T. Vafeiadis*, A. Nizamis*, V. Pavlopoulos*, L. Giugliano†, V. Rousopoulou*, D.Ioannidis* and D. Tzovaras*

*Centre for Research and Technology Hellas-Information Technologies Institute (CERTH/ITI)

† Links Foundation (LINKS)

Introduction - Problem Definition

Smart waste management is a very important procedure in Industry 4.0

- Profitable asset for:
 - Waste producers
 - Waste management providers
- Connection with IoT sensors on industrial premises
- Big data availability
- Significant advances on data analytics

Enable the waste management companies:

- To smarten their domain
- To automate many of their solutions and processes

Introduction- Our Contribution

The main goal is to contribute to smart waste management optimization by providing:

- Sensor-based bins and dedicated waste management operations that will forcefully replace obsolete methods
- Transparency of waste spend and access to historical data towards the evaluation and improvement of waste management through analytics
- Variety of analytic services to end users related to waste management activities in order to enhance the decision-making and optimize planning

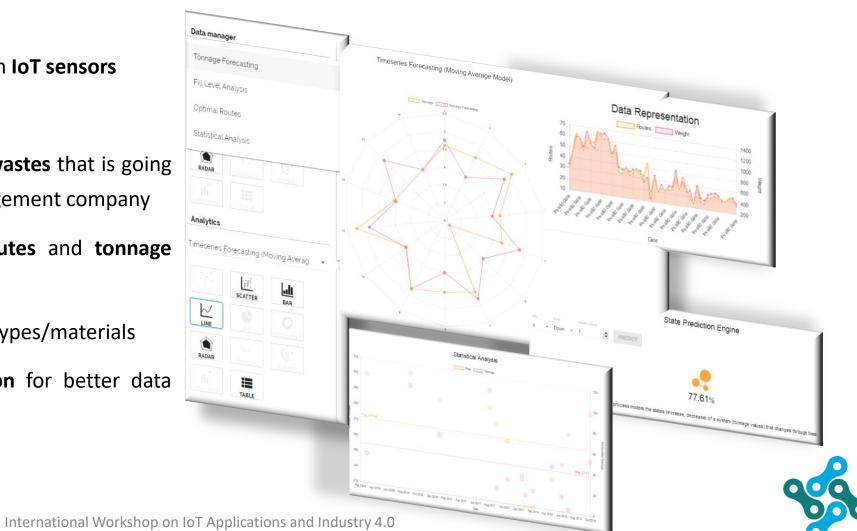
Overview

Optimization tool for waste management companies

State-of-the-art algorithms and methodologies for data analysis

Advanced data visualization

IoT devices connectivity and data analysis

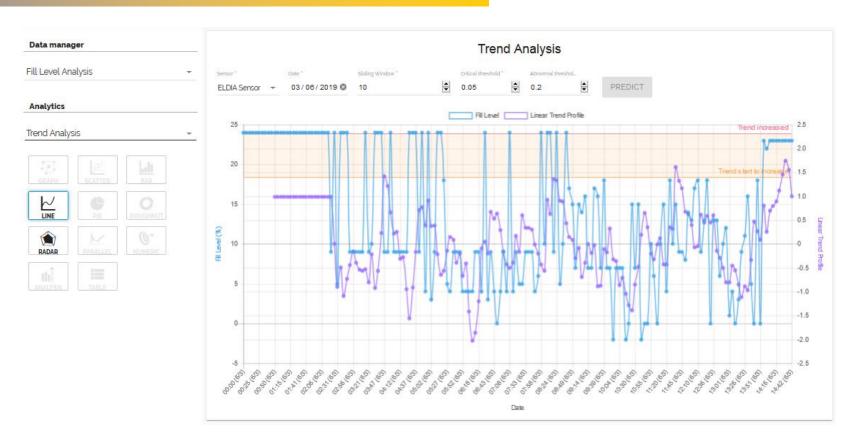

Secure data exchange based on authentication mechanisms

Services

- ✓ Monitoring of bins fill level based on IoT sensors
- ✓ Analysis of the bins fill level trend
- ✓ Forecasting about the tonnage of wastes that is going
 to be transported by a waste management company
- ✓ Calculator for optimal pair of routes and tonnage should be transported
- ✓ Price forecasting for various waste types/materials
- ✓ Statistical analysis and visualization for better data exploration

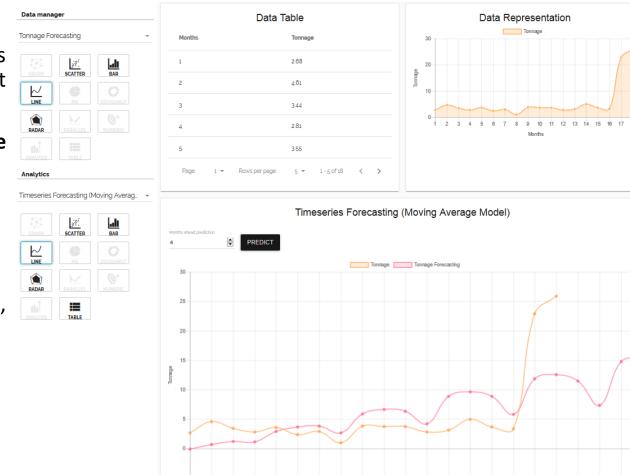
Bins Fill Level Monitoring based on IoT Sensors

- Use of Ultrasonic and IR sensors for fill level measurement
- Use of LoRa network in order to cover low power needs and get data from sensors
- Measure the fill level of both indoor and outdoor industrial bins containing scrap metal and recycling materials
- Provide distant fill percentage monitoring for efficient logistics, between industry and waste collection companies
- Notification mechanisms (email) for fill level over 80%



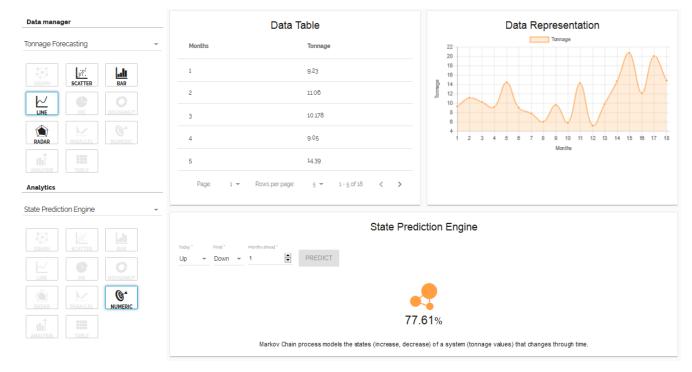
Fill Level Analysis Trend Analysis

- Real-time analysis of fill level sensor data
- Trend Analysis applied in order to create a profile for fill level trend
- Slope Statistic Profile method is applied on the time series of recordings (percentages) of a fill level sensor
- End user is able to select:
 - Sensor
 - Date
 - Sliding window for the analysis
 - Thresholds for the analysis
 - Type of visualization (line or radar)
- By using this analysis the waste management company is able to define which bin has the most aggressive trend in order to arrange a pick-up



Tonnage Forecasting Time series forecasting

- Forecasting about the tonnage of wastes that is going to be transported by a waste management company
- Time series forecasting using moving average model
- Visualization of predictions
- End user is able to select:
 - Number of months for ahead prediction
 - **Type** of visualization (line, scatter, table, bar and radar)

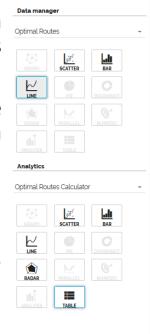


State Prediction Engine Markov Chain Models

- Predict the probability of future increase or decrease of the transferred tonnage based on current state
- Markov chain models used to determine the probability of moving from one state to another
- End user is able to select:
 - Months ahead period for the prediction
 - Current and future state of transferred tonnage (Up/Down)

Price Forecasting Deep Learning

- Deep Learning algorithm to provide prediction for the price per ton at which specific commercial partners is likely to accept to buy/sell waste material
- Prediction model based on historical price data
 Recurrent Neural Network (RNN) is used
- Initial network for regression is composed of four hidden Long Short Term Memory (LSTM) layers with 64, 32, 24 and 8 neurons respectively
- Visualization of prediction values and the coefficient of determination expressed as accuracy rate in the same diagram
- End user is able to select:
 - Material for price prediction
 - **Type** of visualization (line, scatter, table, bar and radar)





Optimal Routes Calculator Genetic Algorithm

- Optimal Routes Calculator based on monthly data about routes and transferred weight of wastes per route
- Calculates 10 best solutions/combinations for the pair routes/weights that can be transferred for a material
- End user is able to:
 - Load monthly data per material
 - **Select** type of **visualization** (table, scatter, bar, radar and line)

	Data Ta	able	
Date	Routes	Weight	
2015-Jan	30	676.09	
2015-Feb	45	92142	
2015-Mar	62	1189.25	
2015-Apr	58	1167.88	
2015-May	48	1037.88	
Page: 1 ▼	Rows per page:	5 ~ 1-5 of 48 < >	

Top 10 Simulated Solutions Material: Brown paper			
#	Routes	Weights (tons)	
1	30	761	
2	36	922	
3	30	760	
4	20	507	
5	15	383	
6	43	1091	
7	23	588	
8	33	842	
9	25	618	
10	33	837	

Optimal Routes Calculator

Statistical Analysis

- Statistical analysis of the end user's data
 - Price averages, tonnage averages etc.
- Visualization of statistical analysis output

Information Technologies Institute

Conclusions

Proposed solution

- IoT data analytics platform for waste management optimization
- To-the-point Data analytics solutions
 - Waste bins fill level monitoring/analysis
 - Forecasting of transported tonnage
 - Price forecasting of waste materials
 - Optimal transportation KPIS (routes/tonnages)

Gains to waste management companies

- Supervised control of waste level
- Access to historical data
- Planning and optimization potential
- Financial and environmental benefits

Centre for Research and Technology Hellas Information Technologies Institute

Thank you

COMPOSITION has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 723145

