

Ecosystem for COllaborative Manufacturing PrOceSses ï Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D5.1 Big data mining and analytics tools I

Date: 2017-11-30

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Unionôs Horizon 2020 Framework Programme for Research and Innovation under Grant
Agreement No 723145

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 2 of 40 30-11-2017

Document control page

Document file: D5.1 Big data mining and analytics tools I
Document version: 1.0
Document owner: FIT

Work package: WP5 ï Integration of Internal and External Elements

Task: T5.1 ï Multi-Level and Cross-Domain Big Data Analysis and Management
Deliverable type: OTHER

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 José Ángel Carvajal Soto (FIT) 2017-11-07 Initial TOC

0.2 José Ángel Carvajal Soto (FIT) 2017-11-10 Add content

0.3 Alexander Graß (FIT) 2017-11-21 Internal review

0.4 Dimosthenis Ioannidis (CERTH) 2017-11-22 Big Data Visual Analyticsô chapter added

0.5 José Ángel Carvajal Soto (FIT) 2017-11-24 Merging content and taking review changes

0.6 José Ángel Carvajal Soto (FIT) 2017-11-27 First complete version with LinkSmart development
synergies and conclusion

0.7 Dimosthenis Ioannidis (CERTH) 2017-11-27 Updated version of the Visualization chapter

0.8 José Ángel Carvajal Soto (FIT) 2017-11-27 Consolidated version before review

1.0 José Ángel Carvajal Soto 2017-11-30 Final version

Internal review history:

Reviewed by Date Summary of comments

Matteo Pardi (NXW) 2017-11-29 Minor comments.

Ifigeneia Metaxa (ATL) 2017-11-29 Minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 3 of 40 30-11-2017

Index:
1 Introduction .. 4

2 COMPOSITION Context ... 5
2.1 Scenarios ... 5
2.2 Scenario INTRA-2: Predictive maintenance. ... 5

2.2.1 COMPOSITION Data Analytics View: Intra-factory Interoperability Layer 6

3 Big Data Analytics provided by the LinkSmart® IoT Learning Agent 8
3.1 Introduction .. 8
3.2 Whatôs new in the LinkSmartÈ IoT Learning Agent ... 8
3.3 The Complex-Event Machine Learning methodology ... 9

3.3.1 Data Propagation Phase .. 9
3.3.2 Data Pre-Processing (Munging) Phase ... 9
3.3.3 Learning Phase .. 9
3.3.4 Continuous Validation Phase ...10
3.3.5 Deployment Phase ...10

3.4 Design Perspective ..10
3.5 Functional view: Capabilities ...15

3.5.1 Stream ...15
3.6 Architecture ..17
3.7 Scalability ...17
3.8 APIs Implementation ..18

3.8.1 I/O API: ..19
3.8.2 Process API: ..20
3.8.3 Monitoring API ...22
3.8.4 Management API ...23

3.9 Security ..23
3.9.1 TLS...23
3.9.2 JWS..24

3.10 LinkSmart development synergies ...24
3.10.1 Continuous Integration best practices ..24

4 Big Data Visual Analytics ..31
4.1 Visualization Techniques Analysis ..31

4.1.1 Overview of Visualization Techniques Categories ..31
4.1.2 Parameters Define Visualization Techniqueôs Selection ...31
4.1.3 Brief analysis of general visualization tools ...32

4.2 Overview of Visual Analytics tool architecture ...33
4.3 Visual Analytics tools in COMPOSITION Use Cases ..33

5 Future work and Conclusions ...37
5.1 Future Work ...37

5.1.1 Integration the real-time data of the Pilot partners ..37
5.1.2 Integrating the LA with the DLT ...37
5.1.3 Enabling TLS and JWS ..37
5.1.4 Integrate the LA with the Visual Analytics ...37
5.1.5 Test the Scalability of the LAs ...37
5.1.6 Improve monitoring and management tooling ...37

5.2 Conclusion ...37

6 List of Figures and Tables ...38
6.1 Figures ...38
6.2 Tables ..38

7 References ..39

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 4 of 40 30-11-2017

1 Introduction

1.1 Summary

In this deliverable, we present the current development state of the task 5.1. We start by presenting a general
background in this chapter. In chapter 2, we present the COMPOSITION scenarios where Data Analytics will
be used, and the place of these techniques in the general COMPOSITION architecture. In chapter 3, we
present the solution for Big Data Analysis. In chapter 4, we present the analysis of the possible representation
of the Big Data Analysis. Finally, we end with a short conclusion in chapter 5.

 1.2 Background

The manufacturing industry is being disrupted in what is already known as the 4th industrial revolution or
Industry 4.0. This revolution is driven by the need of reduction of the time-to-market [1], increment of
complexity, (mass customization) [2] [3], and added value services [4] around the products -- all together in a
competitive globalized world [4]. To solve these challenges, this revolution is introducing a set of new advanced
networking technology, hardware, and more important, intelligent software. While in the 3rd industrial
revolution, the manpower was replaced by simple "hardwired" automatization [5], which could not adapt to
market trends fast enough - e.g. in mass customization where almost unlimited variations of a product can be
produced [1], [6], [7], [8], [9] - the current revolution is creating so-called cyber-physical systems, where
machines collect data, communicate with each other and jointly take decisions [10]. To succeed in this new
industry, the technologies must be highly adaptable, manageable, and in many cases even self-managed and
self-configured [11], [12].

To achieve this degree of intelligence, advanced algorithms have been incorporated into the production
process to achieve embedded artificial intelligence (AI) within the process. This embedded AI has been
constructed from the experiences obtained by the machines and usually designed by data scientists [13].
These techniques can be used in several manufacturing challenges such as predictive maintenance or product
defect detection.

However, while many efforts has been invested in tackling these challenges, few works has been done in
developing an integrated manageable platform to solve these problems [14], [15], [16], [17], [18]. Most of the
solutions propose a heterogeneous set of technologies to achieve the goals, and mostly none provide tooling
for a deployment or to manage the solution in a deployed running system. Most existing solutions do not
provide any tooling for collecting data and management for AI technologies, such as online machine learning
(ML). Additionally, the solutions provide very little integrated deployment tools for the reproduction of ML
methods or models in other deployment environments.

We believe in the need of an integrated extensible solution that provides runtime management tools and is
able to manage and configure itself. A platform that provides a set of mechanisms for real-time data collection,
processing, and analysis. In this manner, it is possible to create common methodologies to reproduce and
redeploy ML and other AI technologies reducing their cost and increasing their usage.

In this deliverable, we present our solution first shown in [19], within a manufacturing environment. More
specifically, we deploy the solution in Surface-Mount Technology production in BLS plant and in other process
in the KLE production plant.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 5 of 40 30-11-2017

2 COMPOSITION Context

2.1 Scenarios

As stated in the deliverable D2.1, the COMPOSITION IIMS will apply business intelligence to provide improved
coordination mechanisms of collaborative manufacturing processes. It will be based on continuous real-time
monitoring and the control of underlying complex collaborative industrial and logistics processes.

The Intra-factory scenarios will demonstrate the value added to services that address fundamental challenges
in the pilot organisations by matching requirements to capabilities for internal and external processes and
addressing emerging issues. The scenarios will aim at boosting collaborative manufacturing and intra-factory
interoperability in marketplaces to the next level of knowledge management, agility, reliability, security,
responsiveness, and cost-efficiency.

In close dialogue with the pilot owners, four Intra-factory scenarios were defined:

¶ Scenario INTRA-1: Production Floor Monitoring and Visualisation

¶ Scenario INTRA-2: Predictive Maintenance

¶ Scenario INTRA-3: Material Management

¶ Scenario INTRA-4: Automatic Data Conversion

For now, big data analytic tools and services will be needed only for INTRA-2 accordingly to the amount of
data and the data generation rates.

2.2 Scenario INTRA-2: Predictive maintenance.

The COMPOSITION IIMS collects historical information as well as real-time information about the
performance. E.g. speed (RPM), power (Watts) or decibel levels (dbis captured at machine level (laser power,
soldering paste, fans, mechanical conveyers, etc.

The actual status is compared to static data models (performance specs, history, costs) about the optimum
process performance and algorithms can predict the likely point in time where critical components in the
machine or process may fail thus causing the manufacturing process to be disrupted or products to be
scrapped. Based on historic performance the prediction of failures can further be improved using different
machine learning technologies.

The predictions are presented to the operator to support their decision about when and what to replace before
failure occurs, saving costs. The operator will thus see a selection of critical components and their estimated
time of failure.

The COMPOSITION IMMS will help the pilots to efficiently and effectively manage machine downtimes and
failures based on the prediction of failures of critical components. Information such as levels and temperature
of solvents, vibration of machines, etc., will be provided in the IMMS. Prediction of the Blower motors within
the Heller Ovens are very important to BSL from a quality and cost perspective. Potential cost of a non-
recoverable oven alarm (motor/blower failure) resulting in non-conforming product being scrapped is estimated
as $60K

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 6 of 40 30-11-2017

2.2.1 COMPOSITION Data Analytics View: Intra-factory Interoperability Layer

Figure 1. Intra-factory interoperability layer components and dependencies.

In this chapter, we will address the architecture of the Big Data Analytics module in the COMPOSITION
context. As it was mentioned before, the INTRA-2 is currently the only scenario with big data characteristics.
The INTRA-2 scenario is an Intra-Factory scenario. Therefore, we will focus in this chapter on the Intra-Factory
architecture, known as intra-factory interoperability layer.

The intra-factory interoperability layer has two main goals: the first one is to provide a model for interconnecting
the COMPOSITION ecosystem in the intra-factory scenario, the second one is to ensure the conformity
between communications among interconnected components. The involved technology is provided by
development partners of COMPOSITION and the connectors that will be defined, developed and deployed to
integrate these.

Individual partnersô responsibilities and work package outputs are highlighted in the followings:

¶ Sensors, Sensor Buffering and Sensor Gateways will be developed and adopted from existing
technology. Consideration will be taken to Technical Objective 1.1 (see D2.3).

¶ The BMS is provided by a project development stakeholder (NXW) and is the translation layer
providing shop floor connectivity from sensors to the COMPOSITION system. Raw data storage will
be added for offline debug purposes.

¶ The middleware is the main recipient in which the interoperability single components act

o LinkSmart is a well-known middleware solution per se and will be customized to satisfy
COMPOSITION requirements. Components include

Á Service Catalog, works as service index, and provides security information for service
intercommunication.

Á Event Aggregator, parse messages to ensure homogeneity in data streams

o Keycloak is a virtual layer that ensures authorization and authentication. Like all security
related measures, it will be deployed by the Security Framework.

o The broker-based intra-factory communication system manages all internal communication in
COMPOSITION.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 7 of 40 30-11-2017

¶ The Big Data Analytics component provides Complex Event Processing (CEP) capabilities for the data
provided by the intra-factory integration layer

¶ The Hidden Storage is a storage not accessible from the outside in which aggregated data are stored
for debug purposes, i.e. re-bootstrapping already trained artificial neural networks belonging to the
Deep Learning Toolkit and to the Dynamic Reasoning Engine.

¶ The Deep Learning toolkit component for this intra-factory scenario and an example will be described
in D5.3.

¶ The Visual Analytics component is the reporting interface of the Decision Support System and
Simulation and Forecasting Toolkit.

¶ The Dynamic Reasoning Engine is part of the Simulation and Forecasting Toolkit.

¶ The Decision Support System uses process models to guide the production process.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 8 of 40 30-11-2017

3 Big Data Analytics provided by the LinkSmart® IoT Learning Agent

In this chapter, we present the selected solution and the development of the solution in the context of
COMPOSITION. The chapter starts with an introduction of the solution. In subsection 3.2, the new
developments in the COMPOSITION context

3.1 Introduction

Manufacturing in assembly lines consist in a set of hundreds, thousands or millions of small discrete steps
aligned in a production process. Automatized production processes or production lines thereby produce for
each of those steps small bits of data in form of events. Although the events possess valuable information, this
information loses its value over time. Additionally, the data in the events usually are meaningless if they are
not contextualized, either by other events, sensor data or process context. To extract most value of the data,
it must be processed as it is produced, to be more precise in real-time and on demand. Therefore, in case of
Big Data Analysis we propose the usage of Complex-Event Processing for the data management coming from
the production facilities. In this manner, the data is processed at the moment when it is produced extracting
the maximum value, reducing latency, providing reactivity, giving it context and avoiding the need of archiving
unnecessary data.

The Complex-Event Processing service is provided by the LinkSmart® Learning Agent (LA). The LA is a
Stream Mining service that provides the utilities to manage real-time data for several purposes. On the one
hand, the LA provides a set of tools to collect, annotate, filter, aggregate, or cache the real-time data incoming
from the production facilities. This set of tools facilitates the possibility to build applications on top of real-time
data. On the other hand, the LA provides a set of APIs to manage the real-time data lifecycle for continuous
learning. Moreover, the LA can process the live data to provide complex analysis creating real-time results for
alerting or informing about important conditions in the factory, that may be not be seen at first glance. Finally,
the LA allows the possibility to adapt to the productions needs during the production process.

Itôs worth mentioning that the LA does not learn from the data, it just facilitates the data to the models. In other
words, the LA connects externally to the models for the learning process. By this, the LA enables the online
real-time learning process and data deliverable for training the model. In COMPOSITION, the external learning
models will be provided by a Deep Learning Toolkit. Nevertheless, the LA is capable of doing on-the-run
analytics using less historical data intensive algorithms such as Random Forests, Gradient Boosting, Kalman
Filters, Particle Filter, Hidden Markov Models, boosted Artificial Neural Networks. With them it may be possible
to predict certain phenomenon without the need of historical data.

The LA has been developed and tested in different EU projects such as ALMANAC1 and IMPReSS2. However,
the use cases where in the scope of Smart Cities or Smart Buildings, and it must be tailored for more Industry
4.0 oriented use cases where the events are driven by business processes and data intensive.

3.2 Whatôs new in the LinkSmartÈ IoT Learning Agent

The LA start to be developed in 2014 in the ALMANAC project as a simple CEP for Smart Cities and presented
in [20]. Since then, the LA has being developed and transformed in a self-managed learning orchestrator
service that combined Complex-Event Processing and Machine Learning and other techniques. Specifically in
COMPOSITION there had being following improvements:

¶ Python interoperability layer for programmers or Python SDK

¶ Micro-batch learning handling for non-iterative learning models

¶ Implementation and testing of a default detection model for SMTs using the Python SDK and Random
Forest model.

¶ Implementation of the JWS standard for the I/O API.

¶ Full Dockerized distribution

¶ Introduction of CI for quality assurance using automatic testing. This includes

1 http://cordis.europa.eu/project/rcn/109709_en.html
2 http://cordis.europa.eu/project/rcn/185510_en.html

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 9 of 40 30-11-2017

o Development of Docker based Integration Test for Statement API

o Development of Docker based Integration Test for CEML API

¶ Other smaller improvements and fixes had been done. For more detailed information, please check
the LinkSmart® project documentation3 and source4 code release notes.

3.3 The Complex-Event Machine Learning methodology

The Complex-Event Machine Learning (CEML) [19] is a framework that combines Complex-Event Processing
(CEP) [21] and Machine Learning (ML) [22] applied to the IoT. This means that the framework was developed
to be deployed everywhere, from the edge of the network to the cloud. Furthermore, the framework can
manage itself and works autonomously. The following section briefly describes the different aspects that CEML
covers. The framework must automate the learning process and the deployment management. This process
can be broken down in different phases: (1) the data must be collected from different sensors, either from the
same device or in a local network. (2) The data must be pre-processed for attribute extraction. (3) The learning
process takes place. (4) The learning must be evaluated. (5) When the evaluation shows that the model is
ready, the deployment must take place. Finally, all these phases happen continuously and repetitively, while
the environment constantly changes. Therefore, the model and the deployment must adapt as well.

3.3.1 Data Propagation Phase

Data in the IoT is produced in several places, protocols, formats, and devices. Although this deliverable does
not address the problem of data heterogeneity in detail, the learning agents require a mechanism to acquire
and manage the heterogeneity of the data. The mechanism must be scalable and, at the same time, the
protocol should handle the asynchronous nature of IoT. Finally, the protocol must provide tools to handle the
pub/sub characteristics of the CEP engines. Therefore, we have chosen MQTT5, a well-established Client
Server publish/subscribe messaging transport protocol. The topic based message protocol provides a
mechanism to manage the data heterogeneity by making a relation between topics and payloads. It allows
deployments in several architectures, OS, and hardware platforms; basic constraints at the edge of the
network. The protocol is payload agnostic and as such allows for maximum flexibility to support several types
of payloads.

3.3.2 Data Pre-Processing (Munging) Phase

Usually ML is tied to stored datasets, which incurs several drawbacks. Firstly, the learning can take place only
with persistent data. Secondly, usually the models generated are based on historical data, not current data.
Both constrains, in the IoT, have dire consequences. It is neither feasible nor profitable to store all data. Also,
embedded devices do not have much storage capacity which makes it impossible to use ML algorithms on
them. Furthermore, IoT deployments are commonly exposed to ever-changing environments.

Using historical data for off-line learning could cause outdated models learning old patterns rather than current
ones, producing drifted models. Although some IoT platforms like COMPOSITION support storage of historical
data, it may be too time and space consuming to create large enough times series. Therefore, there is also a
need for non-persistence manipulation tools. This is precisely what the CEP engine provides in the CEML
framework. This means, the CEP engine decides which and how the data is manipulated using predefined
CEP statements deployed in the engine. Each statement can be seen as a topic, to which each learning model
is subscribed. Any update of the subscribers provides a sample to be learnt in the learning phase.

3.3.3 Learning Phase

There is no pre-selection of algorithms in the framework. They are selected by the restrictions imposed by the
problem domain. For example, in extreme constrained devices, algorithms such as Algorithm Output
Granularity (AOG) [23] may be the right choice. In other cases where the model changes quickly, one-shot
algorithms may be the best fit. Artificial Neural Networks are good for complex problems but only with stable
phenomena. This means that the algorithm selection should be made case-by-case. Our framework provides
mechanisms for the management and deployment of the learning models, and the process of how the model
is fed with samples. In general, the process is based on incremental learning [24] albeit with online and non-

3 https://docs.linksmart.eu/display/LA
4 https://code.linksmart.eu/projects/LA/
5 MQTT is a machine - to -machine (M2M)/"Internet of Things" connectivity protocol. Source http://mqtt.org/

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 10 of 40 30-11-2017

persistent data. The process can be summarized as follows: the samples, without the target provided in the
last phase, are used to generate a prediction. The prediction will then be sent to the next phase. Thereafter,
the sample is applied to update the model. Thus, all updates are used for the learning process.

3.3.4 Continuous Validation Phase

This section describes how the validation of the learning models is done inside the CEML. This phase does
not influence the learning process nor validate the CEML framework itself.

ML model validation is a challenging topic in real-time environments and the evaluation for distributed
environments or embedded devices is not addressed extensively in the literature, which is why we think it
needs further research. There are two addressed strategies. Either we holdout an evaluation dataset by taking
a control subset for given time-frame (time window), or we use Predictive Sequential, also known as
Prequential [25], in which we asses each sequential prediction against the observation. The following section
describes the continuous validation we applied for a classification problem, even though it can be applied for
other cases as well.

Instead of accumulating a sample for validation, we analyse the predictions made before the learning takes
place. All predictions are assessed each time an update arrives. The assessment is an entry for the confusion
matrix [26] which is accumulated in an accumulated confusion matrix. The matrix contains the accumulation
of all assessed predictions done before. In other words, the matrix does not describe the current validation
state of the model, but instead the trajectory of it. Using this matrix, the accumulated validation metrics (e.g.
Accuracy, Precision, Sensitivity, etc.) are being calculated. This methodology does have some drawbacks and
advantages, explained more extensively in [19].

3.3.5 Deployment Phase

The continuous validation opens the possibility for making an assessment of the status of the model each time
a new update arrives, e.g. if it is accrued or not. Using this information, the CEML framework has the capability
to decide if the model should or should not be deployed into the system at any time. If the model is behaving
well, then it should be deployed, otherwise it should be removed from the deployment. The decision is made
by user-provided thresholds w.r.t. evaluation metrics. If a threshold is reached, the CEML inserts the model
into the CEP engine and starts processing the streams using the model. Otherwise, if the model do not reach
the threshold then its remove form the CEP engine.

3.4 Design Perspective

In this subsection, we will discuss the design considerations taken to develop the LA as a data-processing and
data analysis platform for big data and machine learning processes.

The envision platform, should allow self-managed data process mining and which can distribute the processing
power over the network by creating a scalable processing overlay. As a first step, we envision the possibility
of describing the complete representation of the process, namely the Complex-Event Machine Learning
Request (CEMLR), we need to describe in computer readable manner, the CEML processes according to their
parts, namely: Pre-Processing Rules and Feature Extraction Rules (for Data Pre-Processing
Phase): Learning Description (Learning Phase), Evaluation Description (Continuous Validation Phase),
and Actuation Rules (Deployment Phase). The Pre-Processing Rules describes how the fragmented raw
input data or data streams are processed and aggregated. The Feature Extraction Rules define how features
are extracted from pre-processed data. The Learning Description defines the selection of
an Algorithm, Parameters, and the Feature Space for construction of a model.

The Evaluation Description is used to construct an Evaluator. The Evaluator is attached to the model and
is responsible for providing real-time performance metrics about the model and deciding if it reaches the
expected scores. Finally, the Actuation Rules describe actuation of the system whenever the model reaches
the expected performance scores. All steps are performed in an Execution Pipeline Environment (EPE) or
distributed in a set of interconnected EPE over the network. The output of the platform is the smart actuation
of the system based on the predictions of the trained model. Moreover, a real-time monitoring infrastructure
enabled tracking of the distributed process. Lastly, the platform allows the export of a trained CEMLR, in order
to redistribute and replicate the process elsewhere.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 11 of 40 30-11-2017

Table 1 Analysis between the phase who captures, where are executed and implemented

Figure 2 Design view of a single instance of CEML execution system

The possibility of describing the processes and executing them in execution pipelines allows for a reallocation
and distribution of the computations according to available applications and resources. In particular, it allows
to split the processes and to redistribute them among the available computational power regardless of the
actual location. In parts, this enables the applications to spread them along the communication path and to

Phase

Pre processing Learning
Continuous
Validation

Deployment

Captured by
Pre-processing &
Feature Extraction
Rules

Learning
Description

Evaluation Description Deployment Rules

Produces Streams Models Evaluation State Streams

Implemented by
Statements in
CEP Engines

Models Evaluators
Statements in
CEP Engines

Complex-Event Machine

Learning Request

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 12 of 40 30-11-2017

use the resources available, while reducing the costs. Nevertheless, spreading the processes inevitably adds
more complexity to the applications and therefore, a new set of APIs for managing and monitoring the
processes is needed.

Figure 3 Design perspective of multiple CEML execution units

This set must be available for the different applications and stakeholders addressing their needs and fulfilling
the different requirements to achieve the individual application goals. The APIs can be divided in the I/O,
Management, Monitoring, and ML Process, each interacting with different parts of the application processes,
which are Application Environment, Application Developer, System Monitor, and the External Model Backends,
respectively. Moreover, each API should adapt to the users System Integrator, Application Developer, System
Administrator, and Data Scientist and the goals like interconnect the data and responses, develop the
application, monitor the status of the system and integrate new algorithms into the system, respectively. The
I/O API allows the input of raw streams to the EPE and the output of the already processed information. The
Management API is a CRUD API for the CEMLR. The Monitoring API provides tools to monitor the system
performance and the machine learning processes in real-time. The ML Process API allows to connect to the
execution process to add new ML models to the system.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 13 of 40 30-11-2017

Figure 4 Structure of the API

Table 2 Mapping between users and APIs

Finally, the APIs should adapt to the deployment of the system and the deployment should adapt to the
applications needs. On the one hand, the degree of distribution of the system brings a different set of
requirements for the APIs. On the other hand, a distribution of the system provides advantages and
disadvantages. When processing data that is closer to the data sources, metrics like latency, privacy,
confidentiality concerns and networking dependencies are reduced. On the other hand, if the data is processed
closer to the cloud, a higher availability, computation power and reliable energy power sources are given.
Thus, all this must be taken into consideration at the moment of building new systems.

I/O API Management API Monitoring API
ML Process
API

User
System
Integrator

Application
Developer

System Administrator
Data Scientist

Data Scientist

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 14 of 40 30-11-2017

For building the platform, we will build up using a set of state-of-the-art technologies and best practices in the
Internet of Things. For the data and metadata representation and management, we may consider standards
such as OGC SensorThing. For the data streams as well as for the multicast APIs in highly distributed
deployments the pub/sub protocol such as MQTT is intended. For uni-cast requests, a RESTful API is
considered. For the data ubiquitous data sources, lightweight JSON payloads could be used. In case of heavy
data load, Google Buffers protocol could be an alternative. On the system side, Docker based technology as
well as Docker Swarm or Prometheus could provide the necessary tools for deployment and monitoring. On
the computational part, Complex-Event Processing (CEP) or BPMN engines could serve as Execution Pipeline
Environment for the execution of rules. The Rules can be described by the CEP DSL or BPMN as a description
language. Additionally, the engines should be extended to support analysis frameworks such as TensorFlow
or DeepLearning4J. Moreover, we will consider incorporating well-known developer environments for data
scientist such as Weka, R, python tools. However, there are no standardized way to describe a Machine
Learning model, which requires fundamental research and development. Finally, security can be added using
TLS for channel encryption, XAML for policy management and SAML for authentication.

Figure 5 Deployment view of the CEML distributed system

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 15 of 40 30-11-2017

3.5 Functional view: Capabilities

Figure 6. LinkSmart® Learning Service Enabling Use Cases.

3.5.1 Stream

The LA works executing process pre-defined processes which are triggered by incoming streams. Therefore,
all operation take part inside the LA are applied on streams.

3.5.1.1 Processing

This functional use case represents requests or operations that can be Created, Read, Updated, or Delete
(CRUD).

3.5.1.1.1 Aggregate

It generates a new stream with enriched information out of the original stream. E.g. calculate the average water
consumption.

3.5.1.1.2 Fuse

It uses several streams and fuse them generating a new stream. As an example, the data streams of the fill
level sensor of smart bins as well as the data stream of their temperature sensors can be combined to generate
a smell virtual sensor or smell stream.

3.5.1.1.3 Query

This use case identifies one or several streams that fulfill a certain condition, e.g. using the fill level sensors of
the bins the LA generates a new stream, which represents collection routes.

Translate

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 16 of 40 30-11-2017

3.5.1.1.4 Route

This use case takes one stream, channeled to another stream (either by changing the stream id, or by changing
the publishing output). E.g. forward an internal event in the Intra-Factory Interoperability Layer to the
visualization service

3.5.1.1.5 Annotate

In this use case an event or an event stream is republished under another topic. Before being republished
additional information might be added to original event. E.g. a welding gun energy consumption event is
annotated with the business step.

3.5.1.1.6 Translate

Similar route, but in this UC the event is translated into another communication protocol. E.g. forward an
internal event in the IIMS to a cellphone as SMS message.

3.5.1.2 I/O

This operation addresses the management of a datastream fed into the system and the output of the results
of the processes in the system.

3.5.1.2.1 Pub

After any of the processes takes place, the result must be distributed. The distribution of the result depends of
the target protocol where the result will be published.

3.5.1.2.2 Sub

The datastreams are unbounded data series. This series of data comes as a continuous flow of data.
Therefore, the system must provide a mechanism of how the continuous data flow is inserted into the system.

3.5.1.3 Analyse

Some computational applications on the data are more complex than just applying an operation from the input
data and allocate the result in the output bus. In some computation applications, the processes have states
and steps and each process influences the data flow. This is the case for machine learning, and this use case
is to address such process. We will call the state or ñmemoryò of the process the model.

3.5.1.3.1 Online Manage Model

This use case addresses the actions that change the processes or algorithms that change the model.

3.5.1.3.1.1 Request to Learn Phenomena

The system receives a full detail process definition to construct and manage a model. The system ñbuildsò the
model out of the description and start to feed the model whit the data accordingly.

3.5.1.3.1.2 Learning

Here the system executes the continuous learning process and feeds the data to train the model every time
new data arrives according to the current description of the process. The learning process can happen in two
distinctively ways: Incrementally or Batch-wise.

3.5.1.3.1.2.1 Incremental Learning

The incremental learning is the training process where the model is fed with information one-by-one. This
means, as soon a new data-point can be constructed the model is trained and the state of the model is evaluate
afterwards.

3.5.1.3.1.2.2 Batch Learning

The incrementally learning is the training process where the model is fed with information using blocks of data.
This means, the model is trained using a dataset constructed from several data-points that had being
accumulated from the input data, where the model is evaluated afterwards.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 17 of 40 30-11-2017

3.5.1.3.2 Online Usage Model

The solely propose of a model is to be used in an environment. This uses case describe the ñuseò or
management of the model in the environment.

3.5.1.3.2.1 Deploy

After the model has reach the desired state, the model is introduced to the active environment to execute the
specified task in the learning request. If the performance of the model drops, the model is removed from the
environment.

3.5.1.3.2.2 Predict

In any moment a user can specify requests to a model to provide a prediction (providing the input
corresponding) to the model regardless of the performance state of the model.

3.6 Architecture

We utilize LinkSmart® LA following a modular architecture with loosely coupled modules responsible for
different tasks. Figure 7 illustrates the architecture of the LA. The data and commands come via
communication protocols implemented by Connectors (in Figure 7 shows two example implementations, REST
and MQTT). The connectors transfers the information to the Feeders, which process the data accordingly to
the API logic. This logic depends on whether it is an insertion of new Raw data, request of simple data
processing (statement) or a machine learning request (CEML request). The data is inserted into the execution
environment (in this case EsperEngine6), while the data processing requests are deployed in the same engine
for the processing of the raw data. The CEML request have a more complex behaviour. Each CEML request
is managed by its own CEMLManager, which contains and coordinates the model(s), evaluator for each model,
and several statements. Finally, all outputs of any process (Statement) in the execution pipeline (EsperEgnine)
is capture or managed by a Handler. If the process should be prepare and send through a communication
protocol, then will be handle by a Complex-Event Handler: An Asynchronous Handler, if the protocol is
asynchronous (e.g. MQT); or Synchronous Handler, if the protocol is synchronous (e.g. HTTP).

3.7 Scalability

In everyday growing amount of data, the scalability of the data procesing system is pramount. Therefore, it is
not only relevant but essential that the scalability of the system is accouted and tested. In this chapter, we
revise the scalability of the system; while in next revision of this deliverable the scalability will be tested.

We will start by analysing the internal scalability of the a single instance. The LA is a hiper-mulithreaded service
in which all operation are parallelized. For instance, each I/O operation is managed in individual thread, without

6 Esper is an open-source Java-based software product for Complex event processing (CEP) and Event stream processing (ESP) that
analyzes series of events for deriving conclusions from them. See http://www.espertech.com/

Figure 7. LinkSmart® Learning Service Architecture Sketch.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 18 of 40 30-11-2017

waisting costly resources such as network NIC, sockets, and the thread itself. That a thread is reused means,
each thread is not destroyed and reused for process new request after had finished to process the current
one, saving the highly cost of building threads. Regarding network conectivity, the connections are shared to
avoid the costly process of open sockets. On the other hand, the execution process are also parallelized per
process. In summary, this allows a single instance to take all resources at hand in a machine as the data
processing demands grows.

As the processing demands grows, it might be impossible or highly-conslty to address them in a single
instance. Memory, CPU or NIC broadband usage can grow indefendly and scale them in a single server might
not be the best approach. In such cases, the LA should be arranged in a mesh of data processing systems in
a map-reduce fashion within the network. Such an arragenment allows to scale the infrastrucure depending
on data processing demands, either by distribution or parallelization of the processing task (shown in figure
below).

3.8 APIs Implementation

This chapter will describe the current API of the LA. To do so, we will describe the endpoints, operations and
the payload send in the operation as following:

RES [PAYLOAD] DIR

OP URI PAYLOAD

OP = operation to execute to operate with the LA.

URI = localization of the part of the API wants to be access. The URI may have values surrounded
by ó<ô and ó>ô, this are meta-values that describe values that the user must be field accordingly.

PAYLOAD = the document format use or returned in the operation. The format will have a suffix
ending with ó:ô indicating the specification where the format is coming from, e.g. LS for LinkSmart or
OGC for OGC SensorThings.

DIR = it is the direction of the communication. In some protocols the response of a request can be
provided in the same operation, in other this is not possible. If Ą means that the communication is
from the client to the LA. If ă means that the communication is from the LA to the client, usually a

Figure 8 Scalability analys in a multi-instace processing platform

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 19 of 40 30-11-2017

late response of a request. ăĄ Means that the response of the operations will be returned
immediately after the operation overs.

[] = if the operation returns a payload, here is specified.

RES = result of the operation if successful.

3.8.1 I/O API:

The I/O APIs can be divided in two viewpoints. On one the hand, in networking communication protocols, and
document event/message format. On the other hand, in the management of input or output information.

Regarding communication and format, the IoT Learning Agent builds upon standards; for both in and output.
For network communications, currently, the LA supports MQTT and HTTP RESTful input/output messages,
due to both are widely popular in IoT environments. In the messaging formats and endpoints definition, the LA
base on OGC SensorThing, due to its wide and flexible description of the data. Moreover, the LA supports
other formats, e.g. SenML, and the architecture is built to incorporate other network protocols. Although the
LA supports several protocols, for simplicity this document just addresses the OGC SensorThings format
(suffix OGC) and endpoints, and MQTT and HTTP.

Regarding the management of the Input and Output, the API is divided in two the Event API, and the Handling
API, respectively.

3.8.1.1 Event API

This API allows events to be inserted in the ñComputational Pipelineò/òComplex-Processing Engineò using their
endpoints. Due to the asynchronicity nature of MQTT handles more properly this kind of operations.

MQTT Implementation

 Ą

PUB LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/ OGC:Observation

RESTful Implementation

200 [LS:Responses] ăĄ

POST LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/ OGC:Observation

Legend:

SW-Code = Accordingly to LinkSmart specification all component that sends data to the broker should have a
software code. This can be a generic code ósenô from sensor.

SW-ID = Accordingly to LinkSmart specification all component that sends data to the broker should have a
unique ID.

DS-ID = Accordingly to OGC SensorThings specification the Observation should be send in a path/topic that
contains the DataStream ID as is shown above.

3.8.1.2 Handling API

This API propagates the response of the result of the processing inside the ñComputational
Pipelineò/òComplex-Processing Engineò. In some sense, this API is the real return response of the Event API

MQTT Implementation

[OGC:Observation] ă

PUB LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/

RESTful Implementation

[OGC:Observation] ăĄ

POST LS/<SW-Code>/<SW-ID>/OGC/1.0/Datastreams/<DS-ID>/ OGC:Observation

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 20 of 40 30-11-2017

3.8.2 Process API:

The process API has two aspects. Firstly, the external API that is use to define and deploy processing request
of any kind. The internal API is serve by the Statement API for the simpler processing use cases, and the
CEML API for the analysis use cases. Secondly, the internal API or SDK is used to add functionality to the LA
that can be used in the external API.

3.8.2.1 Statement API

This API allows the user deploy instruction to process data on-demand on-the-fly. This operations can be
Aggregations, Annotation, Routing, Fusion, and Translation of data streams as is explain in the use case
chapter. Itôs important to mention that the requests are just that, requests to future process all incoming data.
This means, the data will be process when and as it arrives and not when the request is deployed.

RESTful Implementation

Gets all statements created in the LA.

200 [LS:Responses] ăĄ

GET statement/ LS:Statement

Gets the statement with the given ID.

200 [LS:Responses] ăĄ

GET statement/<ID> LS:Statement

Inserts a statement with the given ID.

201 [LS:Responses] ăĄ

PUT statement/<ID>/ LS:Statement

Inserts new or changes an existing a statement (the id is auto-generated and returned).

201 [LS:Responses] ăĄ

POST statement/ LS:Statement

Deletes a statement with the given ID.

200 [LS:Responses] ăĄ

DELETE statement/<ID>/ LS:Statement

MQTT Implementation

Inserts a statement with the given ID.

Ą

PUB LS/LA/<LA-ID>/SER/<LS-API-VER>/new/ LS:Statement

Inserts new or changes an existing a statement (the id is auto-generated and returned).

Ą

PUB LS/LA/<LA-ID>/SER/<LS-API-VER>/add/ LS:Statement

Deletes a statement with the given ID.

Ą

PUB LS/LA/<LA-ID>/SER/<LS-API-VER>/delete/ LS:Statement

To receive the responses of any of the MQTT requests described above, one of the following actions must
have taken place before.

Subscribe to errors of specific Statement

 [LS:Responses] ă

SUB LS/LA/<LA-ID>/SER/<LS-API-VER>/errors/<ID>

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 21 of 40 30-11-2017

Subscribe to errors all errors related to the Statement API

 [LS:Responses] ă

SUB LS/LA/<LA-ID>/SER/<LS-API-VER>/errors/#

LA-ID = the unique ID of the addresses LA.

LS-API-VER = the current API version number of LinkSmart.

ID = the unique ID of the Statement.

3.8.2.2 CEML API

RESTful Implementation

Gets all CEML requests created in the LA.

200 [LS:Responses] ăĄ

GET ceml/

Gets the CEML request with the given ID.

200 [LS:Responses] ăĄ

GET ceml/<ID>

Creates or changes a CEML request with the given ID.

201 [LS:Responses] ăĄ

PUT ceml/<ID>/ LS:Statement

Inserts a new CEML request (the id is auto-generated and returned).

201 [LS:Responses] ăĄ

POST ceml/ LS:Statement

Deletes a CEML request with the given ID.

200 [LS:Responses] ăĄ

DELETE ceml/<ID>/ LS:Statement

MQTT Implementation

Inserts a statement with the given ID.

Ą

PUB LS/LA/<LA-ID>/SER/<LS-API-VER>/ceml//add/ LS:CEMLR

Deletes a statement with the given ID.

Ą

PUB LS/LA/<LA-ID>/SER/<LS-API-VER>/ceml/remove/ LS:CEMLR

To receive the responses of any of the MQTT requests described above, one of the following actions must
have taken place before.

Subscribe to errors related to CEML Requests

 [LS:Responses] ă

SUB LS/LA/<LA-ID>/SER/<LS-API-VER>/ceml/errors/

Subscribe the progress of the learning models

 [LS:Prediction] ă

SUB LS/LA/<LA-ID>/SER/<LS-API-VER>/output/<id>

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 22 of 40 30-11-2017

LA-ID = the unique ID of the addresses LA.

LS-API-VER = the current API version number of LinkSmart.

ID = the unique ID of the CEML request.

3.8.2.3 Extensible Model framework

The amount of models that can be applied varies widely depending on the application. I.e. in COMPOSITION
the models are mostly provide by the Deep Learning Toolkit. This are external components that connect in
some manner to the IoT Learning Agent framework. Therefore, the IoT Learning Agent provides an initial set
of models to use; additionally, the LA provides two set of SDK to interconnect the external developed models.

3.8.2.3.1 GeneralWekaModel

Waikato Environment for Knowledge Analysis (Weka) is a suite of machine learning software written in Java,
developed at the University of Waikato, New Zealand. It is free software licensed under the GNU General
Public License. This model allows to use any model or algorithm available in Weka suite that implements an
óUpdateableClassifierô.

3.8.2.3.2 AutoRegressiveNeuralNetworkModel

In statistics and signal processing, an autoregressive (AR) model is a representation of a type of random
process; as such, it is used to describe certain time-varying processes in nature, economics, etc. The
autoregressive model specifies that the output variable depends linearly on its own previous values and on a
stochastic term (an imperfectly predictable term); thus the model is in the form of a stochastic difference
equation. This model is an implementation of such model using neural networks library form DeepLearning4j.

3.8.2.3.3 Java SDK

The LA is able to load in runtime any model that is located in the classpath and implements the either
óRegressorModel <Input, Output, LearningObject>ô or óClassifierModel <Input , Output ,

LearningObject >ô for regression problems or classification problems, respectively.

3.8.2.3.4 Python SDK

The Python SDK is a fully new feature of the LA developed for and in COMPOSITION. Python is one of the
most popular language between Data Scientist, i.e. the Deep Learning Toolkit is fully implemented in python.
Therefore, an SDK to add models implemented in python was implemented for the COMPOSITION project.
The SDK allows to connect to standalone models using Pyro. Pyro establish a network connection between a
Java software and a Python application handling all related to this (DNS discovery, socket connection, object
translation, error handling, TLS, etc.). In this manner, any standalone python can connect to the LA in a
transparent manner.

3.8.3 Monitoring API

This API is still work in progress task for the LinkSmart® IoT Learning agent. Currently, the monitoring features
are powerful but the tooling might be unappropriated or difficult to use. The current functionality, allows to
monitoring allows to evaluate the performance of the LA or a network of LAs using standard REST or MQTT
clients leveraging on the existing APIs.

Firstly, the LA allows to monitor the CPU usage of the statements giving the possibility to monitor the
computational performance of the processing Statements. To do so the, the
óconnector_monitoring_mqtt_events_report_topicsô must be enable. This feature will create an MQTT event
every 60 seconds (by default) where the usage of each Statement.

Secondly, the LA allows to monitor the learning performance of the model, as was mention in the CEML MQTT
API implementation. This allows to get an instant performance assessment of the model. Additionally, the
model can be consulted directly using the HTTP GET ceml/<id> endpoint. This endpoint will provide the latest
state of the model. This allows to access the latest state of the model by the demand.

The most important feature of the LA regarding monitoring, it is that due to the structure of the MQTT topic
allows to multicast CRUD requests. This means, it is possible to connect to unlimited amount of LA agents in
a broker and be able to monitor their performance individually online at once. This allows to construct a

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 23 of 40 30-11-2017

monitoring infrastructure of a mesh of LA either in a Cloud deployment or in distributed locations in a network
or the internet.

Finally, the LA work natively together with any LinkSmart® Platform service. This means that LA can connect
to the LinkSmart® Service Catalog, allowing to monitor the LA or LAs status with the catalogue. Additionally,
the DataStreams status can be monitor using the HDS OGC SensorThing Catalog. In this manner, all
DataStreams metadata coming from sensors, Statements, or CEML request can be queried.

3.8.4 Management API

The Management API is in similar case as the Monitoring API. The Management API leverage of other existing
API. With two important remarks. Again, the structure of the MQTT topic allows to multicast CRUD requests.
This features allows to address an infrastructure of LAs distributed anywhere, addressing in a single multicast
request all, some or one LA in the distributed infrastructure. This means, Statements or CEML requests can
be created, updated or deleted in subsets of LAs in a deployed infrastructure with a single request.

3.9 Security

The LinkSmart® IoT Learning Agent is developed in the scope of the LinkSmart® Platform and adapted to
match the COMPOSITIONS needs. The agent allows natively simple security management levering from
SSL/TLS and MQTT standard. Additionally, more advance features can be offer by other services, either by
e.g. the LinkSmart® IoT Border Gateway or by other set of tools. This last is the case of COMPOSITION. In
this chapter, we will just discuss the internal security features provided by the agent alone and the agent in a
combined infrastructure.

3.9.1 TLS

TLS is the secure version of the TCP protocol. Currently, the LA supports three communication network
protocols for different proposes. These are HTTP, MQTT and Pyro. This last one, it is actually not a protocol
just a TCP socket application, here we will treated so. Although, the three of them are based on TCP, their
application is extremely different. From the perspective of the agent, in HTTP the agent is a server using
several TCP connections. In MQTT, the agent is a client of a server (the broker). Finally in Pyro, the connection
is a single TCP socket that connect a single client. The usage of the TLS is different in each other.

3.9.1.1 HTTPS

HTTPS is the usage of TLS in the HTTP protocol context. HTTP is request/response client/server
communication protocol, where clients can request to the services resources using endpoints. In most cases,
the LA takes the role of the server. Loading a certificate in the LA truststore, it will allow to establish encrypted
connection to the incoming clients. Additionally, it is possible to provide client certificates, with this is possible
to create whitelist for the clients and blocking anonymous access. This approach is highly secure, but it might
be cumbersome to maintain. Finally, there is no fine granularity regarding what a client can or cannot do after
the access was given.

3.9.1.2 MQTT and TLS

In this paragraph, we discus only TLS while using MQTT, for other security mechanism see below. MQTT is a
publish/subscribe client-to-client broker based communication protocol, where the clients can publish or
subscribe to messages using topics. The role of the LA regarding this protocol is as client. Therefore, the
security enforcement can be only applied on the server side, the broker. The LA gives the possibility to load
client certificate for each MQTT Broker that wants to be stablished. As client, the certificate is not needed for
encryption but for whitelisting.

MQTT provides additional basic mechanism authentication. MQTT allows to define user/password to
authenticate clients in the broker. In it is worth mentioning that user/password authentication do not imply TLC,
ergo no encryption. Moreover, no TLS means that the communication can be sniffed this including the
user/password. Therefore, using TLS is a must for secure user/password communication. Finally, although
MQTT standard do not define authorization mechanism; many implementations provide this feature.

Finally, the MQTT Broker implementations can only manage who publishes or subscribes to a topic, but it is
impossible to verify who send a message if the topics are shared. In other to identify sender, we build JWS
messages on top as payload of the messages.

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 24 of 40 30-11-2017

3.9.1.3 Pyro

As it was mention before, Pyro simple opens a TCP connection such that the external python code can connect
to a Java implementation. To establish a TLS connection in Pyro, the server certificates must be loaded in the
LA. This is similar as what is need to be done in HTTPS.

3.9.2 JWS

JWS or JSON Web Sign, it is a complete new feature developed in COMPOSITION. This new standard allows
to sign and validate all sent and received message by and from the agent respectively. Combining MQTT with
JWS allows to the services to identified the origin of the message and if the message had being tampered. In
the perspective of the LA, it is possible to enable this feature and all APIs will work accordingly to JWS.

3.10 LinkSmart development synergies

The IoT Learning Agent is a standalone service of the LinkSmart® and as such shares some common set of
standards, specifications, best practices and infrastructure that all component belonging to the LinkSmart®
infrastructure has. Appliances of usage of these set of technologies are not limited to the result of the
developed service but also to the development process of the service itself. All components developed in the
LinkSmart® ecosystem are developed using agile SCRUM process with issue tracking and continuous
integration. To support this, LinkSmart® has a set of cloud infrastructure that supports the developers and
ensure quality. Overall, this set of tools improves the quality of the COMPOSITION project. In this chapter, we
presents the set of best practices that the LA is built on as part of the LinkSmart® ecosystem.

3.10.1 Continuous Integration best practices

This section lists best practices suggested by various authors on how to achieve continuous integration, and
how to automate this practice. Build automation is a best practice itself.

Continuous integration ï the practice of frequently integrating one's new or changed code with the existing
code repository ï should occur frequently enough that no intervening window remains between commit and
build, and such that no errors can arise without developers noticing them and correcting them immediately.[11]
Normal practice is to trigger these builds by every commit to a repository, rather than a periodically scheduled
build. The practicalities of doing this in a multi-developer environment of rapid commits are such that it is usual
to trigger a short time after each commit, then to start a build when either this timer expires, or after a rather
longer interval since the last build. Many automated tools offer this scheduling automatically.

Another factor is the need for a version control system that supports atomic commits, i.e. all of a developer's
changes may be seen as a single commit operation. There is no point in trying to build from only half of the
changed files.

To achieve these objectives, continuous integration relies on the following principles.

3.10.1.1 Maintain a code repository

This practice advocates the use of a revision control system for the project's source code. All artefacts required
to build the project should be placed in the repository. In this practice and in the revision control community,
the convention is that the system should be buildable from a fresh checkout and not require additional
dependencies. The mainline (or master) should be the place for the working version of the software.

In LinkSmart® DevOps infrastructure, this task is done by our code Bitbucket server located in
https://code.linksmart.eu/ . In the Figure 9, we can see the dev and master branches of the LA project in code
server, both with green status showing that both had been successfully tested.

https://code.linksmart.eu/

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 25 of 40 30-11-2017

Figure 9 screenshot of the LA project in code server

3.10.1.2 Automate the build

A single command should have the capability of building the system. Many build tools, such as make, have
existed for many years. Other more recent tools are frequently used in continuous integration environments.
Automation of the build should include automating the integration, which often includes deployment into a
production-like environment. In many cases, the build script not only compiles binaries, but also generates
documentation, website pages, statistics and distribution media.

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in
https://pipelines.linksmart.eu/ . In the Figure 10, we can see the summary of an automatic build (#199) with all
internal stages of the build.

Figure 10 the summary of the automatic build no. 199

https://pipelines.linksmart.eu/

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 26 of 40 30-11-2017

3.10.1.3 Make the build self-testing

Once the code is built, all tests should run to confirm that it behaves as the developers expect it to behave.

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in
https://pipelines.linksmart.eu/. The server apply unit and component tests for each change done in the
software. In the Figure 11, we can see the summary of the unit and component tests applied in build no. 199.
With this test, we expect to ensure the behaviour of the different components is the expected one.

Figure 11 shows the results of the unit and component tests of the build no. 199

3.10.1.4 Everyone commits to the baseline every day

By committing regularly, every committer can reduce the number of conflicting changes. Checking in a week's
worth of work runs the risk of conflicting with other features and can be very difficult to resolve. Committing all
changes at least once a day (once per feature built) is generally considered part of the definition of Continuous
Integration. In addition performing a nightly build is generally recommended. These are lower bounds; the
typical frequency is expected to be much higher.

In LinkSmart® DevOps infrastructure, this task is done by our code Bitbucket server located in
https://code.linksmart.eu/ . In the Figure 12Figure 9, we can see the frequency of the commits and that the
master branch is use only of current stable release and dev for development.

https://pipelines.linksmart.eu/
https://code.linksmart.eu/

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 27 of 40 30-11-2017

Figure 12 shows the usage of the branches in the GIT repository

3.10.1.5 Every commit (to baseline) should be built

The system should build commits to the current working version to verify that they integrate correctly. A
common practice is to use Automated Continuous Integration, although this may be done manually. For many,
continuous integration is synonymous with using Automated Continuous Integration where a continuous
integration server or daemon monitors the revision control system for changes, then automatically runs the
build process.

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in
https://pipelines.linksmart.eu/. The server build every change made in the code and check if runs. In Figure
13, we can a summary of the last 3 automatic build processes.

Figure 13 shows how each change triggers a building and testing process

3.10.1.6 Test in a clone of the production environment

Having a test environment can lead to failures in tested systems when they deploy in the production
environment because the production environment may differ from the test environment in a significant way.
However, building a replica of a production environment is cost prohibitive. Instead, the test environment, or a
separate pre-production environment ("staging") should be built to be a scalable version of the actual
production environment to both alleviate costs while maintaining technology stack composition and nuances.
Within these test environments, service virtualization is commonly used to obtain on-demand access to
dependencies (e.g., APIs, third-party applications, services, mainframes, etc.) that are beyond the team's
control, still evolving, or too complex to configure in a virtual test lab.

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in
https://pipelines.linksmart.eu/. The server apply integration tests for each change done in the software. In the

https://pipelines.linksmart.eu/
https://pipelines.linksmart.eu/

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 28 of 40 30-11-2017

Figure 14, we can see the summary of the integration tests applied in build no. 199. With this test, we expect
to ensure the API respect a predefined contract.

Figure 14 shows the results of the integration and system tests of the build no. 199

3.10.1.7 Make it easy to get the latest deliverables

Making builds readily available to stakeholders and testers can reduce the amount of rework necessary when
rebuilding a feature that doesn't meet requirements. Additionally, early testing reduces the chances that
defects survive until deployment. Finding errors earlier also, in some cases, reduces the amount of work
necessary to resolve them. All programmers should start the day by updating the project from the repository.
That way, they will all stay up to date.

In LinkSmart® DevOps infrastructure, this task is done by our nexus server, which provides the Docker registry
service located in https://docker.linksmart.eu/ for the Docker image distributions; and the maven repository
service located in https://nexus.linksmart.eu/repository/public/ for the java components and distributions. Both
the registry and the repository contains the experimental, snapshot and release distributions of the Docker and
Java. In the Figure 15, we can see in the left side the Docker distributions, and the right side we can see the
release java distributions.

https://docker.linksmart.eu/
https://nexus.linksmart.eu/repository/public/

COMPOSITION D5.1 Big data mining and analytics tools I

Document version: 1.0 Page 29 of 40 30-11-2017

Figure 15 (left) shows the latest release, snapshot and experimental distribution Docker distributions in the
LinkSmart® Docker registry server; (right) shows the lates two releases as Java applications in the LinkSmart®
Nexus server.

3.10.1.8 Everyone can see the results of the latest build

It should be easy to find out whether the build breaks and, if so, who made the relevant change.

In LinkSmart® DevOps infrastructure, this task is done by our pipeline Bamboo server located in
https://pipelines.linksmart.eu/ and the boardsô server located in https://boards.linksmart.eu/. The pipelines
server builds every time a change happens and each build trace who and when the change took place (see
Figure 16). Finally, in case the build fails; the pipeline server informs the developers that the fails happened
and creates a report in the on the management board in the board server till the issue was solved.

Figure 16 shows the changes involved in the build no. 199

3.10.1.9 Automate deployment

Most CI systems allow the running of scripts after a build finishes. In most situations, it is possible to write a
script to deploy the application to a live test server that everyone can look at. A further advance in this way of
thinking is continuous deployment, which calls for the software to be deployed directly into production, often
with additional automation to prevent defects or regressions.

In LinkSmart® DevOps infrastructure, this task is done (partially) by our pipeline Bamboo server located in
https://pipelines.linksmart.eu/. While the server already deploy automatically into a building test system, it do
not deploy it automatically into the production server due to administrative, security and other issues. In the
Figure 17, we can see a list of automatic deployment plans.

https://pipelines.linksmart.eu/
https://boards.linksmart.eu/
https://pipelines.linksmart.eu/

