f COMPOSITION
€

Ecosystem for COllaborative Manufacturing PrOceSses i Intra- and
Interfactory Integration and AutomaTION
(Grant Agreement No 723145)

D4.2 Design of Security Framework Il
Date: 2018-02-27

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

* X %

* *
* *
* *

* g Kk

Co-funded byt he Eur o p e Hanizo®J2020 ¢namdesvork Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION

D4.2 Design of Security Framework Il

Document control page

Document file:
Document version:
Document owner:

Work package:
Task:

Deliverable type:

Document status:

Document history:

D4.2 Security Framework 11-V010-FINAL.docx

1.0
ATOS

WP4 i Secure Data Management and Exchange in Manufacturing
T4.17 Security by design for cloud-based data exchange
T4.37 Knowledge Protection, IPR Protection and Trust for Collaborative

Manufacturing Environments

T4.47 Cyber Security for Factories

R

X Approved by the document owner for internal review
X] Approved for submission to the EC

Version | Author(s) Date Summary of changes made
0.1 Javier Romero (ATOS) 2018-02-16 Deliverable structure
0.2 Javier Romero (ATOS) 2018-02-21 Main content
0.3 Mario Faiella (ATOS) 2018-02-21 Reputation Model content
04 Javier Romero (ATOS) 2018-02-22 Integration
0.5 Javier Romero (ATOS) 2018-02-22 Final changes and updates
0.6 Javier Romero (ATOS) 2018-02-22 Version for internal review
0.9 Javier Romero (ATOS) 2018-02-26 Addressed internal review comments
1.0 Javier Romero (ATOS) 2018-02-27 Final version
Internal review history:
Reviewed by Date Summary of comments
Vagia Rousopoulou (CERTH) 2018-02-23 Approved with comments: The content of
document is comprehensive. Correct template
has been used. The structure is good and
mandatory sections are included. Most of
D4.1 next steps have been accomplished.
The template references style should be used.
The language used could be more formal. The
tables could be styled as shown in the
template.
Ifigeneia Metaxa (ATL) 2018-02-23 Approved with comments: Minor typos, please

take care of subscripts and superscripts in
equations and explanations of symbols.
Address comments within the document.
Good structure and quality, level of details
allows the reader to understand the approach
in COMPOSITION. Might be valuable to
consider a paragraph in the introduction on
why this is necessary
view.

Document version: 1.0

Page 2 of 41

Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

Legal Notice
The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

Document version: 1.0 Page 3 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

Index:
1 EXECULIVE SUIMMEAIY .ottt e et e s e bt e e e b e e e e bbe e e e ennbe e e e enees 6
P22 |01 o Yo 1T T 410 Y o H PSPPSR 7
2.1 Purpose, context and scope of this deliverable ... 7
2.2 Content and structure of this deliverable ... 7
3 Security Framework ArChitECIUIE ... rre e e 8
3.1 Security Framework COMPONENTSuiiiiiiiiiieiiieie ettt e s e e nnre e e s eanneees 9
3.1.1 Authentication service T KeyCloakcocuiiiiiiiiiiiiiiecc e 9
3.1.2 Authorization ServiCe T EPICA......oo et e e e 9
3.1.3 RAAS (RabbitMQ authentication and authorization Service)...........cccccevevrvverernnnnnn. 9
3.1 XL-SIEM.. ...ttt ettt e e r e e e e e e anraeaeanres 10
3.1.5 REVEISE ProXY I NOINMX..iiieeiiiiiiiiiieiieeeiesiiieee e e e e s s e statee e e e e e e s sssrateeeeeeeessenrnnneeeeeessannns 10
3.1.6 Blockchain i MUIICNAINeeiiiiiiiiieiie e 11
I = VA AN 1T o] (0] 1 =T o £ SRR 12
20 R 1< - L || PRSPPI 12
3.2.2 AREINALIVE ...eeeiiieeee ettt ettt e e e e e s e bbb e et e e e e e s b e rr e e e e e e e e aaes 15
4 Security Framework Components i Configuration, Development, Integration 17
4.1 RAAS (RabbitMQ Authentication/Authorization SEerviCe)cccocceveiiiiie i 17
4.1.1 RAAS T Mode: Username and PasSWOId..........c.ccouuiiuiiiiiiieeeiiiiiiiieeee e sssiiieeeeaeens 18
4.1.2 RAAS T MOAE: TOKEN ...ttt e e e e e s e eeeeaeeas 21
4.2 Authentication Service T KeYCIOaKoioiiiiiiiiiiiiiie e 24
4.2.1 Deployment and CONfIQUIALIONoocuiiiiiiiiiiiiii e 24
A A O 013 (o] 441 74= 4[] o [PR SOR 26
4.3 Authorization Service T EPICA ... et 28
IS | Y PSP PRR 28
4.5 ReVerse ProXy T NOINX ..ottt ettt ettt ettt ettt ettt e e e e e e e e e e e e 30
5 Integrity and trust of iNfOrMation ... 30
5.1 RePULAION IMOUEL.......eiiiiiiiiiee et e e e e e e e e e e e eeeeee s 30
5.1.1 COMPOSITION Reputation MOEcoccuuiieiiiiiieiiiiiee et 31
5.1.2 Blockchain, Trust and REPULALIONc..uviiiiiie i 33
LI B o1 v= LS o | = (U = 2 SO 34
5.3 CryptographiC HASKoiiiiiie e 36
B TTANSPOIT SECUIITY ..eeiiiiiiiiie ittt ettt e et e e s bt e e e st bt e e e sabb e e e e sabbe e e e anbbeeeesnbreeaeans 37
A \ =) A €= o PSSP 37
8 SUMIMAIY ettt e e e oot e e e s e et e e e e e e e et e e e a e ee s 37
(S I TS o) o T T =T = Ua Lo B 1= o1 =S 39
0.1 FIQUIES ..ot s 39
S - o] [T TP PP UPTT PPN 39
1O REFEIBINCES ..eeiiieiiiee ettt e oo e ettt e e e e e s e b bbbt et e e e e e sannbbbeeeaeeeeeannns 40

Document version: 1.0 Page 4 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

Abbreviations

Acronym Meaning

AMQP Advanced Message Queuing Protocol

DRPC Distributed Remote Procedure Call

DSS Decision Support System

EPL Event Processing Language

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

IPR Intellectual Property Rights

JSON JavaScript Object Notation

JWS JSON Web Signature

JWT JSON Web Token

MB Message Broker

OAuth Open Authorization

OIDC Open ID Connect

OSSIM Open Source Security Information Management
PAP Policy Administration Point

PEP Policy Enforcement Point

PDP Policy Decision Point

PIP Policy Information Point

PRP Policy Retrieval Point

REST Representational State Transfer

SAML Security Assertion Mark-up Language
SHA Secure Hashing Algorithms

SIEM Security Information and Event Management
SPI Service Provider Interface

SQL Structured Query Language

SSL Secure Sockets Layer

STIX Structured Threat Information eXpression
TLS Transport Layer Security

UDP User Datagram Protocol

XACML eXtensible Access Control Mark-up Language
XML eXtensible Markup Language

Document version: 1.0 Page 5 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

1 Executive Summary

The aim of this deliverable is to update and complement what was reported on D4.1 Design of Security
framework | due on M12. This deliverable takes as starting point the information contained in the
aforementioned deliverable D4.1.

This deliverable reports the outcome of the following tasks: T4.1 7 Security by design for cloud-based data
exchange, T4.3 T Knowledge Protection, IPR Protection and Trust for Collaborative Manufacturing
Environments and T4.4 i Cyber Security for Factories from M12 until M18. The purpose of these tasks is to
define, propose a design and develop a core set of security measures that will be part of the COMPOSITION
Security Framework, whose task will be to guarantee security, confidentiality, integrity and availability of
managed information for all authorized stakeholders in the supply chain.

Some of the components and technologies reported in this deliverable ensure trusted and secure
collaboration; and at the same time they guarantee confidentiality and integrity of the information transmitted
by addressing end-to-end security across all layers of the system integrating in a seamless manner three
major groups of security mechanisms: authentication, access control and transport security. Other
components ensure protection against cyber-attacks and provide security monitoring.

The architecture is based on well established guidelines and best practices, as well as proven technologies;
but also includes innovative and experimental solutions that will guard the COMPOSITION system against
unknown threats.

The first prototype of the COMPOSITION Security Framework will be based on the architecture, components

and technologies proposed on this deliverable and will be reported in D4.4 Prototype of the Security
Framework | due on M20.

Document version: 1.0 Page 6 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

2 Introduction

Deliverable D4.2 Design of Security Framework Il reports the results in the context of tasks T4.1 7 Security
by design for cloud-based data exchange, T4.3 i Knowledge Protection, IPR Protection and Trust for
Collaborative Manufacturing Environments and T4.4 i Cyber Security for Factories from M12 until M18. It
updates and complements the results reported on D4.1 Design of Security Framework | due on M12.

This deliverable describes the architecture design of the COMPOSITION Security Framework as well as the
components and technologies that are part of it. It also reports on the developments that have taken place in
this period of time. Some descriptions of components that make use of the blockchain technology are also
given, although this subject is out of the scope of this deliverable and will be reported on D4.3 The
Composition Blockchain due on M30. The proposal for a Reputation Model to be implemented in the
COMPOSITION platform it is also provided.

This deliverable gives detailed information on some technologies proposed to be part of the COMPOSITION
Security Framework, as these technologies will be an indispensable part of the platform and of mandatory
use by most COMPOSITION components to be able to offer a high level of security, integrity of data and
trust to the users of COMPOSITION platform.

2.1 Purpose, context and scope of this deliverable

The purpose of this deliverable is to update the proposal done on D4.1 Design of Security Framework | due
on M12 for a design of a security framework that will ensure trusted and secure cooperation providing
protection and monitoring against cyber-attacks. The set of components proposed are based on the following
needs and requirements:

- Well-established authentication mechanism along with a multi-stakeholder attribute based access
control mechanism. This combination should provide fine-grained access control to the data, based on a
security token included within a submitted request and the evaluation of security policies.

- Guarantee the confidentiality and integrity of data in motion with the use of cryptographic
mechanisms at transport layer

- Ansure the security monitoring and protection against potential threats identified in collaborative
manufacturing and logistics ecosystems

2.2 Content and structure of this deliverable

This deliverable is composed of the following sections:

Section 2 - Introduction: serves as introduction and identifies the purpose, scope and context of this
deliverable.

Section 3 - Security Framework Architecture: focuses on the architecture general overview as well as going
in detail with different alternatives to the default architecture for some components. It also gives an overview
of the components that take part in the architecture.

Section 4 - Security Framework Components i Configuration, Development, Integration: provides a view on
the work done related to the components of the framework regarding to the development, integration,
deployment and customization of components.

Section 5 - Integrity and trust of information: focuses on technologies proposed to bring integrity and trust on
information to COMPOSITION

Section 6 - Transport security: provides information on the technology used to secure communication in
COMPOSITION platform

Section 7 - Next Steps: provides an overview of the future work.

Section 8 - Summary: offers an overview of all reported in this deliverable

Document version: 1.0 Page 7 of 41 Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

3 Security Framework Architecture

The purpose of the COMPOSITION Security Framework will be to guarantee security, confidentiality,
integrity and availability of managed information for all authorized stakeholders within COMPOSITION
platform. In Section 3.1, a brief description is given of each of the components that make up the Security

Framework.

The following diagram shown in Figure 1 presents a very general overview of the COMPOSITION Security
Framework and briefly describes the interactions with some other components in the COMPOSITION

platform architecture.

COMPOSITION
COMPOSITION
Security Framework
MySQaL
Auth. Service Authz. Service
{Keyclaak) (EPICA) - RAAS XL-SIEM
b data
data
4 4
Multichain Multichain
Node MNode
Client1 Client2
r A
Reverse Praxy
(nginx)
4 3
/
;
/
Message Broker
T (RabbitMa) i it COMPOSITION XL-SIEM
Service1 Cyberagent1
A A

COMPOSITION Security Framework will be composed of the following components to cover Inter-Factory

Publisher

Client1

Subscriber

Client2

Figure 1 - Security Framework general architecture overview

and Intra-Factory scenarios:

|l

f
1
f
f
f

One Authentication Service (Keycloak?)

One Authorization Service (EPICA)

Two RAAS services: One for Intra-Factory scenarios and one for Inter-Factory scenarios

One XL-SIEM

One or more cyber-agents

Multiple blockchain nodes

1 http://iwww.keycloak.org/

Document version: 1.0

Page 8 of 41

Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

Due to the versatility on the platform proposed and focusing mainly on the deployment of RAAS services
Section 3.2 will cover two possible deployments for these components and the interaction with the
COMPOSITION Message Brokers (RabbitMQ) as well as with the rest of the Security Framework
components involved.

3.1 Security Framework Components

COMPOSITION Security Framework consist of the following main components, each with a task to fulfil: an
Authentication service (Keycloak), an Authorization service (EPICA), an Authentication and Authorization
service for COMPOSITION message broker (RAAS), XL-SIEM which is a Security Information and Event
Management system (SIEM) with additional functionalities and a Reverse proxy (Nginx). Each component is
briefly described below and a more detailed description of each of them can be found in D4.1 Security
Framework | due on M12.

3.1.1 Authentication service i Keycloak

The main task of this service is providing the authentication mechanisms for users, applications, services
and devices. The following standard authentication protocols are supported by Keycloak:

T OAuth 2.0: Industry-standard protocol for authorization. Makes heavy use of the JSON Web Token
(JWT) set of standards.

1 Open ID Connect (OIDC): Authentication protocol based on OAuth 2.0. Unlike OAuth 2.0 OIDC is an
authentication and authorization protocol.

1 SAML 2.0: Authentication protocol similar to OIDC. It relies on the exchange of XML documents
between the authentication server and the application.

From the available authentication protocols described above COMPOSITION makes use of the default one
in Keycloak, which is OIDC (Open ID Connect). [1]

Custom mapper is in development to extend Keycloak’s capabilities, by enabling the possibility to add
custom external information to the tokens provided by Keycloak. More information on this topic on Section
4.1

For more detailed information related to this component on Section 4.1 of D4.1 Design of the Security
Framework | due on M12

3.1.2 Authorization servicei EPICA

This component is responsible for providing authorization mechanisms to other COMPOSITION
components. It is based on XACML v3.0 which provides an attribute-based access control mechanism and
provides the means to define authorization policies used to protect resources. Any request to access a
protected resource will first be evaluated against the defined policies and the evaluation result will be
enforced depending on the outcome. EPICA is divided into two main subcomponents: the Authorization
engine and the Policy Administration Point (PAP). [1]

Detailed information about this component can be found Section 4.2 of D4.1 Design of the Security
Framework | due on M12.
3.1.3 RAAS (RabbitMQ? authentication and authorization service)

This component in development is an http service whose main task is enabling the use of the Authentication
(Keycloak) and Authorization (EPICA) services by the Message Broker (RabbitMQ).

RAAS will be able to work in two modes:

1. RAAS will be the responsible to request and manage tokens from Authentication service (Keycloak)
and perform authorization request to Authorization service (EPICA) with the obtained tokens. The
clients make login in the message broker with username and password.

2. RAAS will be only responsible to verify the validity of tokens from Authentication service (Keycloak)
and perform authorization request to Authorization service (EPICA) with the provided tokens. The

2 https://www.rabbitmg.com/

Document version: 1.0 Page 9 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

clients are responsible to obtain and manage the authentication tokens and provide them to RAAS.
The clients make login in the message broker with the token from Authentication service, no
password involved in this mode.

Detailed information on this component can be found on Section 4.1 of this deliverable and in Section 4.3 of
D4.1 Design of Security Framework | due on M12.

3.1.4 XL-SIEM

This component, with the help of the SIEM Agents responsible for data collection and deployed within the
monitored infrastructure, provides capabilities of a SIEM solution with the advantage of being able to handle
large volumes of data and raise security alerts from a business perspective, thanks to analysis and event
processing in Storm cluster. The main functionalities of the XL-SIEM can be summarized in the next points:

1 Real-time collection and analysis of security events.
1 Prioritization, filtering and normalization of the data gathered from different sources.

1 Consolidation and correlation of security events to carry out a risk assessment and generation of
alarms and reports [1].

Detailed information about XL-SIEM can be found in Section 4.4 of D4.1 Design of Security Framework | due
on M12.

3.1.5 Reverse proxy i Nginx3

This component is responsible for directing client requests to the appropriate backend server and also
securing communication by enabling the use of TLS* (Transport Layer Security) cryptographic protocol. TLS
provides security over a computer network, and aims primarily to provide privacy and data integrity between
two communicating applications. The use of a reverse proxy also provides an additional defence layer
against security attacks by protecting identities of servers and services. [1]

A high level diagram on how a reverse proxy works can be seen in Figure 2 below.

> Server1
, Reverse
Client *{3—) Presy > Server2
- Serverd
Internal Metwark

Figure 2 - Reverse proxy diagram

More information in deliverable Design of Security Framework |, Section 4.5, due on M12.

3 https://nginx.org/en/
4 https://tools.ietf.org/html/rfc5246

Document version: 1.0 Page 10 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

3.1.6 Blockchain i Multichain

It is not the purpose of this deliverable to cover in depth the blockchain components that form part of the
COMPOSITION Security Framework, which will be done in the future deliverable D4.3 The COMPOSITION
blockchain planned for M30; but just give a hint on some uses proposed for the blockchain technology within
the Security Framework scope. The COMPOSITION blockchain is based on Multichain®.

3.1.6.1 Public Key Infrastructure (PKI)

Since it is proposed that all messages flowing in the COMPOSITION platform through the COMPOSITION
Message Broker (RabbitMQ®%) must be signed using JWS’? (JSON Web Signature) standard proposed by
IETF® (see Section 5.2), there is the need to make available to the subscribers of messages the public keys
so it is possible for them to verify the digital signature. Instead of using the common approach of publishing
the public keys through a web site or a web service, in COMPOSITION we plan to use blockchain
technology to make these public keys available.

The idea in the beginning is simple; the message publishers put in their blockchain node their public key
while maintaining the private key locally and secret. The public keys published will be replicated on all
blockchain nodes connected and keeping a copy of them making it accessible to all subscribers that have
the rights to read them.

3.1.6.2 Message Logging

Along with message digital signature (see Section 3.1.6.1 and Section 5.2) COMPOSITION is going to log all
the messages sent through the platform. To keep this log blockchain technology is going to be used too. The
idea is that the publisher of a message should calculate the hash of the message using a hash cryptographic
function (to be decided) and store the result hash value in the blockchain along with some metadata. Upon
receiving a message, a subscriber can calculate the hash of the received data and can look for it in the
blockchain, ensuring this way the integrity of the data received. This together with the digital signature of the
message is going to give the subscriber security to trust on the message received. More information about
hashing cryptographic functions on Section 5.3

The following diagram (Figure 3) gives a high-level overview on the signing and logging procedures and how
data flow between the components involved.

read
message hash
- Multichain N . and metadata
- Node -~ > Node

h

publish public-key read public-key
y
) Message Broker -
> !
il Publisher > (RabbithQ1) > Subseriber <

message hash
and metadata U U

sign message check message signature

calculate hash hash and metadata

Figure 3 - Overview of signing and logging of messages

A more detailed view on the whole process of publishing and subscribing in COMPOSITION taking into
account the use of the methods of signing messages and keep log of them, proposed in COMPOSITION

5 https://www.multichain.com/

8 https://www.rabbitmg.com/

7 https://tools.ietf.org/html/rfc7515
8 https://www.ietf.org/

Document version: 1.0 Page 11 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

Security Framework, as well as the steps to validate the signature and the content of the message can be
seen in the flowchart diagram below (Figure 4).

Multichain Node Publisher Message Broker Subscriber Multichain Node
(RabbithQ)
publEl calculate hash L
share hash ITh=HE
share hash
Y
stare store
hash & lata [« hash & i
blockechain blockehain
Y

publish

signed < e

y message
message
. read
| publish - 2 read return
signed s o
message e 8 publickey public-key
verify
signature

calculate search o ash ne

hash hash und?

yes

trust return

message J hash
-/ drop . return le !

\ message / empty

Figure 4 - Flowchart diagram publish-subscribe procedure in COMPOSITION

3.1.6.3 Reputation Model

COMPOSITION is going to define a reputation model adding another level on trust. The reputation model
definition itself is not covered in this section but in Section 5.1. Blockchain is also the technology to be used
to store the reputation of the stakeholders and the way to share it with other stakeholders. It will also keep
track of the reputation over time due to the immutability nature of the blockchain technology. For more
information about Reputation Model and blockchain refer to Section 5.1.2.

3.2 RAAS Deployments

Since COMPOSITION will have at least two Message Brokers (RabbitMQ?), one for the Inter-Factory
scenarios and another for the Intra-Factory scenarios, the same number of RAAS services need to be
deployed. The following sections will cover two recommended ways to deploy the RAAS services, one with
the RAAS services in the same premises as the rest of the Security Framework components (Section 3.2.1)
and another with the RAAS services deployed along with the COMPOSITION Message Brokers in the same
premises (Section 0).

3.2.1 Default

The default architecture requires the RAAS services deployed along with the Authentication Service
(Keycloak'%) and the Authorization Service (EPICA) and all of them behind a reverse proxy in our case
Nginx'. The default architecture can be seen in the diagram below (Figure 5) and shows apart how the
components involved interact but also if the communications are encrypted using TLS!? or not. There is no

9 https://www.rabbitmg.com/

10 http:/iwww.keycloak.org/

1 https://nginx.org/en/

12 https://tools.ietf.org/html/rfc5246

Document version: 1.0 Page 12 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

need to encrypt all communication using TLS for services and components that are not exposed directly to
Internet, as TLS encrypted communication comes with an overhead on the network traffic.

Security Framewaork
MySQL
Auth. Service Authz. Service
{Keycloak) {EPICA)
nan-TLS nan-TLS

RAAS
Intra-Factory

non-TLS non-TLS
Reverse Praxy
(nginx}
A .

TLS TLS
Message Broker Message Broker
(RabbitM) (Rabbit M)
Intra-Factory Inter-Factory

Figure 5 - Security Framework default architecture

The following diagram (Figure 6) shows a real-life deployment using Docker!® containers of the default
architecture shown before. The only port exposed to Internet it’s the one used by the reverse proxy to enable
the encrypted communication; and it’s the default for TLS'4 communication, 443.

13 https://www.docker.com/what-docker
14 https://tools.ietf.org/html/rfc5246

Document version: 1.0 Page 13 of 41 Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

Document version: 1.0

MySQL
IP: 172.18.0.4
Tpu‘t: 3306

Auth. Service

(Keycloak)
IP:172.18.0.3

port: snm‘T

Security Framework
Docker deployment
Atos premises

Authz. Service
{EPICA)
IP: 172.18.0.5

RAAS

Intra-Factory
IP: 172.18.0.6

Reverse Proxy

(ngirnx)

IP: 172.18.0.2
exposed port: 443

port: 44 P

TLS

A
part:443
TLS

Message Broker

(RabbitMa)

Inter-Factory
Docker deployment
ISMB premises

hMessage Broker

(Rabbitha)

Intra-Factory
Docker deployment
ISMB premises

Figure 6 - Docker deployment for default architecture

Page 14 of 41

Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

3.2.2 Alternative

There is an alternative architecture to use RAAS services. This alternative requires RAAS services to be
deployed along with the message brokers in the same local network. This architecture can be seen in the
following diagram (Figure 7).

Security Framewaork
MySQL
Auth. Service Authz. Service
(Keycloak) (EPICA)

nm-TLST

T non-TLS

Reverse Proxy
(ngin:}

TLS TLS

RAAS
Intra-Factary

RAAS
Inter-F actory

Message Broker
(Rabhitha)

Intra-F actory

Message Broker
(RabbitMC)
Intra-Factory

Figure 7 - Security Framework alternative architecture

The following diagram (Figure 8) shows a real-life deployment using Docker®> containers of the alternative
architecture shown before. As with the default architecture the only port exposed to Internet is the one used
by the reverse proxy to enable the encrypted communication; and it is the default for TLS communication,
443. In this case, the communication of RAAS with the Authentication Service and the Authorization Service
is encrypted, since it happens through Internet and not in local network as the default architecture.

15 https://www.docker.com/what-docker

Document version: 1.0 Page 15 of 41 Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

Document version: 1.0

port: BDBGT

Security Framewark
MySQL Docker deployment
IP:172.18.0.4 Alos premises
Tpurt: 3306
Auth. Service Authz. Service
(Keycloak) (EPICA)
IP:172.18.0.3 IP:172.18.05

Tpurt: 8080

Reverse Proxy
{nginx)
IP:172.18.0.2
exposed port: 443

port: 443
TLS

A A

port:443
TLS

RAAS
Intra-F actary
IP:172.18.03

Message Broker
(RabbithC)
IP:172.18.02

Inter-Factory
Docker deployment
ISMB premises

RAAS
Inter-Fa
IP:172

{RabbithC
IF:172.18.0.2

Intra-Factory
Docker deployment
ISMB premises

Figure 8 - Docker deployment for alternative architecture

Page 16 of 41

Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

4 Security Framework Components i Configuration, Development, Integration

This section will cover the work done since M12 in the Security Framework related with the configuration of
services, development of components, and customization and integration of services. A brief list of the work
done below and detailed information on each of the following sub-sections:

1 Development of RAAS (see Section 4.1)
1 Deployment, configuration and customization of Keycloaké (see Section 4.2)
1 Deployment and integration of EPICA with Keycloak (see Section 4.3)

1 Development of cyber-agent for XL-SIEM (see Section 4.4)

1 Deployment and configuration of Nginx’ reverse proxy (see Section 4.5)
4.1 RAAS (RabbitMQ?® Authentication/Authorization Service)

RAAS is an http service in development and part of the Security Framework that enables the use of
COMPOSITION Authentication Service (Keycloak) and Authorization Service (EPICA) with COMPOSITION
Message Broker (RabbitMQ). Itis not the scope of this deliverable to describe the configuration of the
message broker to use RAAS, information on this topic can be found on Section 6 of D5.9 Intrafactory
interoperability layer | due on M18.

As RAAS is in development the information detailed in this deliverable may change as the development
progresses, the information about this component will be updated accordingly on the upcoming deliverables.

The endpoints RAAS shall expose to communicate with COMPOSITION Message Broker (RabbitMQ) are
described below on Table 1

Table 1 - RAAS exposed endpoints

Path Method Parameters Response
Jauth/user posT .sername allow [list of tags],
password deny
username
/auth/vhost POST vhost: name of the virtual host being accessed allow, deny

ip: client ip address

username
vhost: name of the virtual host containing the resource

Euleesu e | 2aET resource: type of resource (exchange, queue, topic) allow, deny

name: name of the resource

permission: access level to the resource (configure, write,
read)

username
vhost: the name of the virtual host containing the resource
resource: the type of resource (topic in this case)

/auth/topic POST name: name of the exchange allow, deny
permission: access level to the resource (write or read)

routing_key: routing key of a published message (when the
permission is write) or routing key of the queue binding

16 http://www.keycloak.org/
17 https://nginx.org/en/
18 https://www.rabbitmg.com/

Document version: 1.0 Page 17 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

(when the permission is read)

The Authentication Service (Keycloak) endpoints RAAS shall use to perform authentication actions are
described on Table 2 below:

Table 2 - Authentication Service (Keycloak) endpoints used by RAAS
/auth/realms/composition/protocol/openid-connect/token

Action Parameters

grant_type=password

client_id=rabbitmq
login username=xxx
(authenticate user and get set of tokens) password=xxx
client_secret=xxx
response_type=token
grant_type=refresh_token
client_id=rabbitmq
client_secret=xxx
refresh_token=xxx

refresh-token
(obtain new set of tokens when current
expired)

/auth/realms/compaosition/protocol/openid-connect/logout

client_id=rabbitmq
client_secret=xxx
refresh_token=xxx

logout
(close session)

RAAS will be able to work in two modes explained in detail in the next sections Username and Password
Mode (Section 4.1.1) and Token Mode (Section 4.1.2).
4.1.1 RAAST Mode: Username and Password

In this mode RAAS will be the responsible to request and manage tokens from Authentication Service
(Keycloak) and perform authorization request to Authorization Service (EPICA) with the obtained tokens. The
clients make login in the message broker with username and password.

On a high level view the authentication process on this mode follows the following steps:

1. Credentials, username and password, are entered by user (or message broker client, publisher or
subscriber)

2. Credentials are passed from message broker to RAAS
3. RAAS performs authentication against Authentication Service (Keycloak)
4. RAAS allow or deny the authentication request

The diagram below (Figure 9) describes on a very high level the authentication process and the components
involved.

Document version: 1.0 Page 18 of 41 Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

username & password

username & password

Auth. Serviece [
(Keycloak)
.i_____
RAAS
Message Broker |
(RabbitmMaQ) |

token /validation error

llow / deny

Figure 9 - RAAS: Authentication in mode Username and Password

A detailed description of the authentication procedure in this mode can be seen in the flowchart diagram

below (Figure 10)

Document version: 1.0

Page 19 of 41

Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework 11
Client Message Broker {RabbitMQ) RAAS Auth. Service (Keycloak)
el | request -~ Username ¥ES | db: read || db: delete || validate pub“\;i:}ke get . return
e BCCESS b indb? set tokens set tokens access-token 5 Y public-key public-key
pasgword hassword ne no
yes
token -
valid?
db: save validate ‘ na
set tokens refresh-token
3
get - return
public-key 7| public-key
dlowed |<€ el < allow access
acCess
token o
e valid? -
‘r no yes
valid extract roles request return
e from new set > set
: access-token of tokens tokens
3
Y
no do login »<__ credentials
username ?
&
password no
Y
o return
denied | H;S < deny access (% invalid
predentials err.
3
validate |
access-token |
b?'efk get -l return
B 'g it public-key public-key

no

token

alid g

Document version: 1.0

Figure 10 - Flowchart RAAS Authentication and Authorization in mode Username and Password

Page 20 of 41

Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

The process of authorization in this mode -unlike the authentication one- does not involve the password by
the resource information to be accessed.
In this case the following steps take place:

1.
2.
3.
4,
5.

Message broker request access to a resource

Request is passed to RAAS

RAAS look for token of already authenticated user

RAAS request Authorization Service (EPICA) access to the resource using token and resource info.

RAAS allow or deny based on the response from Authorization Service (EPICA)

The diagram below (Figure 11) describes on a very high level the authorization process:

token & Authz. Service |
oken & resource - (EPICA)
€ allow /deny
RAAS
username & resource > e

Message Broker |
(RabbitMa) |

llow ! deny

Figure 11 - RAAS Authorization in mode Username and Password

4.1.2 RAAST1T Mode: Token

In this mode RAAS will be only responsible to verify the validity of tokens from Authentication Service
(Keycloak®) and perform authorization request to Authorization Service (EPICA) with the provided tokens.
The clients are responsible to obtain and manage the authentication tokens and provide them to RAAS. The
clients make login in the message broker with the token from Authentication Service (Keycloak), no
password involved in this mode.

On a high level view the authentication process on this mode follows the following steps:

1.

Client (publisher or subscriber) authenticate against COMPOSITION Authentication Service
(Keycloak).

Token obtained from Authentication Service (Keycloak) is used to authenticate against message
broker. No password involved, the token is passed as username.

Token is passed from message broker to RAAS
RAAS verify the token

RAAS allow or deny the authentication request based on the token verification

19 http://www.keycloak.org/

Document version: 1.0 Page 21 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

The diagram below (Figure 12) describes on a very high level the process of authentication and the
components involved.

& 4 Auth. Service |
username & passwor : Tt
€ ————token [validation error
Client
< token
allow / dery r———-3 Message Broker
{RabbithC)
RAAS < token

Figure 12 - RAAS Authentication in mode Token

A detailed description of the authentication procedure in this mode can be seen in the flowchart diagram
below (Figure 13).

Document version: 1.0 Page 22 of 41 Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework 11

Client

Message Broker (RabbithiQ) RAAS Auth. Service (Keycloak)

request token

Y

credentials
7

yes

return invalid

r

(=D

reguest ™
-

Eredentials err.

ACCesS

username=access-token

alowed €

return .
set tokens
usefname=sccess-token
t
- request e ul::ﬁg-ke t - return
1 access =P = Y public-key | public-key
es
no y
yes
token
allow .3 allow alid? = 3
no
deny < deny

denied I3

Document version: 1.0

Figure 13 - Flowchart RAAS Authentication and Authorization in mode Token

Page 23 of 41 Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

The process of authorization in this mode has the following steps:

1.

2
3.
4

5.

Message broker request access to a resource but unlike the previous mode where username was
used in this case the username is the token obtained by the client when authenticated directly to the

Authentication Service (Keycloak).
Request is passed to RAAS
RAAS verify token.

RAAS request Authorization Service (EPICA) access to the resource using token and resource info.

RAAS allow or deny based on the response from Authorization Service (EPICA)

The diagram below (Figure 11) describes on a very high level the authorization process:

token & Authz. Serviee [
oken & resource > (EPICA)
€ ———— allow /deny
RAAS
token & resource e R ey
Message Broker | ,
(RabbitMa) | llow | deny

Figure 14 - RAAS Authorization in mode Token

4.2 Authentication Service i Keycloak?®

This section will cover the work done in Keycloak related to deployment, configuration and customization.

4.2.1 Deployment and Configuration

Keycloak has been deployed as a docker container in Atos premises. Details of the docker container on the
screenshot below (Figure 15)

20 http://www.keycloak.org/

Document version: 1.0 Page 24 of 41

Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

ﬁportoiner.io

Dashboard

App Templates

m o+ &

Contalners

Images

B3

Nef
Volurr
Events

Engine

User management

settings

ﬂﬁ:orlainer‘iu 1162

£ Container details

Image sha256.c4bdB9f02b316eec3b293d13ed7e527080dbf1B5b6ea33dbdabdbc628calabs0
cMD -b 6.0.0.6
ENV MYSQL_ADDR

MYSQL_PASSWORD

PROXY_ADDRESS_FORWARDING

PATH
JAVA_HOME

KEYCLOAK_VERSION

LAUNCH_JBOSS_IN_BACKGROUND

JDBC_POSTGRES_VERSION

JDBC_MYSQL_VERSION
JBOSS_HOME

LANG

Labels build-date

license
name

vendor

true

/usr/local/sbin-/usr/lacal/bin:/usr/sbin:/usr/bin:/sbin-/bin

Jusr/lib/jvm/java
343 Final

1

4214

5118
/opt/jboss/keycloak

en_US.UTF-8

20180107
GPLvZ
CentOS Base Image

CentOs

m

Figure 15 - Keycloak docker container details

To give support to both Inter-Factory and Intra-Factory scenarios, two different realms have been created in
Keycloak one realm for Inter-Factory named composition-inter and one for Intra-Factory named composition-
intra (see Figure 16). The use of two different realms will allow the management of clients and users
independently for each Inter-Factory and Intra-Factory scenarios.

IKEYCL

Select realm Realms

Figure 16 - Keycloak realms

Into each realm a client named rabbitmq has been created (see Figure 17) as well as a role named rabbitmg.
Into each client the following roles have been created: administrator, management, monitoring and
policymaker (see Figure 18). These roles will be used to authorize users and clients accessing RabbitMQ

message broker.

Document version: 1.0

Page 25 of 41

Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

MAKEYCLO L Javie
~ . Clients rabbitmq
Compositio
Rabbitmg
A Settings Credentials Roles Mappers Scope Revocation Sessions Offline Access Clustering Installation
Realm Settings
5 Clients Permissions
Client Templates
Client ID rabbitmq
Roles
Name RabbitMQ-Inter
Identity Providers
Description RabbitMQ Inter-Factory
Authentication m
Enabled
nage Consent Required OFF
Groups
s Client Protocol openid-connect E|
Users
Client Template EI
Access Type confidential E|
Import Standard Flow Enabled OFF
Export
Implicit Flow Enabled OFF
Figure 17 - Keycloak rabbitmq client
MAKEYCLO L Javier ~
_ Clients rabbitrng
Compos
Rabbitmq
. Settings Credentials Roles Mappers Scope Revocation Sessions Offline Access Clustering Installation
Realm Settings
5 Clients Permissions
Client Templates
Add Role
Roles
Role Name Composite Description Actions
Identity Providers False Edit Delete
User Federation False Edit Delete
Authentication False Edit Delete
False Edit Delete

Groups

Events
Import

Export

Figure 18 - Keycloak rabbitmq client roles

4.2.2 Customization

Although Keycloak is designed to cover most use-cases without requiring custom code, it has a number of
Service Provider Interfaces (SPI) for which own providers can be implemented (Keycloak Service Provider
Interfaces (SPI), n.d.). From the available list of SPI, COMPOSITION is implementing the Protocol-Mapper
SPI to create a Custom-Mapper which will enable the ability to add into tokens additional information from
external sources, like databases.

One scenario where Custom-Mapper can be very useful is the one where COMPOSITION users are able to
assign roles to other COMPOSTION users; so the latter are granted access to resources from the former,
without the need of administration rights in Keycloak.

The next screenshot (Figure 19) shows the list of installed mappers in Keycloak where is listed atos-custom-
mapper, which is a prototype of the Custom-Mapper.

Document version: 1.0 Page 26 of 41 Submission date: 2018-02-27

COMPOSITION

D4.2 Design of Security Framework Il

Jvar/projects/composit

« Cc @
() ElasTest ¢ ElasTest

fhome/david/.cache/.f

@ localhost

protocol-mapper

publicKeyStorage

realm

/home/david/.cache/.fr

& Keycloak Admin Cons X
-9

“5aTE
group

docker-v2-allow-all-mapper
oidc-usermodel-realm-role-mapper
oidc-hardcoded-role-mapper
oidc-hardcoded-claim-mapper
oidc-usersessionmodel-note-mapper
oidc-sha256-pairwise-sub-mapper
saml-role-name-mapper
ocidc-address-mapper
saml-role-list-mapper
saml-User-property-mapper
oidc-full-name-mapper
oidc-script-based-protocol-mapper
oidc-role-name-mapper
oidc-usermedel-client-role-mapper
saml-User-session-note-mapper
oidc-usermodel-attribute-mapper
saml-hardcode-attribute-mapper
oidc-usermodel-property-mapper
oidc-group-membership-mapper
saml-group-membership-mapper
saml-user-attribute-mapper
saml-hardcode-role-mapper

infinispan

Ipa

localhost:8080/auth/re

%4

Figure 19 - Custom-mapper in protocol-mappers list installed

% JSON Web Tokens -

n 0 M=

Screenshot below (Figure 20) shows atos-custom-mapper prototype assigned to rabbitmq client.

[var/projects/composit

fhome/david/.cache/.f

/home/david/.cache/.f

& Keycloak Admin Cons X

localhost:8080/auth/re

% JSON Web Tokens -

<« a o (@ localhost: - @ W mwoE =
C)ElasTest & ElasTest
FAKEYCL(L David
Clients rabbitmg
Rabbitmg
Settings Credentials Roles Mappers Scope Revocation Sessions Offline Access Clustering nstallation
Permissions
Create || Add Builtin
Name Category Type Actions
given name Token mapper User Property Edit Delete
Token mapper ATOS custom mapper Edit Delete
full name Token mapper User's full name Edit Delete
username Token mapper User Property Edit Delete
email Token mapper User Property Edit Delete
ame Token mapper User Property Edit Delete

Figure 20 - Custom-mapper used in client

The next screenshot (Figure 21) shows the details of atos-custom-mapper prototype installed on Keycloak
and used by rabbitmq client.

Document version: 1.0 Page 27 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

Jvar/projects/compositic X /home/david/.cache/.fr X | /home/david/.cache/.fr= X [EeEIGdGCEIFNINLNaOEEME |ocalhost:8080/auth/real X | # JSON web Tokens-ju. X

< c o @ localhost - @ 77 N @
() ElasTest ¢ ElasTest

{MAKEYCLO L David -

atos-custom-mapper

Atos-custom-mapper
Protocol
1D
Name
Consent Required OFF

Mapper Type

Figure 21 - Custom-mapper details
4.3 Authorization Service 1 EPICA

Authorization Service (EPICA) is currently being integrated with Authentication Service (Keycloak). The API
exposed by EPICA is being modified to be able to deal with tokens from Keycloak. Once integration is
completed and tested a first set of authorization policies will be created, involving COMPOSITION partners in
this task.

4.4 XL-SIEM

A new cyberagent named Il-ads is in development for XL-SIEM. This new agent makes use of neural
networks to determine if an alert should be raised or not. The agent analyses the network traffic of the
monitored interface and raises an alert based on the train done to the neural network.

Agent I-ads make use of NetFlow?! network protocol to be used as source to analyse the network traffic and
Softflowd?2 as the NetFlow exporter which aggregates packets into flows and exports flow records towards |-
ads to be analysed.

1 NetFlow is a network protocol developed by Cisco used in their routers for collecting IP traffic
information and monitoring network traffic. NetFlow exports flow information in UDP?23 datagrams in
one of the following formats: v1, v5, v7, v8 and v9.

Agent l-ads supports v5 datagram format; each UDP datagram is composed of a header (see Table
3) and N flow records (see Table 4), being 1 <= N <= 30 and is specified by the count field in the

header.
Table 3 - NetFlow v5 flow header format

bytes content description
0-1 version NetFlow export format version number
2-3 count Number of flows exported in this packet (1-30)
4-7 Sys_uptime Current time in milliseconds since the export device booted
8-11 unix_secs Current count of seconds since 0000 UTC 1970
12-15 unix_nsecs Residual nanoseconds since 0000 UTC 1970

21 https://www.cisco.com/c/en/us/td/docs/net._mgmt/netflow_collection_engine/3-6/user/guide/format.html
22 https://www.mindrot.org/projects/softflowd/
2 https://tools.ietf.org/html/rfc768

Document version: 1.0 Page 28 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il
16-19 flow_sequence Sequence counter of total flows seen
20 engine_type Type of flow-switching engine
21 engine_id Slot number of the flow-switching engine
2223 sampling_interval First two bits hold the sampling mode; remaining 14 bits hold value of sampling
interval
Table 4 - NetFlow v5 flow record format
bytes content description
0-3 srcaddr Source IP address
4-7 dstaddr Destination IP address
8-11 nexthop IP address of next hop router
12-13 input SNMP index of input interface
14-15 output SNMP index of output interface
16-19 dPkts Packets in the flow
20-23 dOctets Total number of Layer 3 bytes in the packets of the flow
24-27 first SysUptime at start of flow
28-31 last SysUptime at the time the last packet of the flow was received
32-33 srcport TCP/UDP source port number or equivalent
34-35 dstport TCP/UDP destination port number or equivalent
36 padl Unused (zero) bytes
37 tcp_flags Cumulative OR of TCP flags
38 prot IP protocol type (for example, TCP = 6; UDP = 17)
39 tos IP type of service (ToS)
40-41 src_as Autonomous system number of the source, either origin or peer
42-43 dst_as Autonomous system number of the destination, either origin or peer
44 src_mask Source address prefix mask bits
45 dst_mask Destination address prefix mask bits
46-47 pad2 Unused (zero) bytes

1 Softlowd is a flow-based network traffic analyser capable of Cisco Netflow data export. It aggregates
packets into flows and exports flow records towards one or more flow collectors.

Instead of analysing all packets flowing across the monitored network interface the agent will instead analyse
NetFlow v5 datagrams collected by Softflowd.on the monitored network interface and exported to an IP and
a port as UDP datagrams.

The diagram below (Figure 22) gives an overview of I-ads architecture with the components involved and the
interaction between them.

network

' softflowd

interface

Document version: 1.0

packets

netlow v datagrams

l-ads —)ED—) xl-siem

alert

Figure 22 - I-ads architecture overview

Page 29 of 41 Submission date: 2018-02-27

COMPOSITION D4.2 Design of Security Framework Il

4.5 Reverse proxy i Nginx?

Nginx has been deployed as a Docker?®> container in Atos premises. Nginx configuration files as well as
certificates used for providing TLS support are stored outside the container for better management and
maintenance. Current Nginx configuration enables only encrypted TLS connections through port 443.

The screenshot below (Figure 23) shows the details of the Docker container deployment.

Figure 23 - Nginx docker container details

5 Integrity and trust of information

5.1 Reputation Model

Before talking about the COMPOSITION Reputation Model, it is necessary to point out some typical
characteristics of these model s. First of al I, they
mi sunderstood with the one r(daydia tend010)@ndfRamanasdt a, 201@&.s e x p |
In (Hoffman et al, 2009) and (Moyano et al, 2012), reputation is considered as a means for computing trust,

together with other context-dependent factors. Always in (Moyano et al, 2012), as well as in (Artz et al,

2007), a more detailed explanation is provided, associating a completely objective nature to the concept of

reputation, differently from trust.

Considering (Jgsang et al, 2007), reputation is defined as iwhat i's g
per sonénsg 6sr cthhair act er or standingbo. I'n this survey, al s
concepts is expressed, through the following statement

donodt trust you despit ee tyosatemehta expressegearly the diftererd naturé h e s
between the two concepts.

This differentiation is essential in order to design a Reputation Model. Reputation must be computed taking
into account the specific scenario where the model is applied: considering an online marketplace scenario,
for instance, every time an interaction takes place, a local reputation score must be computed by the trustor
(the agent who makes the request) and aggregated with the other scores related to the previous interactions,
with the same trustee: in this case the obtained score will be updated when a new interaction occurs, but, at
the same ti me, it owi Il represent also a gl obal view o0f
Vi ew. Each new value can be seen as a feedback repres:s
service, in that specific interaction. Then, the updated global reputation could be used by the trustor or by

24 https://nginx.org/en/
% https://www.docker.com/what-docker

Document version: 1.0 Page 30 of 41 Submission date: 2018-02-27

