies that the output variable depends linearly on its own previous values and on a 
stochastic term (an imperfectly predictable term); thus the model is in the form of a stochastic difference 
equation. This model is an implementation of such model using neural networks library form DeepLearning4j.  

3.8.2.3.3 Java SDK 

The LA is able to load in runtime any model that is located in the classpath and implements the either 
óRegressorModel <Input, Output, LearningObject>ô or óClassifierModel  <Input ,  Output ,  

LearningObject >ô for regression problems or classification problems, respectively.  

3.8.2.3.4 Python SDK 

The Python SDK is a fully new feature of the LA developed for and in COMPOSITION. Python is one of the 
most popular language between Data Scientist, i.e. the Deep Learning Toolkit is fully implemented in python. 
Therefore, an SDK to add models implemented in python was implemented for the COMPOSITION project. 
The SDK allows to connect to standalone models using Pyro. Pyro establish a network connection between a 
Java software and a Python application handling all related to this (DNS discovery, socket connection, object 
translation, error handling, TLS, etc.). In this manner, any standalone python can connect to the LA in a 
transparent manner. 

3.8.3 Monitoring API 

This API is still work in progress task for the LinkSmart® IoT Learning agent. Currently, the monitoring features 
are powerful but the tooling might be unappropriated or difficult to use. The current functionality, allows to 
monitoring allows to evaluate the performance of the LA or a network of LAs using standard REST or MQTT 
clients leveraging on the existing APIs.  

Firstly, the LA allows to monitor the CPU usage of the statements giving the possibility to monitor the 
computational performance of the processing Statements. To do so the, the 
óconnector_monitoring_mqtt_events_report_topicsô must be enable. This feature will create an MQTT event 
every 60 seconds (by default) where the usage of each Statement.  

Secondly, the LA allows to monitor the learning performance of the model, as was mention in the CEML MQTT 
API implementation. This allows to get an instant performance assessment of the model. Additionally, the 
model can be consulted directly using the HTTP GET ceml/<id> endpoint. This endpoint will provide the latest 
state of the model. This allows to access the latest state of the model by the demand.  

The most important feature of the LA regarding monitoring, it is that due to the structure of the MQTT topic 
allows to multicast CRUD requests. This means, it is possible to connect to unlimited amount of LA agents in 
a broker and be able to monitor their performance individually online at once. This allows to construct a 
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monitoring infrastructure of a mesh of LA either in a Cloud deployment or in distributed locations in a network 
or the internet.  

Finally, the LA work natively together with any LinkSmart® Platform service. This means that LA can connect 
to the LinkSmart® Service Catalog, allowing to monitor the LA or LAs status with the catalogue. Additionally, 
the DataStreams status can be monitor using the HDS OGC SensorThing Catalog. In this manner, all 
DataStreams metadata coming from sensors, Statements, or CEML request can be queried.  

3.8.4 Management API 

The Management API is in similar case as the Monitoring API. The Management API leverage of other existing 
API. With two important remarks. Again, the structure of the MQTT topic allows to multicast CRUD requests. 
This features allows to address an infrastructure of LAs distributed anywhere, addressing in a single multicast 
request all, some or one LA in the distributed infrastructure. This means, Statements or CEML requests can 
be created, updated or deleted in subsets of LAs in a deployed infrastructure with a single request.  

3.9 Security 

The LinkSmart® IoT Learning Agent is developed in the scope of the LinkSmart® Platform and adapted to 
match the COMPOSITIONS needs. The agent allows natively simple security management levering from 
SSL/TLS and MQTT standard. Additionally, more advance features can be offer by other services, either by 
e.g. the LinkSmart® IoT Border Gateway or by other set of tools. This last is the case of COMPOSITION. In 
this chapter, we will just discuss the internal security features provided by the agent alone and the agent in a 
combined infrastructure. 

3.9.1 TLS 

TLS is the secure version of the TCP protocol. Currently, the LA supports three communication network 
protocols for different proposes. These are HTTP, MQTT and Pyro. This last one, it is actually not a protocol 
just a TCP socket application, here we will treated so. Although, the three of them are based on TCP, their 
application is extremely different. From the perspective of the agent, in HTTP the agent is a server using 
several TCP connections. In MQTT, the agent is a client of a server (the broker). Finally in Pyro, the connection 
is a single TCP socket that connect a single client. The usage of the TLS is different in each other.  

3.9.1.1 HTTPS  

HTTPS is the usage of TLS in the HTTP protocol context. HTTP is request/response client/server 
communication protocol, where clients can request to the services resources using endpoints. In most cases, 
the LA takes the role of the server. Loading a certificate in the LA truststore, it will allow to establish encrypted 
connection to the incoming clients. Additionally, it is possible to provide client certificates, with this is possible 
to create whitelist for the clients and blocking anonymous access. This approach is highly secure, but it might 
be cumbersome to maintain. Finally, there is no fine granularity regarding what a client can or cannot do after 
the access was given.  

3.9.1.2 MQTT and TLS 

In this paragraph, we discus only TLS while using MQTT, for other security mechanism see below. MQTT is a 
publish/subscribe client-to-client broker based communication protocol, where the clients can publish or 
subscribe to messages using topics. The role of the LA regarding this protocol is as client. Therefore, the 
security enforcement can be only applied on the server side, the broker. The LA gives the possibility to load 
client certificate for each MQTT Broker that wants to be stablished. As client, the certificate is not needed for 
encryption but for whitelisting.  

MQTT provides additional basic mechanism authentication. MQTT allows to define user/password to 
authenticate clients in the broker. In it is worth mentioning that user/password authentication do not imply TLC, 
ergo no encryption. Moreover, no TLS means that the communication can be sniffed this including the 
user/password. Therefore, using TLS is a must for secure user/password communication. Finally, although 
MQTT standard do not define authorization mechanism; many implementations provide this feature.  

Finally, the MQTT Broker implementations can only manage who publishes or subscribes to a topic, but it is 
impossible to verify who send a message if the topics are shared. In other to identify sender, we build JWS 
messages on top as payload of the messages.  
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3.9.1.3 Pyro  

As it was mention before, Pyro simple opens a TCP connection such that the external python code can connect 
to a Java implementation. To establish a TLS connection in Pyro, the server certificates must be loaded in the 
LA. This is similar as what is need to be done in HTTPS. 

3.9.2 JWS 

JWS or JSON Web Sign, it is a complete new feature developed in COMPOSITION. This new standard allows 
to sign and validate all sent and received message by and from the agent respectively. Combining MQTT with 
JWS allows to the services to identified the origin of the message and if the message had being tampered. In 
the perspective of the LA, it is possible to enable this feature and all APIs will work accordingly to JWS.   

3.10 LinkSmart development synergies 

The IoT Learning Agent is a standalone service of the LinkSmart® and as such shares some common set of 
standards, specifications, best practices and infrastructure that all component belonging to the LinkSmart® 
infrastructure has. Appliances of usage of these set of technologies are not limited to the result of the 
developed service but also to the development process of the service itself. All components developed in the 
LinkSmart® ecosystem are developed using agile SCRUM process with issue tracking and continuous 
integration. To support this, LinkSmart® has a set of cloud infrastructure that supports the developers and 
ensure quality. Overall, this set of tools improves the quality of the COMPOSITION project. In this chapter, we 
presents the set of best practices that the LA is built on as part of the LinkSmart® ecosystem.  

3.10.1 Continuous Integration best practices 

This section lists best practices suggested by various authors on how to achieve continuous integration, and 
how to automate this practice. Build automation is a best practice itself. 

Continuous integration ï the practice of frequently integrating one's new or changed code with the existing 
code repository ï should occur frequently enough that no intervening window remains between commit and 
build, and such that no errors can arise without developers noticing them and correcting them immediately.[11] 
Normal practice is to trigger these builds by every commit to a repository, rather than a periodically scheduled 
build. The practicalities of doing this in a multi-developer environment of rapid commits are such that it is usual 
to trigger a short time after each commit, then to start a build when either this timer expires, or after a rather 
longer interval since the last build. Many automated tools offer this scheduling automatically. 

Another factor is the need for a version control system that supports atomic commits, i.e. all of a developer's 
changes may be seen as a single commit operation. There is no point in trying to build from only half of the 
changed files. 

To achieve these objectives, continuous integration relies on the following principles. 

3.10.1.1 Maintain a code repository 

This practice advocates the use of a revision control system for the project's source code. All artefacts required 
to build the project should be placed in the repository. In this practice and in the revision control community, 
the convention is that the system should be buildable from a fresh checkout and not require additional 
dependencies. The mainline (or master) should be the place for the working version of the software. 

In LinkSmart® DevOps infrastructure, this task is done by our code Bitbucket server located in 
https://code.linksmart.eu/ . In the Figure 9, we can see the dev and master branches of the LA project in code 
server, both with green status showing that both had been successfully tested.  

 

https://code.linksmart.eu/
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Figure 9 screenshot of the LA project in code server 

3.10.1.2 Automate the build 

A single command should have the capability of building the system. Many build tools, such as make, have 
existed for many years. Other more recent tools are frequently used in continuous integration environments. 
Automation of the build should include automating the integration, which often includes deployment into a 
production-like environment. In many cases, the build script not only compiles binaries, but also generates 
documentation, website pages, statistics and distribution media. 

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in 
https://pipelines.linksmart.eu/ . In the Figure 10, we can see the summary of an automatic build (#199) with all 
internal stages of the build.  

 

Figure 10 the summary of the automatic build no. 199 

https://pipelines.linksmart.eu/
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3.10.1.3 Make the build self-testing 

Once the code is built, all tests should run to confirm that it behaves as the developers expect it to behave. 

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in 
https://pipelines.linksmart.eu/. The server apply unit and component tests for each change done in the 
software. In the Figure 11, we can see the summary of the unit and component tests applied in build no. 199. 
With this test, we expect to ensure the behaviour of the different components is the expected one.  

 

Figure 11 shows the results of the unit and component tests of the build no. 199 

3.10.1.4 Everyone commits to the baseline every day 

By committing regularly, every committer can reduce the number of conflicting changes. Checking in a week's 
worth of work runs the risk of conflicting with other features and can be very difficult to resolve. Committing all 
changes at least once a day (once per feature built) is generally considered part of the definition of Continuous 
Integration. In addition performing a nightly build is generally recommended. These are lower bounds; the 
typical frequency is expected to be much higher. 

In LinkSmart® DevOps infrastructure, this task is done by our code Bitbucket server located in 
https://code.linksmart.eu/ . In the Figure 12Figure 9, we can see the frequency of the commits and that the 
master branch is use only of current stable release and dev for development.  

 

https://pipelines.linksmart.eu/
https://code.linksmart.eu/
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Figure 12 shows the usage of the branches in the GIT repository 

3.10.1.5 Every commit (to baseline) should be built 

The system should build commits to the current working version to verify that they integrate correctly. A 
common practice is to use Automated Continuous Integration, although this may be done manually. For many, 
continuous integration is synonymous with using Automated Continuous Integration where a continuous 
integration server or daemon monitors the revision control system for changes, then automatically runs the 
build process. 

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in 
https://pipelines.linksmart.eu/. The server build every change made in the code and check if runs. In Figure 
13, we can a summary of the last 3 automatic build processes.  

 

 

Figure 13 shows how each change triggers a building and testing process 

3.10.1.6 Test in a clone of the production environment 

Having a test environment can lead to failures in tested systems when they deploy in the production 
environment because the production environment may differ from the test environment in a significant way. 
However, building a replica of a production environment is cost prohibitive. Instead, the test environment, or a 
separate pre-production environment ("staging") should be built to be a scalable version of the actual 
production environment to both alleviate costs while maintaining technology stack composition and nuances. 
Within these test environments, service virtualization is commonly used to obtain on-demand access to 
dependencies (e.g., APIs, third-party applications, services, mainframes, etc.) that are beyond the team's 
control, still evolving, or too complex to configure in a virtual test lab. 

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in 
https://pipelines.linksmart.eu/. The server apply integration tests for each change done in the software. In the 

https://pipelines.linksmart.eu/
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Figure 14, we can see the summary of the integration tests applied in build no. 199. With this test, we expect 
to ensure the API respect a predefined contract.  

 

 

 

Figure 14 shows the results of the integration and system tests of the build no. 199 

3.10.1.7 Make it easy to get the latest deliverables 

Making builds readily available to stakeholders and testers can reduce the amount of rework necessary when 
rebuilding a feature that doesn't meet requirements. Additionally, early testing reduces the chances that 
defects survive until deployment. Finding errors earlier also, in some cases, reduces the amount of work 
necessary to resolve them. All programmers should start the day by updating the project from the repository. 
That way, they will all stay up to date. 

In LinkSmart® DevOps infrastructure, this task is done by our nexus server, which provides the Docker registry 
service located in https://docker.linksmart.eu/ for the Docker image distributions; and the maven repository 
service located in https://nexus.linksmart.eu/repository/public/ for the java components and distributions. Both 
the registry and the repository contains the experimental, snapshot and release distributions of the Docker and 
Java. In the Figure 15, we can see in the left side the Docker distributions, and the right side we can see the 
release java distributions.  

https://docker.linksmart.eu/
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Figure 15 (left) shows the latest release, snapshot and experimental distribution Docker distributions in the 
LinkSmart® Docker registry server; (right) shows the lates two releases as Java applications in the LinkSmart® 
Nexus server. 

3.10.1.8 Everyone can see the results of the latest build 

It should be easy to find out whether the build breaks and, if so, who made the relevant change. 

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in 
https://pipelines.linksmart.eu/ and the boardsô server located in https://boards.linksmart.eu/. The pipelines 
server builds every time a change happens and each build trace who and when the change took place (see 
Figure 16). Finally, in case the build fails; the pipeline server informs the developers that the fails happened 
and creates a report in the on the management board in the board server till the issue was solved.  

 

 

Figure 16 shows the changes involved in the build no. 199 

3.10.1.9 Automate deployment 

Most CI systems allow the running of scripts after a build finishes. In most situations, it is possible to write a 
script to deploy the application to a live test server that everyone can look at. A further advance in this way of 
thinking is continuous deployment, which calls for the software to be deployed directly into production, often 
with additional automation to prevent defects or regressions. 

In LinkSmart® DevOps infrastructure, this task is done (partially) by our pipeline Bamboo server located in 
https://pipelines.linksmart.eu/. While the server already deploy automatically into a building test system, it do 
not deploy it automatically into the production server due to administrative, security and other issues. In the 
Figure 17, we can see a list of automatic deployment plans. 

https://pipelines.linksmart.eu/
https://boards.linksmart.eu/
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