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Predictive oven maintenance - The challenge
• Reflow soldering process requires very tight 

control of temperature

• Correct operation of the fans plays a crucial 
role in ensuring optimal operating conditions 
are maintained

• Fan breakdown leads to scrappage of all high 
value material inside the oven
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Objective

Present early detection of anomalies and failures using predictive analytics for industrial ovens and 

their application in a real-world oven 

Two distinct approaches

▪ A technique based on deployed sensors for fault diagnosis based on acoustic data

→ An outlier detection analysis was implemented on acoustic sensor measurements

▪ A technique based on existing sensors for oven failure prediction based on monitoring and log data

→ Deep learning techniques have been applied on existing sensor and event log data, especially 

temperature monitoring

Predictive oven maintenance - The approach
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• Investigated several detection methods
• Current Sensing
• Vibration
• Temperature
• Acoustic

• Acoustic chosen
• Ease of retrofit – Non invasive
• Monitor zones reduce sensor count
• Significant distinction between failing & good 

fans

• Approach taken
• Lab based measurements to determine 

acoustic characteristics of a good and bad fan
• Validate technique in flow solder oven in 

factory
• Iterate implementation for robust operation
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Knowles SPH0645 – mems microphone

G.R.A.S Free field Array microphone

LSM9DS1 – Vibration / Thermal

Acoustic sensors - Deployment
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• Implementation

• Raspberry Pi MEMS technology acoustic Sensors

• Records 20 seconds of acoustic data every 5 
minutes

• Data is processed on the PC to output a single 
amplitude value per recording

• Data sent to COMPOSITION server for processing

• Operation

• When a fault condition is detected, the technician is 
alerted and identifies faulty fan, using zonal 
information

• The system flags a fault condition BEFORE it affects 
the temperature profile

• (Likelihood of failure over the next few days/weeks 
reported)

Sensors Positioned inside Oven

Acoustic sensors - Deployment
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Scope of the proposed method:
✓Detect observations in the audio data measurements which deviate so much from 

the other samples as to indicate that there might exist a possible failure in the ovens

Dataset: 
✓Acoustic measurements from deployed IoT sensors – translated in dB amplitude 

values

Challenge:
✓Absence of faulty acoustic measurements

Approach:
✓Outlier analysis of the imbalanced dataset 

✓Implementation of well-known classification techniques
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Acoustic outlier analysis for failure detection – Method Overview
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Algorithms implemented and compared:

• Mean Absolute Deviation (MAD)
• MAD value is calculated over a rolling 

window and the outliers lie between 
specific limits

• Local Outlier Factor (LOF) 
• Considers as outliers the samples that 

have a substantially lower density than 
their neighbours

• Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) 
• Clusters are created and outliers (noise) 

are assigned to the -1 cluster
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Outcome:
• The lack of faulty data led to a quite small number of 

detected outliers
• DBSCAN identified the most outlier points, 1149 out of 

7767 samples, which are noted as the faulty class for the 
classification process.

Acoustic outlier analysis for failure detection – Method Overview
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Acoustic outlier analysis for failure detection – Preprocessing

• Imbalanced Dataset Problem - faulty data are only 14% of the overall data points

• classifiers are more sensitive to detecting the majority class and less sensitive to the minority 
class 

• biased classification output → always predicting the majority class

• Oversampling - Synthetic Minority Oversampling Technique (SMOTE)

• re-sample the minority class

• generate new samples by randomly sampling with replacement the current available samples

Original dataset:

• 86% positive class

• 14% negative class

SMOTE dataset:

• 50% positive class

• 50% negative class
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Acoustic outlier analysis for failure detection – SVM Classification/Prediction model

Confusion Matrix:
• diagonal elements -predicted label is equal to the true label
• off-diagonal elements - mislabelled by the classifier

Evaluation 
results:

SVM classifier used for training the new dataset

• Two possible label classes

• faulted acoustic sample (=1) 

• non-faulted acoustic sample (=0)

• Training dataset - 70% of the overall dataset 

• Testing dataset - 30% is used

• SVM model parameters

• cost=0.5 

• kernel = Radial basis function kernel 

(RBF)

Metrics Result

Accuracy 0.85

Precision 0.76

F1-score 0.86

Input
New acoustic 
measurement

Prediction 
model

Output
Fault/Non-fault 

class

Outlier Prediction Model
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Scope of the proposed method:
✓Forecast future machine failures before they happen in order to diminish downtime 

and to prevent the scrappage of the oven content

Dataset: 
✓Legacy data,  two sets of files:

o Data files

o Logs files 

Challenge:
✓High imbalance of the dataset 

Approach:
✓End-to-end deep learning solution to predict the failures of the machine
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Deep learning for predictive maintenance – Method Overview
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3 sensor values for each zone of the Machine generated logs 
oven (20)
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Deep learning for predictive maintenance – Dataset 

Events file
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The logs are then filtered keeping only the 
“interesting” logs:

1. Flux Heater High Warning

2. Hi Warning

3. Lo Warning

4. Hi Deviation

5. PPM Level within limit

6. PPM Level has exceeded the amount set

7. High Water Temp Alarm Cool Down Loaded

8. Low Exhaust Alarm

9. Exhaust is insufficient

10. Heat Fan Fault

0 = all the other events 

14

Deep learning for predictive maintenance – Dataset 

Events file
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Deep learning for predictive maintenance – Dataset 

The events in the (both input and output) are transformed in One Hot Encoding.

The network will then work with a time series of length 32 for each of the 71 features 

(sensors + events) and will try to predict the future 5 events in the form of OhE, thus a timeseries of 

length 5.

Summary: Using 160 minutes of data to predict which event will occur in the next 25 minutes

X: 
Sensors (t0) Event (t0)

Sensors (t1) Event (t1)

Sensors (t31)
Event 
(t31)

...

04 June 2019 Key Enabling Technologies for Digital Factories



16

Deep learning for predictive maintenance – Dataset 

The events in the (both input and output) are transformed in One Hot Encoding.

The network will then work with a timeseries of length 32 for each of the 71 features 

(sensors + events) and will try to predict the future 5 events in the form of OhE, thus a timeseries of 

length 5.

Summary: Using 160 minutes of data to predict which event will occur in the next 25 minutes

X: 
Sensors (t0) Event (t0)

Sensors (t1) Event (t1)

Sensors (t31)
Event 
(t31)

... Y:
Event 
(t32)

Event 
(t33)

Event 
(t36)

...
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Deep learning for predictive maintenance – Network Architecture 

The architecture of the network consists of a seq2seq Encoder-
Decoder model 

Model Configuration:

Encoder LSTM = 128 units 
Decoder LSTM = 128 units 

Optimizer = Adam
Learning Rate = 1e-5

Clip Norm = 1

Label smoothing  = 1e-4

*class weight used during training 

Model output:
5 vector of length 11 (probability of events)

04 June 2019 Key Enabling Technologies for Digital Factories



18

Deep learning for predictive maintenance – Network Architecture 

The architecture of the network consists of a seq2seq Encoder-
Decoder model 

Model Configuration:

Encoder LSTM = 128 units 
Decoder LSTM = 128 units 

Optimizer = Adam
Learning Rate = 1e-5

Clip Norm = 1

Label smoothing  = 1e-4

*class weight used during training 

Model output:
5 vector of length 11 (probability of events)

04 June 2019 Key Enabling Technologies for Digital Factories

Label smoothing:

1 := 1 - ϵ
0 := ϵ / (k -1 )

K = length of OhE
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Deep learning for predictive maintenance – Results

Evaluation 
results: Metrics Result

Accuracy 0.86

Precision 0.89

Recall 0.86

F1-score 0.87

MCC* 0.79

Train/val/test = 80%/10%/10%

Those results are obtained as a mean of the metrics on

the next five predicted events, indeed the first event

(the one “less in the future”) has higher score

meanwhile the fifth event (the “more in the future”)

has the lowest overall score.
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Conf Matrix
t(1)

Conf Matrix
t(5)
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Deep learning for predictive maintenance – Results

Complete Evaluation 
results:

Accuracy F1-score MCC

Event t1 0.93 0.92 0.87

Event t3 0.85 0.84 0.76

Event t5 0.81 0.80 0.69

04 June 2019 Key Enabling Technologies for Digital Factories



The aim of this work was to exploit operational routine for monitoring of the 
system performance using the already integrated sensors of the oven and then 
deploy extra sensors (acoustic ones) in order to serve as indicators of a system’s 
health condition

Despite the limitations due to the imbalanced dataset, we formed a competent 
technique, capable of detecting anomalies and failures on a primitive phase aiming 
to improve both production and maintenance efficiency

The predictive maintenance approach we presented can constitute an assisting 
tool for the decision support system of industries towards the prevention of 
potential failure and securing of safe operation of machinery
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Conclusion
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