

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D6.10 COMPOSITION Brokering and Matchmaking
Components II

Date: 2019-06-28

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 2 of 52 Submission date: 2019-06-28

Document control page

Document file: D6.10 COMPOSITION Brokering and Matchmaking Components II v1.0.docx
Document version: 1.0
Document owner: CNET - CERTH

Work package: WP6
Task: T6.5
Deliverable type: OTHER

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Alexandros Nizamis(CERTH),
Mathias Axling (CNET)

2019-05-16 Initial TOC based on D6.9

0.2 Mathias Axling(CNET), Christos
Ntinas (CERTH)

2019-06-02 Chapter 4 and Chapter 5 Input

0.3 Alexandros Nizamis, Nikolaos
Vakakis (CERTH)

2019-06-10 Chapter 6 and Chapter 7 Input

0.4 Nikolaos Alexopoulos, Leonidas
Samaras (CERTH), Mathias
Axling(CNET)

2019-06-12 Chapter 8 and Chapter 9 Input

0.5 Alexandros Nizamis, Nikolaos
Vakakis (CERTH)

2019-06-18 Chapter 5 Input

0.6 Alexandros Nizamis(CERTH),
Mathias Axling (CNET)

2019-06-21 Introduction, Conclusions and Document
preparation for internal review

1.0 Alexandros Nizamis,
Dimosthenis Ioannidis(CERTH),
Mathias Axling(CNET)

2019-06-27 Final Improvements after peer review – Ready
for final submission

Internal review history:

Reviewed by Date Summary of comments

 Jannis Warnat (FIT-UC²) 2019-06-25 Some minor corrections of typos etc.

 Vasiliki Charisi (ATL) 2019-06-25 Some minor comments and typos

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 3 of 52 Submission date: 2019-06-28

Index:
1 Executive Summary ... 4

2 Abbreviations and Acronyms ... 5

3 Introduction .. 6
3.1 Purpose, Context and Scope of this Deliverable ... 6
3.2 Content and Structure of this Deliverable .. 6

4 Role of Brokering and Matchmaking Components in COMPOSITION Architecture and its
Main Interactions .. 8
4.1 Collaborative Manufacturing Services Ontology and Language ... 8
4.2 COMPOSITION Marketplace ...11
4.3 COMPOSITION Marketplace Agents ..12

4.3.1 Matchmaker and Agents Communication for Marketplace Requests12
4.3.2 Matchmaker and Agents Communication for Matchmaker’s Connection with Deep

Learning Toolkit and Reputation Model ...13

5 Introduction to Matchmaker Usage in COMPOSITION Use Cases....................................14
5.1 UC-KLE-4 Scrap Metal Collection and Bidding Process ...14
5.2 UC-KLE-7 Ordering Raw Materials ...14
5.3 UC-ATL-1 Searching for Solutions ..15

6 Related Works ..16
6.1 Semantic Representation and Brokering, and Matchmaking Techniques.........................16
6.2 Multi-Criteria Decision Methods ...17

7 Design of Brokering and Matchmaking components ...19
7.1 Apache Jena API ...19
7.2 Matchmaker Requirements ..20
7.3 Matchmaker Implementation Details ...22

7.3.1 Introduction to Semantic Rules ..22
7.3.2 Matchmaking Module ...24

8 Matchmaker Quality Control, Scalability and Security ..37
8.1 Quality Control ...37
8.2 Scalability ...38
8.3 Security ..38

9 Matchmaker APIs and Deployment ..40
9.1 Matchmaker API Web Services ...40

9.1.1 Service “performMatchmaking” ..40
9.1.2 Service “offersEvaluation” ..42
9.1.3 Service “findCustomers” ..45

9.2 Matchmaker Deployment ...46

10 Conclusions ..48

11 List of Figures and Tables ...49
11.1 Figures ...49
11.2 Tables ..49

12 References ..50

13 ANNEX ...51

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 4 of 52 Submission date: 2019-06-28

1 Executive Summary

This report describes the results of Task 6.5 Brokering and Matchmaking for Efficient Management of
Manufacturing Processes from M5 to M34. The Matchmaker is a core component of the COMPOSITION
Collaborative Ecosystem, providing matching of buyers and sellers in the supply chain, based on services and
their capabilities. Moreover, the Matchmaker provides a ranking of offers during marketplace agents’
negotiations.

To this end, semantic matching of manufacturing capabilities and marketplace related services is applied to
find the best possible supplier to fulfil a request for a service, raw materials or products involved in the supply
chain. The work has done in this task mainly affects the WP6 components such as the Marketplace Agents.
Moreover, the Matchmaker functionality is exclusively depended on Collaborative Manufacturing Services
Ontology that was implemented in the same WP. Furthermore, as the Matchmaker is offered through RESTful
services it is connected with Security Framework of WP4.

Different decision criteria for supplier selection according to several qualitative and quantitative factors are
considered (e.g. delivery time, distance, due date, quality, price, technical capability, past performance,
payment methods and terms, etc.). Special focus was given in dealing with the trade-off between performance
and quality of matching, in order to provide responses in a reasonable time while at the same time minimization
of computational complexities will be targeted. In order to infer new knowledge and provide matching between
requesters and providers, semantic rules are applied in an ontology, which is used as the knowledge base for
the COMPOSITION ecosystem. Regarding the estimation of similarity among offers and requests, as well as
the evaluation of them, well-established weighted algorithms and metrics are used alongside with the semantic
rules in order to address the objectives of COMPOSITION Ecosystem at the best possible way.

To sum up, for Task 6.5 technologies, such as semantics and rules, were applied in a Manufacturing
Marketplace for matching and evaluating offers in real-time. This was enabled by the usage of the
COMPOSITION Ontology which connects manufacturing with e-commerce domain. The implemented web-
based system was able to extend the usage of this Ontology. The Ontology was not used only for
interoperability, but it is used also for real-time decision-making capitalizing on knowledge inference.
Furthermore, the COMPOSITION Matchmaker enhance its evaluation capabilities by adopting weighted
scores algorithms in order to provide a common solution for suppliers matchmaking and real-time offers
evaluation. In comparison with existing frameworks which are not completely related to manufacturing domain
in connection with the supply chain domain or they are exclusively designed for one system and they are not
easily extended and adoptive by other ecosystems, the COMPOSITION Matchmaker is able to support a
connected Manufacturing Ecosystem and it can be effortlessly transferred to other ecosystems as its services
offered as web services.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 5 of 52 Submission date: 2019-06-28

2 Abbreviations and Acronyms

Acronym Meaning

API Application Programming Interface

AHP Analytic Hierarchy Process

CXL COMPOSITION eXchange Language

CFP Call For Proposal

DLT Deep Learning Toolkit

FITMAN Future Internet Technologies for MANufacturing industries

FITMAN-SeMa
SE

Metadata and Ontologies Semantic Matching Specific Enabler

GRDDL Gleaning Resource Descriptions from Dialects of Languages

HTTPS Hypertext Transfer Protocol Secure

IMPACT Interactive Maryland Platform for Agents Collaborating Together

JSON JavaScript Object Notation

LARKS Language for Advertisement and Request for Knowledge Sharing

MASON Manufacturing’s Semantics Ontology

MSDL Manufacturing Service Description Language

OWL Web Ontology Language

RETSINA Reusable Task Structured-based Intelligent Network Agents

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SDB SQL DataBase

SPARQL Simple Protocol and RDF Query Language

TDB Triple-store DataBase

WPM Weighted Product Model

WSM Weighted Sum Model

WP Working Package

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 6 of 52 Submission date: 2019-06-28

3 Introduction

3.1 Purpose, Context and Scope of this Deliverable

This deliverable presents the work carried out and the results of the Task 6.5 Brokering and Matchmaking for
Efficient Management of Manufacturing Processes in total. The work has been carried out in Work Package 6
(WP6), “COMPOSITION Collaborative Ecosystem”. The task is tightly integrated with Task 6.4 “Collaborative
manufacturing services ontology and language”, the final results of which have been described in D6.8
Collaborative manufacturing services ontology and language II. This report will include an overview of the
integration with the manufacturing services ontology.

Main updates from the document’s previous version

This deliverable is the second and last iteration of D6.9 “COMPOSITION Brokering and Matchmaking
components I”, which was the first report about Task 6.5 Brokering and Matchmaking for Efficient Management
of Manufacturing Processes. The main updates in the Matchmaker component’s development, which are
illustrated in this report, are the following:

• Matchmaker updates in order to be compatible with the Collaborative Manufacturing Services
Ontology’s changes. As the functionality of the Matchmaker is exclusively related to the Ontology the
modification and extends in COMPOSITION Ontology led to modifications in Matchmaker’s
functionality and rules.

• Creation of new rules’ sets based on new offered information and data descriptions in the Ontology in
order to support all the negotiation scenarios of the COMPOSITION Ecosystem (UC KLE-4, UC KLE-
7 and UC ATL-1).

• Enhancement of rule-based logic with weighted algorithms for more effective and flexible offers’
evaluation. The logic rules were not capable to evaluate with effective way more complex scenarios
such as the evaluation of raw materials offers in which the user take into consideration a lot of factors
in order to select the best one.

• Development of more web services, integration with COMPOSITION Marketplace agents and
Marketplace UIs

• Connection with tools such as DLT and Reputation Model in order to enhance the matching capabilities

• Scalability testing and connection with the project’s Security Framework in order to secure the exposed
REST endpoints.

3.2 Content and Structure of this Deliverable

The report provides an overview of the role of the Matchmaker component in the COMPOSITION system, a
description of the design and interfaces of the Matchmaker and its dependencies on other components,
specifically the Collaborative Manufacturing Services Ontology and Marketplace agents. The document is
structured as follows:

Section 4 describes how the Matchmaker component is integrated in the overall COMPOSITION architecture
and its interactions and dependencies on other COMPOSITION components. Special attention is given to
interactions with the Marketplace agents and the Collaborative Manufacturing Services Ontology.

Section 5 Introduces the COMPOSITION use cases which are powered by Matchmaker component.

Section 6 includes a brief description of state-of-the-art analysis and related works presentation performed for
the Matchmaker.

Section 7 provides a detailed description of the design and development of the Matchmaker with emphasis at
the semantic rules and the newly added weighted algorithms.

Section 8 refers to the quality control during the component’s development and the security and scalability
design of the component.

Section 9 documents the Matchmaker API that is used by the COMPOSITION Marketplace agents in order to
call the Matchmaker and receive its responses. Moreover, the deployment information of the Matchmaker API
is drawn in this section.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 7 of 52 Submission date: 2019-06-28

Section 10 is the conclusions section which provides a summary of contents of the deliverable and lessons
learned.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 8 of 52 Submission date: 2019-06-28

4 Role of Brokering and Matchmaking Components in COMPOSITION Architecture

and its Main Interactions

Figure 1: Matchmaker component in relation to COMPOSITION Collaborative Ecosystem architecture

As shown in the above figure, the Brokering and Matchmaking components of the Rule-based Matchmaker (in
red) are part of the Matchmaker package, which also includes the Ontology Querying Component and
Ontology Store. The Matchmaker package is in turn part of the Agents package.

The Marketplace’s agents use the Matchmaking API to get selections of suitable suppliers for call for proposal
(CFP) to be sent by a requester agent and to evaluate the offers sent by supplier agents in response to the
CFP. The Ontology Query Component provides management and querying of the Collaborative Manufacturing
Services Ontology, via the exposed Ontology Query API interface. The Agents can update and query the
Collaborative Manufacturing Services Ontology through the interface. The Rule-based Matchmaker
component is connected directly to the Ontology Store on which it will apply rules in order to infer new
knowledge from the Collaborative Manufacturing Services Ontology. The rules can be applied directly at the
file system which contains the Ontology Store, or they can be applied to an Ontology Model which has been
loaded in the memory. The design of the Matchmaker is reported in the corresponding section, Design of
Brokering and Matchmaking components. A detailed description of the Matchmaker APIs, interaction with
Agents and Matchmaker deployment is provided in section Matchmaker APIs and Deployment.

The Matchmaker is involved in Use Cases UC-KLE-4 Scrap metal collection and bidding process, UC-KLE-7
Ordering raw materials, UC-ATL-1 Searching for solutions.

4.1 Collaborative Manufacturing Services Ontology and Language

In this sub-section a brief analysis of Collaborative Manufacturing Services Ontology and Language is
presented. The COMPOSITION Matchmaker’s functionalities depend exclusively on the Collaborative
Manufacturing Services Ontology and Language. The Matchmaker is designed to infer new knowledge by
applying rules in terms of this ontology. Collaborative Manufacturing Services Ontology is the knowledge base

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 9 of 52 Submission date: 2019-06-28

for the COMPOSITION Marketplace. It is used as a common vocabulary, which offers interoperability and
representation of both meanings and data. The Collaborative Manufacturing Services Ontology enables:

• The description of supply and demand entities participate in the Collaborative Ecosystem

• The description of manufacturing services, capabilities and resources for entities participate in the
Collaborative Ecosystem

• The description of waste management concepts and software solutions related to a manufacturing
marketplace

The Ecosystem agents will be able to make transactions as the above information will be described using this
common ontology. For example an agent who requests a service or a product will be able to find a matching
agent who supports this service or product based on knowledge base’s information.

The next figure presents the main classes of the Collaborative Manufacturing Services Ontology and
Language:

Figure 2: Collaborative Manufacturing Services Ontology Class Overview

MSDL (Ameri, 2006) and MASON (Lemaignan, 2006) ontologies are imported to the COMPOSITION
Ontology as they are manufacturing domain specific and they offer a large variety of classes and properties
about this domain. These imports enable for the Collaborative Manufacturing Services Ontology to represent
manufacturing services and resources. Furthermore, the COMPOSITION Marketplace should be able to
support collaboration mechanism between business entities. It should be able to describe relations and
transactions between supply and demand entities which participate in the Marketplace. This need leads us to
import the GoodRelations Language (GoodRelations Language, 2018) ontology which is one of the most
well-known and widely used ontologies in e-commerce domain. All the aforementioned ontological resources
were imported and re-engineered using Neon Methodology (M. C. Suárez-Figueroa, 2010) in order to create
a stable and consistent version of the Collaborative Manufacturing Services Ontology. The implemented
ontology’s classes which are depicted in the previous figure are presented in more details in

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 10 of 52 Submission date: 2019-06-28

Table 1:

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 11 of 52 Submission date: 2019-06-28

Table 1: Collaborative Manufacturing Services Ontology Classes

Class name Description

Business entity Represents an Ecosystem Agent who has a
service (e.g. manufacturing service) and provides
or seeks an offer

Business entity type Represents the legal form, the size and the
position of a business entity in value chain

Service Conceptualizes all operations and processes
related to a product in an abstract level

Operation Represents the processes of a service

Resource Represents the total set of linked resources of a
business entity

Supporting service Represent services which are not basic services
but are related to the basic one and support them

Supporting system Represents some systems which support a
business entity’s services

Offer Represents a public announcement of a business
entity that provides or seeks a certain service or
product

Warranty Represents the duration and the scope of free
services that will be provided to a customer in
case of a possible malfunction or problem

Quantitative value Represent the range of a certain property

Generic Term Define common operations, materials and tools

Delivery method Define the available delivery options for a service
or product

Dates and Times The days that a business entity has opening
hours. Also represents the day of delivery or the
day of availability of a service

Capability Represents the capability of a service

Entity Represents an entity as a result of a
manufacturing process and describe its geometric
flaw and entity, assembly entity and raw material

Price specification Specifies the price of a unit, additional delivery
costs and additional costs related to a payment
method

Payment method Describes the available procedures for
transferring the requested amount for a purchase

Certification Certification of an entity (service, product,
material etc.) e.g. ISO

4.2 COMPOSITION Marketplace

Modern manufacturing does not only involve the processes of a single factory, but an intricate network of
suppliers, sub-manufacturers and service providers connected in global supply chains. As stated in Strategic
Objective 1 (COMPOSITION, 2016), COMPOSITION will provide a digital automation framework for optimizing
the value chain; the production processes of the single factory. The goal outlined in Strategic Objective 2
(COMPOSITION, 2016), is to extend the single factory information management system to support a flexible
network of connected and interoperable factories in a collaboration ecosystem. Innovative services and
practices enabled by this ecosystem could optimize manufacturing and logistics processes and lead to faster
production cycles, increased productivity, less waste and more sustainable production. The COMPOSITION
Marketplace corresponds to the “Business” IT Layer and “Connected World” Hierarchy Level of the RAMI 4.0
Reference Architecture.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 12 of 52 Submission date: 2019-06-28

The COMPOSITION collaborative ecosystem will be realized through an interoperable agent-based
marketplace where the stakeholders are represented by agents that can exchange information, negotiate deals
and find new collaboration opportunities and models. Instead of custom-built, ad-hoc integrations with suppliers
or sub-contractors, the goal of the agent-based marketplace is to provide automation of co-ordination,
negotiation and data sharing. There will be human intervention and supervision built in, but the degree of
autonomy of the agents will be sufficient to find and negotiate with previously unknown parties. Such a
Marketplace is defined as a set of intelligent agents interacting using a common vocabulary through the same
shared Broker, using the same shared platform services, i.e. Security Services, Management Services,
Matchmaker etc. (Figure 1 COMPOSITION Marketplace components).

Three distinct types of marketplaces have been identified: Open Marketplaces, Closed Marketplaces and
Virtual Marketplaces. These provide support for varying degrees of exclusivity in the configuration of a
marketplace, which has been identified in the requirements as a major factor in acceptance and adoption of
such a system.

An Open Marketplace is open to any stakeholder with valid COMPOSITION credentials; anyone who has
acquired valid credentials may enter their offers and requests and collaborate with any other stakeholder.
There may be several open marketplaces, primarily organized by the type of supply chain that is supported. A
stakeholder may participate in several marketplaces.

A Closed Marketplace is owned - and likely also operated - by one stakeholder and open only to a trusted
subset of other COMPOSITION stakeholders. It is a physically separate infrastructure from the Open
Marketplace, hosted as a separate platform with its own set of services and components. The Closed
Marketplace may be public, allowing join requests by agents in the Open Marketplace, or private, with
membership allowed by invitation only.

A Virtual Marketplace is a closed group of agents in the Open Marketplace that have chosen to collaborate
exclusively in the context of one or several negotiations. The Virtual Marketplace may exist only for a single
negotiation or be persistent over several negotiations, e.g. to support a specific business process or a specially
trusted group based on a formalized reputation and trust model.

D9.9 “Sustainable Business Models for IIMS in Manufacturing Industries” describes the evaluation of the
COMPOSITION Marketplace from a business perspective. A digital marketplace product (or virtual or online
marketplace) is a type of e-commerce site where product or service information is provided by multiple third
parties. Transactions are processed by the marketplace operator and then delivered and fulfilled by the
participating suppliers or wholesalers. (The classes, properties and instances in the domain of each business
model that the marketplace platform is applied to, are described by the Collaborative Manufacturing Services
Ontology.) Business models and value generation for three aspects of the COMPOSITION marketplace were
evaluated in D9.9: Waste Management Marketplace, Software Virtual Marketplace and Supply Chain
Marketplace. The model showed a positive net cash flow for all actors in all three cases. The final pricing
models and revenue streams for the COMPOSITION collaborative ecosystem will be selected and presented
in D9.11 “Final Exploitation Strategy and Business Plans”.

4.3 COMPOSITION Marketplace Agents

4.3.1 Matchmaker and Agents Communication for Marketplace Requests

Agents are primary actors of the COMPOSITION marketplace. They typically instantiate the supply-chain
formation strategy of industry stakeholders and are therefore crucial for the success of the project inter- factory
solutions. Although in the long term, many different agent types are expected to coexist in the same
marketplace. Two main categories of agents can be defined a priori, depending on the kind of provided
services: Marketplace agents and Stakeholder agents.

Marketplace Agents: Following FIPA specifications, an Agent Management System (AMS) is a mandatory
component of every agent platform, and only one AMS should exist in every platform. It offers the White Pages
service to other agents on the platform by maintaining a directory of the agent identifiers currently active on
the platform.

Stakeholder agents are deployed at the stakeholder’s premises and their purpose is to fulfil the stakeholder’s
interests. In the following sections the reference implementations for the two different kinds of stakeholder
agents will be described. The set of APIs for the interaction with the agents will not be described here, since
they have been thoroughly analysed in deliverable D6.5: Connectors for Inter-factory Interoperability and

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 13 of 52 Submission date: 2019-06-28

Logistics I and will be updated at D6.6. Two types of stakeholders’ agents have been identified: the Requester
agent and the Supplier agent.

Agent’s core behaviour and internal aspects must necessarily reflect the classes, functions and attributes
defined in the common ontology, so to enable interoperable behaviour and matching. Due to the “open” and
potentially evolving nature of the marketplace, suitable techniques have to be applied to ensure that the agent’s
implementation and the data models linked with the Ontology remain aligned.

Therefore, in order the agents to have a fully-transparent communication with the Matchmaker and keep up
with the evolving ontologies, a proxy-like service has been implemented in the Agent Management System
(AMS). Keeping the complexity of interactions in the AMS allows the definition of a common protocol and data
format with the stakeholder agents who no longer need to care about adapting to the evolving ontologies.

Agents contact the AMS in order to request the Matchmaker services through a simple JSON, in order to:

• Request the list of the suitable agents for a certain negotiation, e.g. the agents offering a certain
service on the marketplace

• Evaluate the offers that have been received during a negotiation

The collaboration scheme and the information flow between agents and the matchmaker is presented in details
on chapter 8 of this document.

4.3.2 Matchmaker and Agents Communication for Matchmaker’s Connection with Deep
Learning Toolkit and Reputation Model

Besides the main process (Marketplace requests and evaluation) in the communication of the two components,
the Matchmaker and the Agents communicates again in order to enhance the main process of the requests.

Matchmaker and Deep Learning Toolkit (DLT)

The Matchmaker component is able to evaluate the provided offers and select the best available from them.
The price is one of the major criteria in this evaluation process. However, it is not possible for the Matchmaker
to determine if the price of an offer is decent or not. As this feature was demanded by the end-user, the
Matchmaker component capitalizes on the price forecasting functionality of the DLT.

Deep Learning Toolkit described in D5.4 Continuous Deep Learning Toolkit for real time adaptation II. The
DLT is able to derive the latest prediction on the price per ton at which users are likely to accept to buy or sell
waste materials within a fixed timeframe in the future. The forecasted price values are retrieved by an HTTPS
GET request to a Marketplace Agent which is connected with the DLT.

The Matchmaker uses the retrieved price to define if the provided offers are valid or it should reject some of
them as it is estimated that the given prices are beside the market price.

Matchmaker and Reputation Model

Besides the price criterion, the Matchmaker component also uses the Marketplace agents’ rating in the
evaluation process. The rating are available to the Matchmaker through the Agent-based Reputation Model
which is described in details in D4.5 Prototype of the Security Framework II.

The Agent-based Reputation Model Engine computes the reputation values(ratings) of the agents. The
Reputation Model is deployed in the Security Framework, which offers a set of REST API which can be invoked
by an Agent, whenever it is needed. The reputation/rating value (1 to 5) is posted/updated to the
COMPOSITION Ontology by an agent. By the time this value is available to the ontology it can be used by the
Matchmaker during the matching and evaluation processes.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 14 of 52 Submission date: 2019-06-28

5 Introduction to Matchmaker Usage in COMPOSITION Use Cases

The Matchmaker component is connected with inter-factory use cases of the project, which are related to
Marketplace services.

5.1 UC-KLE-4 Scrap Metal Collection and Bidding Process

The use case demonstrates the ecosystem enabling actors to exchange requests and offers using the agent-
based marketplace. Their goal is to optimize scrap metal collection and bidding process. Usually, the seller
wants to get the best price and reduce costs to arrange for immediate pick up of the scrap metal container.

Figure 3: UC KLE-4 Data Flow

In this case the KLEEMANN agent requests waste management solution for scrap metal. The Matchmaker
response to this request with the list of possible suppliers based on information on Collaborative Manufacturing
Services Ontology. Then the bidding process starts. As soon as the suppliers’ offers are available the
KLEEMANN agent ask from Matchmaker to evaluate them based on bidding parameters such as price,
delivery time and rating. Finally, the best matching offer with these parameters/criteria was returned to the
requester agent from KLEEMANN.

5.2 UC-KLE-7 Ordering Raw Materials

The use case is almost similar with UC KLE-4. KLEEMANN agent initialize a bidding process for raw materials.
The goal of the purchasing manager of KLEEMANN, who is represented by the corresponding agent, is to get
high quality raw materials on the best price and delivered on time. The goal of raw material suppliers is to
provide high quality products and to establish good customer relationship. The data flow of this use case is
presented in the next figure.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 15 of 52 Submission date: 2019-06-28

Figure 4: UC-KLE-7 Data Flow

Unlike the UC KLE-7, in this use case the evaluation of the offers is a more complex procedure. In order to
evaluate a raw materials’ offer the Matchmaker should take into consideration more parameters besides price,
rating and delivery time. These can be certifications, shipping costs, payment terms etc. Therefore, the rule-
based logic of the Matchmaker is enhanced for this use case with well-weighted algorithms.

5.3 UC-ATL-1 Searching for Solutions

In this use case, ATLANTIS or NXW which are SMEs that provide software solutions related to manufacturing
domain are able to advertise their solutions, products and consultancy services to the COMPOSITION eco-
system. As soon as a potential client has a problem and requests software solution via the ecosystem, the
agent is able to match the requester with ATLANTIS or NXW or a company from the same domain by using
Matchmaker capabilities. In contrast with the previous use cases, this scenario stops in the first level of
matching as services such as software solutions or consultancy demand communication between clients and
providers and it is not so easy to be handled by an automated bidding process.

Figure 5: UC-ATL-1 Data Flow

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 16 of 52 Submission date: 2019-06-28

6 Related Works

In this chapter the state-of-the-art analysis and the related works to COMPOSITION Matchmaker are
presented. The chapter is divided in two sub-sections. The first is related to semantic matching techniques and
the second one is related multi-criteria methods that were used to enhance the rule-based logic in the final
version of the component.

6.1 Semantic Representation and Brokering, and Matchmaking Techniques

There are several existing approaches related to manufacturing semantic representation and brokering, and
matchmaking techniques. However, the related research mainly presents frameworks which are not completely
related to manufacturing domain in connection with the supply chain domain. Furthermore, they are not
exclusively designed for one system and they are not easily extended and adoptive by other agent-based
ecosystems. The following related works are presented by the perspective of semantic representation and
matchmaking.

LARKS

LARKS (Language for Advertisement and Request for Knowledge Sharing) (Sycara, 1999) based
matchmaking engine was used in RETSINA 1 (Reusable Task Structured-based Intelligent Network Agents)
infrastructure. It was a multi-agent infrastructure that was developed by the Carnegie Mellon University in
Pittsburgh, USA and contained a matchmaking engine that relies on service matching. The matchmaking was
based in LARKS which express advertisements and requests using the same language. Five different filters
were contained in the aforementioned matchmaking engine: key-word-based matching, similarity matching,
profile comparison matching, constraint matching and rule-based signature matching. Nevertheless, the
RETSINA/LARKS matchmaking framework lacks of features matching. The used language is not focused on
manufacturing domain and the LARKS matchmaker needs a manufacturing domain ontology which should be
compatible with LARKS in order to be used as the content. Only then it is able to perform matching. However,
due to the general nature of RETSINA/LARKS matchmaking engine, it is unable to capitalize on the
advantages of the representation of the manufacturing specific services, tools and resources in order to be
used in modern collaborative manufacturing ecosystems.

InfoSleuth

An agent-based system which performs different level information management activities was developed by
MCC Inc., Texas, USA. This was InfoSleuth (Nodine, 2000). In the set of various agents which were offered
by InfoSleuth, some Broker agents existed. These agents provide syntactic and semantic matchmaking
between services' providers and requesters. In order to describe requests and advertisements a specific
"InfoSleuth ontology" was used by the agents. The broker agents use textual comparisons for syntactic
matchmaking of advertisements and queries. In the case of semantic matchmaking, broker agents apply SQL
queries and then constraint matchmaking to queries' output in order to eliminate useless results based on
advertisement capabilities and formal descriptions of the requests. However, the "InfoSleuth ontology" is not
able to represent manufacturing services and resources as it is focused on advertisements and requests
description. Thus, the broker agent's matchmaking engine is unable to perform a matchmaking process which
covers the requirements of manufacturing collaborative ecosystems.

IMPACT

IMPACT (Interactive Maryland Platform for Agents Collaborating Together) (IMPACT, 2018) is an international
research project led by the University of Maryland. It is related to software implementation that facilitates the
creation, deployment, interaction, and collaborative aspects of software agents in a heterogeneous, distributed
environment. IMPACT provides algorithms supporting a variety of applications including supply chain, logistics,
and e-commerce. It supports multi-agent interactions and agent interoperability in an application independent
manner. It provides a yellow pages server that performs basic matchmaking among agents based on weighted
hierarchies. It maintains a verb and a noun hierarchy of synonyms and retrieval algorithms to compute
similarities between given service specifications. So the IMPACT matchmaker uses only similarity and distance
algorithms in order to perform matching. Moreover, the IMPACT matchmaker is not designed to support
manufacturing domain concepts.

Digital Manufacturing Market

Digital Manufacturing Market (Ameri (AMeri), 2012) is a multi-agent web-based framework that contains a
manufacturing services ontology and a matchmaking mechanism which match a consumer's requirements

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 17 of 52 Submission date: 2019-06-28

with suppliers' manufacturing capabilities. The ontology used in this multi-agent framework is MSDL (Ameri,
2006), which stands for Manufacturing Service Description Language. MSDL is a manufacturing domain
ontology which enables the representation of services and resources by describing manufacturing capabilities
in four levels of abstraction: supply and demand level, shop-floor level, process level and machine level. Both
advertisements and requests are expressed by agents using the MSDL as a common language. A middle
agent, in order to find possible suppliers for a requested process, performs both features-based and taxonomy-
based matchmaking. A list with possible suppliers is returned to the requester agent. The Digital Manufacturing
Market approach is the closest one with the presented matchmaker as it uses a common manufacturing
ontology and performs semantic matching based on the services descriptions and terms related to this
ontology. Besides some similarities in matchmaking logic for service and agent level matchmaking which will
be presented in this report, the Digital Manufacturing Market solution does not use e-commerce concepts to
extend the matchmaking process in an offer level in which the evaluation of the matching offers can be
executed based in different qualitative and quantitative criteria.

FITMAN-SeMa

FITMAN-SeMa (Metadata and Ontologies Semantic Matching SE) (FITMAN-SeMa, 2018) is a component of
FIWARE (FIWARE, 2018) for Industry 3 aims to solve interoperability problems in the collaboration of business
processes. Furthermore, FITMAN-SeMa provides storing and retrieving functionalities for ontologies and
triplets. By using various algorithms FITMAN-SeMa performs effective semantic matching. The FITMAN-SeMa
is installable software which matches concepts between two different ontologies. This different approach may
enable collaboration and possible matching of two different sources. Nevertheless, it is not a manufacturing
agent-based eco-system dedicated solution. In order to achieve a higher level of interoperability FITMAN-
SeMa introduces a solution which is not based in a central ontology. But this last feature makes the SeMa
unable to extract conclusions from manufacturing domain in order to perform an efficient matchmaking of
agents and services as it is not designed for this domain.

In conclusion of the related works analysis, it is perceived that most of the existing solutions are not exclusively
designed for the manufacturing domain and lacks the necessary concepts that will enable efficient reasoning
in term of manufacturing. Besides this, other approaches are completely related to this domain and lacks the
ability to represent e-commerce means which are important for the reasoning and matchmaking over on-line
marketplaces.

6.2 Multi-Criteria Decision Methods

Multiple decision-making problems enclose the determination of the optimal alternative from several potential
candidates in a decision, depending on several criteria or attribute that may be concrete or vague. The most
widely used method is the Weighted Sum Model (WSM). The WSM is described by the following equation
(Fishburn, 1967):

𝐴𝑊𝑆𝑀 = max

𝑖
∑ 𝑞𝑖𝑗𝑤𝑗

𝑁

𝑗=1

, 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝑀. (1)

where 𝐴𝑊𝑆𝑀 is the WSM score of the optimal of 𝑀 alternatives, 𝑁 is the number of decision criteria, 𝑞𝑖𝑗 is the

actual value of the 𝑖 − 𝑡ℎ alternative in terms of the 𝑗 − 𝑡ℎ criterion, and 𝑤𝑗 is the weight of importance of the

𝑗 − 𝑡ℎ criterion. This method requires a dataset expressed in the same unit for each alternative, thus it is an
utmost convenient method for single-dimensional problems.

A modification of the WSM is the weighted product model (WPM). In WPM, each alternative is compared with
the others by multiplying a number of ratios for each criterion. WPM is described by the next equation (Miller
and Starr, 1969):

𝑅 (

𝐴𝐾

𝐴𝐿

) = ∏(𝑎𝐾𝑗/𝑎𝐿𝑗)
𝑤𝑗

𝑁

𝑗=1

 (2)

where 𝑁 is the number of criteria, 𝑎𝑖𝑗 is the actual value of the 𝑖 − 𝑡ℎ alternative in terms of the 𝑗 − 𝑡ℎ criterion,

and 𝑤𝑗 is the weight of importance of the 𝑗 − 𝑡ℎ criterion. If 𝑅 (
𝐴𝐾

𝐴𝐿
) is greater than one, alternative 𝐴𝐾 is more

preferable than 𝐴𝐿. This method eliminates the dimensionality limit of the previous one.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 18 of 52 Submission date: 2019-06-28

The analytic hierarchy process (AHP), is another popular method (Saaty, 1994). AHP is similar to WSM, thus
it can be applied in both single and multi-dimensional problems, since it uses relative values for each alternative
and not the actual ones which add up to one.

A revised AHP method was introduced later on (Belton and Gear, 1981) with some effective modifications.
The extension of the method is that instead of calculating relative values of the alternatives sum up to one,
each relative value is divided by the maximum value of the relative values.

Last but not least, ELECTRE (Benayoun, et al., 1966) and TOPSIS (Hwang and Yoon, 1981) are two notable
methods, with the second being an alternative version of the first one. The basic concept of the ELECTRE
method is to use pairwise comparisons among alternatives regarding each criterion and manage “outranking
relations”. The outranking relationship of 𝐴𝑖 . 𝐴𝑗 indicates that even when the 𝑖 − 𝑡ℎ alternative does not prevail

the 𝑗 − 𝑡ℎ alternative quantitatively, then 𝐴𝑖 can still be assumed to be a better choice than 𝐴𝑗 (Roy, 1973).

Regarding TOPSIS method, the basic concept is that the optimal selection should have the shortest distance
from the ideal solution and the farthest distance from the negative-ideal solution in a geometrical sense.
TOPSIS assumes that each attribute has a tendency of monotonically increasing or decreasing utility. The
evaluation of the relative closeness of alternatives to the ideal solution is calculated by the Euclidean distance
approach and the priority order of the alternatives is resulted by the comparison of these relative distances.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 19 of 52 Submission date: 2019-06-28

7 Design of Brokering and Matchmaking components

COMPOSITION Matchmaker is designed to be the core component of the COMPOSITION Broker. It supports
semantic matching in terms of manufacturing capabilities, in order to find the best possible supplier to fulfil a
request for a service or products involved in the supply chain. Different decision criteria for supplier selection,
according to several qualitative and quantitative factors, are considered by the Matchmaker. Furthermore, the
Matchmaker acts as a broker for the Marketplace’s bidding processes and enables the automation of these
processes as well. The Matchmaker evaluates the available offers from the providers in order to suggest the
best one to the supplier.

Since the Matchmaker component is built upon the Apache Jena API, the basic components of this API are
presented in this chapter as well. Before the design and implementation details of the Matchmaker, the
corresponding requirements are also presented.

7.1 Apache Jena API

Apache Jena (Apache Jena, 2018) is a free and open source Java framework for building Semantic Web and
Linked Data applications. The main component of this framework is an API that provides data extraction from
RDF graphs as well as writing to them. The graphs are defined as an abstract model. A model can collect
data from files, databases, URLs or a combination of these. Jena provides a programmatic environment for
RDF, RDFS and OWL, SPARQL, GRDDL, and includes a rule-based inference engine. Figure 6 below
represents Jena framework’s architecture.

Figure 6: Apache Jena’s framework architecture (Apache Jena, 2018)

RDF API

RDF can be better comprehended if it is represented in the form of node and arc diagrams, namely in RDF
graphs. Each relationship points only to one direction. Part of the RDF graphs is resources. A resource is one
of the entities. It could be a web resource or it could be a concrete physical thing. It could also be an abstract
idea. Resources are named by a Uniform Resource Identifier (URI).

Jena is a Java API which can be used to create and manipulate RDF graphs. The interfaces representing
resources, properties and literals are called Resource, Property and Literal respectively. In Jena, a graph is
called a model and is represented by the Model interface.

The basic concepts of RDF containers in Jena are the following three:

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 20 of 52 Submission date: 2019-06-28

• graph, a mathematical view of the directed relations between nodes in a connected structure

• Model, a rich Java API with many convenience methods for Java application developers

• Graph, a simpler Java API intended for extending Jena's functionality.

Ontology API

Jena allows a programmer to specify, in an open, meaningful way the concepts and relationships that
collectively characterize some domain. The advantage of ontology is that it is an explicit, first-class description;
it can be published and reused for different purposes.

There is a multitude of different ontology languages available for modelling ontology information on the
semantic web. They range from the most expressive, OWL to the weakest, RDFS. Jena Ontology API aims to
provide a coherent programming interface for ontology application development. The Ontology API is
independent of the language used: Java class names are not specific to the underlying language.

In order the distinction between various representations to be clear, each of the ontology languages has a
profile, which lists the permitted constructs and the names of the classes and properties. The profile is bound
to an ontology model, which is an extended version of Jena's Model class. The base Model allows access to
the statements in a collection of RDF data. Jena ontology interface provides support for the kinds of constructs
expected to be in ontology: classes (in a class hierarchy), properties (in a property hierarchy) and individuals.

SPARQL API

SPARQL is a query language and a protocol for accessing RDF designed. As a query language, SPARQL is
"data-oriented", it only queries the information held in the models and does not infer in the query language
itself. Jena model creates triples on-demand in order to give the impression that they already exist, including
OWL reasoning. SPARQL takes the description of the application demands, in the form of a query, and returns
that information, in the form of a set of bindings or an RDF graph.

Interference API

The Jena inference subsystem is designed to allow a range of inference engines or reasoners to be plugged
into Jena. Such engines are used to derive additional RDF assertions which are entailed from some base RDF
together with any optional ontology information and the axioms and rules associated with the reasoner.

Store API

Two individual parts of the Store API are TDB and SDB, as shown in Figure 6.

TDB is a component of Jena for RDF storage and query. It is a fast-persistent triple store that stores directly
to disk and supports the full range of Jena APIs. TDB can be used as a high-performance RDF store on a
single machine. A TDB store can be accessed and managed with the provided command line scripts and via
the Jena API. When accessed using transactions, a TDB dataset is protected against corruption, unexpected
process terminations and system crashes. On the other side, SDB uses an SQL database for the storage and
query of RDF data. Many databases are supported, both Open Source and proprietary. An SDB store can be
accessed and managed with the provided command line scripts and via the Jena API.

7.2 Matchmaker Requirements

The design and the implementation of the COMPOSITION Matchmaker were driven by the project’s
requirements. The main requirements related to the matchmaking component are listed below:

Table 2: Main Matchmaker Requirements

Requirement
Number

Title Short Description

COM-61 Suppliers’ product/services shall be
matched with a potential customers’
needs/problems

This requirement relates to unite both
suppliers and potential new customers in an
automatic ecosystem, precisely matching the
customers’ needs with the companies’
products and services. The system suggests
for example a top five of potential suppliers,
based on certain criteria, set by the customer

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 21 of 52 Submission date: 2019-06-28

COM-62 COMPOSITION Marketplace supports
participants services' description and
potential matching of participants based
on these services

Potential customers are subscribed as well
as suppliers of different products/services
are registered within the ecosystem. This
could be realized using the agents (which
may have any system, including humans,
running them; the only requirement is that
they talk CXL) and the Collaborative
Manufacturing Services Ontology

COM-63 The system provides an automatic
ranking of the suppliers to the buyers,
based on the buyers’ criteria

The system provides ranking
recommendations to companies about
suppliers of products/services based on
objective criteria

COM-64 The system provides an automatic
ranking of the suppliers to the buyers,
based on customers’ satisfaction and
feedback

The system provides ranking
recommendations to companies about
suppliers of products/services based on
customers’ satisfaction. This requirement will
raise chances for more unknown providers.

COM-86 The Matchmaker shall apply both
syntactic and semantic matching

The Matchmaker shall apply both syntactic
and semantic matching (both taxonomy-
based and feature-based) in terms of
manufacturing capabilities, in order to find
the best possible supplier to fulfil a request
for a service, raw materials or products
involved in the supply chain

COM-87 Different similarity algorithms and
metrics shall be supported by the
Matchmaker

For measuring the similarity among offers
and requests, well-established weighted
similarity algorithms and metrics will be
supported by the Matchmaker and will be
further extended if needed, in order to
address the objective of COMPOSITION at
the best possible way

COM-88 Different decision criteria for supplier
selection are supported by the
Matchmaker

Different decision criteria for supplier
selection according to several qualitative and
quantitative factors shall be considered (e.g.
size of buyer’s organization, cost, time,
distance, due date, quality, price, technical
capability, financial position, past
performance, attitude, flexibility, etc.) in
matchmaking

COM-89 Matchmaker shall return a result within
a reasonable time frame

The Matchmaker should respond within a
reasonable time frame (e.g. 5 seconds)

COM-90 Ecosystem components should be
deployed as Docker images

Docker gives ease of deployment and
simpler integration of heterogeneous
components. The partner developing the
component can perform exact configuration
of target platform and setup is easy for other
partners. Many third-party components are
also available as Docker images

COM-148 Matchmaker and Agents components
should be able to access and
manipulate Marketplace Ontology

The matchmaker and the agent components
should be able to access the Ontology Store.
Based on type of agents, the should be able
to infer knowledge or store and retrieve data
from Collaborative Manufacturing Services
Ontology

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 22 of 52 Submission date: 2019-06-28

7.3 Matchmaker Implementation Details

The COMPOSITION Semantic Matchmaker is built upon Apache Jena framework. The Semantic Matchmaker
aims to infer new knowledge from the Collaborative Manufacturing Services Ontology based on semantic rules
in order to perform matchmaking. In the overall COMPOSITION architecture, the Matchmaker block contains
the complete semantic framework of the project. This framework contains:

• Collaborative Manufacturing Services Ontology which initialize the Ontology Store (RDF triple store)

• Ontology Query Engine and the corresponding Ontology API which enable the manipulation of the
Ontology Store by the Marketplace agents

• Matchmaker, which applies, sets of semantic rules at the Ontology Store. Moreover, the last version
of Matchmaker module uses weighted assessment algorithm for offers’ evaluation.

Figure 7: COMPOSITION Semantic Framework Architecture

The third of the aforementioned components will be analyzed in this report as this one is about Brokering and
Matchmaking. The other two components were presented at their corresponding report, D6.8 Collaborative
manufacturing services ontology and language II (M30). The COMPOSITION Matchmaker is mainly a rule-
based matchmaking engine enhanced with multi-criteria (weighted) algorithms for offers’ evaluation. However,
as it is primary based on rule-logic we are going to refer to it as Rule-based Matchmaker.

7.3.1 Introduction to Semantic Rules

The Rule-based Matchmaking component functionality depends on sets of semantic rules contained in the
module. Therefore, in this sub-section the basics of semantic rules are introduced.

The semantic rules are commonly specified by means of an ontology language. These rules are used to infer
new knowledge based on the existing one in the knowledge base/ontology and can be added as RDF triples.
The rules are fired by reasoners, which can be used and activated in applications. A reasoner is software
capable of inferring logical consequences from a set of asserted facts or axioms. In the case of the Rule-based
Matchmaker a rule-based reasoner offered by Jena API will be used. A rule for the rule-based reasoner is
defined by a Java Rule object with a list of body terms (premises), a list of head terms (conclusions) and an

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 23 of 52 Submission date: 2019-06-28

optional name and optional direction. A term is a triple pattern, or an extended triple pattern or a call to a built-
in primitive. A rule set is simply a List of Rules. The following image presents the simplified text rule syntax:

Figure 8: Jena Rules Syntax (Apache Jena, 2018)

A rule file has the main basic components:

• @prefix defines a prefix which can be used in the rules. The prefix is local to the rule file
Example: @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

• // are comment lines

• Triple patterns – like a triple, but with some named variables instead of fixed parts

• Rule “Body” – Set of triple patterns, all of which must match.

• Rule “Head” – Set of triple patterns that will be asserted, when the body matches

Table 3: Jena Rule Example

Textual Format Jena Rule Format

Business Entity X
requests an offer
And Business Entity X
matches with Business Entity Y
Which offers an Offer Y

Then request X matches with Offer Y

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.

[exampleRule:
 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?x comp:matchesWith ?y)
 (?y v1:offers ?Offery)
 ->
 (?Offerx comp:matchingOffer ?Offery)
 //inferred knowledge is that offer x matches with offery

]

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 24 of 52 Submission date: 2019-06-28

Figure 9: Jena Rule Example Representation

The above simplified Jena rule example explains how new knowledge can be inferred. A request (Offer X) can
be matched to an offer (Offer Y) by this simple rule. The two instances, Offer X and Offer Y are connected with
the object property ‘matching offer’. This is the new knowledge that originally does not exist in the Ontology.

Furthermore, the Jena API offers a wide set of built-in primitives that can be included and used in rules files.
The procedural primitives which can be called by the rules are each implemented by a Java object stored in a
registry. Each primitive can be used in the rule body, the rule head or both. Some interest built-in primitives
which many of them are used by the COMPOSITION Matchmaker are listed below. Moreover,
additional/custom primitives can be created.

Table 4: Examples of Built-in Primitives

Built-in Primitive Short Description

equal(?x,?y) notEqual(?x,?y) Test if x=y (or x!= y). The equality test is
semantic equality

lessThan(?x, ?y), greaterThan(?x, ?y)
le(?x, ?y), ge(?x, ?y)

Test if x is <, >, <= or >= y

sum(?a, ?b, ?c)
addOne(?a, ?c)
min(?a, ?b, ?c)
max(?a, ?b, ?c)

Sets c to be (a+b), (a+1), min(a,b), max(a,b)

remove(n, ...)
drop(n, ...)

Remove the statement (triple) which caused
the nth body term of this rule to match.
Drop will silently remove the triple(s) from the
graph but not fire any rules as a
consequence.

print(?x, ...) Print a representation of each argument.

noValue(?x, ?p) True if there is no known triple (x, p,)

7.3.2 Matchmaking Module

The Matchmaking Module is developed in Java and it is built upon the Apache Jena API. The Matchmaker is
offered to other components through RESTful web services. Its core functionality is to receive Marketplace
Agents’ requests via Matchmaker API and to apply sets of semantic rules to the Ontology Store based on
these requests. New knowledge will be inferred by the rules’ appliance, and then the Matchmaking Module
responses to the Agents by using the Matchmaker API. The next steps are followed by the Matchmaking
Module:

1. The module receives requests by agent (requests are based on REST and HTTP)

2. The module accesses the Collaborative Manufacturing Services from the Ontology Store. An
Ontology Model can be created in the memory or it can be accessed directly from the file system.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 25 of 52 Submission date: 2019-06-28

3. The module transforms the request from agents’ COMPOSITION eXchange Language (CXL is in
JSON format) compatible format to terms of the ontology and creates instances (if needed)

4. The module reads the Jena rules as a List of Jena rules files

5. A reasoner is selected. A reasoner can be created by calling an instance of a reasoner class or
by retrieving from reasoner registry which contains instances indexed by URI assigned to the
reasoner. The GenericRuleReasoner class is selected for the COMPOSITION Matchmaker
purposes as it is a reasoner interface that is able to invoke any of the useful rule engine
combinations.

6. The rules list is set after the reasoner instance is created. This action indicates to the reasoner the
set of rules that should execute

7. An inference model will be created after applying the reasoner to data.

8. The module accesses the information stored in inference model. The content of the inference
model is the generated output after performing inference

9. The module transforms the inferred information to agents’ CXL

10. The output is returned as a response via Matchmaker API (REST and HTTP) to the Agent in a
format compatible to CXL

Figure 10: Agent to Matchmaker request sequence diagram

The Matchmaking Module contains two sub-modules. The Agent Level and the Offer Level matchmaking
modules which are described in detail below.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 26 of 52 Submission date: 2019-06-28

7.3.2.1 Agent Level Matchmaking

The Agent Level module aims to match Marketplace agents which are possible customers and suppliers. In
this level of matching the Matchmaker applies rules which are based on ontology’s classes: Business Entity,
Generic Term, Capability, Service, Operation and Resource. The applied rules targets to infer knowledge that
enables the beginning of negotiation among the Marketplace stakeholders. The matchmaker indicates to a
requester agent a list of possible supplier agents based on some requested criteria.

At this level of matching the semantic rules are focused on service level. For an agent who requests a service
in the COMPOSITION Ecosystem, the Matchmaker will provide the agents which offers this service. In order
to find possible providers of this service, the Matchmaker applies the following semantic rule based on terms
of the ontology:

Table 5: Rule for Matching Business Entities

Textual Format Jena Rule Format

Business Entity X
requests an offer which
includes a service which
supports a specific OperationX
and is related to MaterialX
Business Entity Y
offers a service which
supports an operation which
based on Generic Terms Catalog
is
mapped with operation Y and
the related material is mapped to a
common material too
Then
Entity X matches with Entity Y

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[agentLevelMatching:

 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx v1:includes ?Servicex)
 (?Servicex comp:seeksOperation ?Operationx)
 (?Operationx p1:allowedProcessFor ?Materialx)
 (?y rdf:type v1:BusinessEntity)
 (?y MSDL:hasService ?Servicey)
 (?Servicey comp:hasOperation ?Operationy)
 (?Operationy comp:mappedToCommonTerm ?Operationx)
 (?Operationy p1:allowedProcessFor ?Materialy)
 (?Materialy comp:mappedToCommonMaterial ?Materialx)
 ->
 (?x comp:matchesWith ?y)

]

Using the previous rule, the semantic matchmaker is able to match services, more precise operations based
on some common term instances that exist in the Collaborative Manufacturing Services Ontology. Every
business entity uses its own terms to describe one of its offered services, products and materials. However,
every one of these vendor specific terms will be mapped with a common generic term. This way, on the one
hand every business entity will be able to participate in the Marketplace and advertise its services, products
etc. with its own terms. On the other hand, the Matchmaker will be able to match similar concepts in order to
set the Marketplace capable to relate offers and requests among stakeholders or to find possible solutions for
some Marketplace participants.

Figure 11 is an illustration of the Agent Level matching process, searching a company which provides the raw
material “Tube”. The first column is the Agent Request flow and the above rule is applied on Business Entities
located in the ontology, searching for a company that provides raw materials and specifically, “Tube”. The
second column is the check for “Company_B”, the search is dropped when the service provided does not
match with “Provide_raw_materials”. The third column matches “Company_D” with the requested service, but
the name of the provided raw material does not match with “Tube”. The last column is the successful match of
the request with “Company_E”, which provides both raw material operation and “Tube” material.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 27 of 52 Submission date: 2019-06-28

Figure 11: An example of the matchmaking of an agent request for provision of raw material Tube

Moreover, further rules can be added in order to give a matchmaking result based also on some criteria by the
requesters as a kind of filtering. For example, the requester can ask for a supplier who offers a specific service
and has a Marketplace rating greater than a requested value. The following rule describes the aforementioned
user’s requirement.

Table 6: Rule for Filtering Based on Rating Requirement

Textual Format Jena Rule Format

Business Entity Y
requests an offer from a Business Entity and
Matches With a Business Entity X
And Business Entity Y’s request has a requested
minimum rating for possible supplier
IF Business Entity X’ rating is less than the
demanded minimum rating
Then

Drop Business Entity X from the matching list

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-
project.eu/ontologies/MSDL#>.

[filterRating:

 (?y rdf:type v1:BusinessEntity)
 (?y comp:matchesWith ?x)
 (?y v1:seeksOffer ?Offery)
 (?Offery comp:hasMinRating ?minRating)
 (?x rdf:type v1:BusinessEntity)
 (?x comp:hasRating ?ratingx)
 lessThan(?ratingx, ?minRating)
 ->
 drop(1)
]

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 28 of 52 Submission date: 2019-06-28

Additional criteria by the requester agent can improve the Matchmaker’s result. After the initial matching based
on the provided services the Matchmaker is able to apply more rules in order to exclude some suppliers from
its final output. The rules that will be applied are related to quantitative criteria of the services. For example, a
waste management service is capable to handle a limited number of waste tonnages or a manufacturing
service is able to produce a specific number of units/products. The next generic rule is applied for the exclusion
of agents (business entities) from the matching ones based on services’ capabilities:

Table 7: Rule for Capability Fulfilment

Textual Format Jena Rule Format

Business Entity X
requests an offer which
has a quantity requested specification
with value quantity X
And Business Entity X
matches with Business Entity Y
Which has s a service with
Capability of Value quantity Y
If quantity Y is less than quantity X
Then drop Business Entity Y
from them which matches with Entity X

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[capabilityFulfillment:

 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx v1:hasEligibleQuantity ?QuantitySpecx)
 (?QuantitySpecx v1:hasValue ?Quantityx)
 (?x comp:matchesWith ?y)
 (?y MSDL:hasService ?Servicey)
 (?Servicey MSDL:hasCapability ?Capabilityy)
 (?Capabilityy v1:hasEligibleQuantity ?QuantitySpecy)
 (?QuantitySpecy v1:hasValue ?Quantityy)
 lessThan(?Quantityy, ?Quantityx)

 ->
 drop(4)

]

Agent Level Matchmaking – Backwards Process

Besides the matchmaking as it has been described in the previous section, the Matchmaker component
supports a backward functionality for some scenarios. There is a find possible customers’ functionality in which
the requester agent does not request explicitly a service but the agent can ask for possible customers based
on its own services and the knowledge stored in the Ontology and it is related to manufacturing services and
tools.

For example, in the following hypothetical scenario:

• COMPOSITION Marketplace contains Companies A, B, C which are manufacturers and Companies
E and F which are waste management providers.

• Company D is a new waste management company at the Marketplace

• Company D collects and manage a wide catalogue of materials

• Company D wants to find possible customers at the Marketplace in order to advertise their services

Problem: It is not so useful for Company D to advertise its services in other waste management companies or
to manufacturers that do not work with materials that Company D is able to handle

Solution: The Matchmaker capitalizes on information related to machine processes and materials in order to
provide an effective matching for participants who search for new customers in the Marketplace. The semantic
rules explore the manufacturing services which are associated with machines and tools, and they are usable
on specific materials in order to perform an efficient matchmaking

As depicted in next figure, the Matchmaker is able to match the Company D only with the Companies A and B
which are possible new customers for the Company D. By applying the rule which is described in Table 8 the
Matchmaker returns to the requester an optimal list of possible future customers that does not contain other

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 29 of 52 Submission date: 2019-06-28

companies of the same domain (actually, they are competitors) or manufacturers that do not produce waste
able to be handled by the requester.

Figure 12: Find Possible Customers Based on Materials Capability

Table 8: Rule for Finding Possible Customers

Textual Format Jena Rule Format

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[matchBusinessEntities:

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 30 of 52 Submission date: 2019-06-28

Business Entity Y
has a service supports an operation that is
related to a material Y
Business Entity X
has s a service with an operation that
requires a machine which uses a tool
This tool is usable on a material X which
based on Generic terms catalogue is
mapped to material Y

Then Entity Y matches with Entity X
X

 (?y rdf:type v1:BusinessEntity)
 (?y MSDL:hasService ?Servicey)
 (?Servicey comp:hasOperation ?Operationy)
 (?Operationy p1:allowedProcessFor ?materialy)
 (?x rdf:type v1:BusinessEntity)
 (?x MSDL:hasService ?Servicex)
 (?Servicex comp:hasOperation ?Operationx)
 (?Operationx p1:requiresMachine ?machinex)
 (?machinex p1:usesTool ?toolx)
 (?toolx p1:toolUsableOn ?materialx)
 (?materialy comp:mappedToCommonMaterial ?materialx)
 ->
 (?y comp:matchesWith ?x)
]

7.3.2.2 Offer Level Matchmaking

The Offer Level Matchmaking module is related to offers’ evaluation. A Marketplace agent can provide to the
Matchmaker a set of offers that this agent had received from supplier agents in order to ask for offers’
evaluation. Based on this feature, the Matchmaker can act as Broker who aims to match the needs of the
requester agents with the best available offer based on different kind of criteria.

The offer evaluation process depends on the kind of service requested by the agent. The two possible
requested services are:

1. Waste Management service

2. Provide Raw Material service

The offers’ evaluation of Waste Management service requests is being performed by just applying rules of
different criteria according to the preferences of user. As in this use case the end-user wants to sell its scraps,
there are few criteria for the decision make that can be handled by the rule-based logic. On the other hand,
the offers of Provide Raw Material service are more complex and the system has to evaluate more complex
criteria that cannot be handled by semantic rules. In this case the provided offers are evaluated by a
combination of semantic rules and a multi-criteria decision-making method. The semantic rules are used to
solve some true or false criteria and the multi-criteria decision-making method covers the main part of the
evaluation process. Both techniques are explicitly described below.

Offer Level Matchmaking - Waste management service:

In this service the Matchmaker applies sets of semantic rules based on end-users ranked criteria.

As a first level of inspection, the matchmaking module uses DLT price prediction to reject unfair offers. The
DLT is able to derive the latest prediction on the price per ton at which users are likely to accept to buy or sell
waste materials within a fixed timeframe in the future. In order to determine if an offer is decent there is a
mechanism comparing the offered prices with the price forecasting extracted by the DLT. If an offer’s price is
close enough to the predicted one, considering the DLT calculated accuracy, the offer continues to the next
stage of evaluation. Otherwise the offer is rejected as it is estimated that the given price is beside the market
price. The forecasted price values are retrieved by an HTTPS GET request to a Marketplace Agent which is
connected with the DLT.

In the next level of matchmaking the sets of rules were designed for quantitative values’ comparisons and
evaluation. The algorithm which is followed is a kind of an elimination process in which the instances that do
not fulfil a request’s requirement are excluded from the matching set. The rules are constructed in a generic
way, in order to provide different evaluation results if they are applied to the same offers but in a different
sequence based on requesters' ranked preferences. These ranked preferences are taken into account by the
Matchmaker’s decisions. For example, for a set of identical offers, a requester, who wants quick delivery over
the price, will get a different result by the Matchmaker than a requester who has the price as the top priority.
After the matchmaking process, the best matching offer and the corresponding supplier agent are returned to
the requester agent.

A pseudocode which explains the steps which are followed and executed in the Offer Level Matchmaking
module is presented in Figure 13:

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 31 of 52 Submission date: 2019-06-28

1. Read the provided offers

2. Read the requester’s ranked N preferences

3. For every offer
4. create the corresponding ontology instance

5. Set all the available offers as best available

6. Create an ordered list of N rule sets based on the ranked preferences

7. For rule sets 1 to N
8. Apply Rule set #1 to the Ontology Model and exclude the

 matching offers which did not fulfil this rule from the best available
 . . .
 Apply Rule set #N to Ontology Model and exclude the
 matching offers which did not fulfil this rule from the best available

9. Return the best available offer

Figure 13: Pseudocode of Offer Level Matchmaking Module

In order to create a generic matchmaking engine which will be easily used in collaborative manufacturing
ecosystems the rules were developed to cover the most important factors in the negotiations and transactions
in such ecosystems. Based on research and discussions with the project’s pilot partners the most important
factors in their transactions are the following:

1. The price as in almost any transaction the target of the traders is the maximum profit.

2. The quick delivery of a product or service. In many cases this factor is of great importance. For
example, in cases in which the production line is running continuously as there are a lot of orders the
quick delivery of raw materials is more important than the price.

3. The trust. Before a transaction the requester of a service or product wants to be sure that the supplier
is trusted, with good reviews by previous users etc.

Based on these factors the following sets of rules are created. Actually, they are pairs of semantic rules. The
logic behind these pairs is that the first rule finds the best available value of a factor, and the second rule
excludes the offers that contain values of this factor that do not match to the best one.

Table 9: Find Best Available Price

Textual Format Jena Rule Format

Business entity
requests an Offer X which
has a price value X
And Offer X matches to Offer Y
which has price value Y

if this value is less than value X

Then the requested Offer X has price value
equal to price value Y

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[findMinPriceOffer:
 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx v1:hasPriceSpecification ?PriceSpecx)
 (?PriceSpecx v1:hasCurrencyValue ?Valuex)
 (?Offerx comp:bestMatchingOffer ?Offery)
 (?Offery v1:hasPriceSpecification ?PriceSpecy)
 (?PriceSpecy v1:hasCurrencyValue ?Valuey)
 lessThan(?Valuey, ?Valuex)
 ->
 drop(3)
 (?PriceSpecx v1:hasCurrencyValue ?Valuey)

]

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 32 of 52 Submission date: 2019-06-28

Table 10: Rule to Match Request to Best Price

Textual Format Jena Rule Format

Business Entity X
requests Offer X
Offer X has best available price Value X
Offer X matches best with Offer Y
Offer Y has price Value Y
If Value Y is not equal to best price Value X
Then remove Offer Y from the best
matching Offers

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[matchRequestToBestOfferByPrice:
 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx v1:hasPriceSpecification ?PriceSpecx)
 (?PriceSpecx v1:hasCurrencyValue ?Valuex)
 (?Offerx comp:bestMatchingOffer ?Offery)
 (?Offery v1:hasPriceSpecification ?PriceSpecy)
 (?PriceSpecy v1:hasCurrencyValue ?Valuey)
 notEqual(?Valuey, ?Valuex)
 ->
 drop(4)

]

The same pairs of rules have been implemented for the other two factors: Delivery time and the Rating of the
agents in the Marketplace:

Table 11: Rule to Find Best Available Delivery Time

Textual Format Jena Rule Format

Business entity
requests an Offer X which
has a best delivery time value X
And Offer X matches to Offer Y
which has delivery time value Y

if this value is less than value X

Then the requested Offer X has best delivery
time value equal to price value Y

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[bestDeliveryLeadTime:
 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx v1:hasEligibleQuantity ?deliveryTimex)
 (?deliveryTimex v1:hasMinValueInteger ?deliveryMax)
 (?Offerx comp:bestMatchingOffer ?Offery)
 (?Offery v1:hasEligibleQuantity ?deliveryTimey)
 (?deliveryTimey v1:hasMinValueInteger ?deliveryMiny)
 lessThan(?deliveryMiny, ?deliveryMax)
 ->
 drop(3)
 (?deliveryTimex v1:hasMinValueInteger ?deliveryMiny)
]

Table 12: Rule to Match Request to Best Delivery Time

Textual Format Jena Rule Format

Business Entity X

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[matchToBestDeliveryLeadTime:

 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 33 of 52 Submission date: 2019-06-28

requests Offer X
Offer X has best available delivery time
Value X
Offer X matches best with Offer Y
Offer Y has delivery time Value Y

If Value Y is not equal to best Value X
Then remove Offer Y from the best
matching Offers

 (?Offerx v1:hasEligibleQuantity ?deliveryTimex)
 (?deliveryTimex v1:hasMinValueInteger ?deliveryx)
 (?Offerx comp:bestMatchingOffer ?Offery)
 (?Offery v1:hasEligibleQuantity ?deliveryTimey)
 (?deliveryTimey v1:hasMinValueInteger ?deliveryMiny)
 notEqual(?deliveryx, ?deliveryMiny)
 ->
 drop(4)

]

Table 13: Rule to Find Best Available Rating

Textual Format Jena Rule Format

Business entity
requests an Offer X which
has a best available rating value X
And Offer X matches to Offer Y
which provided by Business Entity Y
with rating value Y
if this value is greater than value X

Then the requested Offer X has best
available rating value equal to price value Y

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[matchRequestToBestRatings:
 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx comp:hasMinRating ?minRating)
 (?Offerx comp:bestMatchingOffer ?Offery)
 (?y rdf:type v1:BusinessEntity)
 (?y v1:offers ?Offery)
 (?y comp:hasRating ?ratingy)
 greaterThan(?ratingy, ?minRating)
 ->
 drop(2)
 (?Offerx comp:hasMinRating ?ratingy)

]

Table 14: Rule to Match Request to Best Rating

Textual Format Jena Rule Format

Business Entity X
requests Offer X
Offer X has best available rating Value X
Offer X matches best with Offer Y
Offer Y is offered by Business Entity Y
which has rating Value Y

If Value Y is not equal to best Value X
Then remove Offer Y from the best
matching Offers

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[matchRequestToBestOfferByRating:

 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx comp:hasMinRating ?minRating)
 (?Offerx comp:bestMatchingOffer ?Offery)
 (?y rdf:type v1:BusinessEntity)
 (?y v1:offers ?Offery)
 (?y comp:hasRating ?ratingy)
 notEqual(?ratingy, ?minRating)
 ->
 drop(3)

]

As mentioned before these rules are constructed in order to provide different evaluation results if they are
applied to the same offers but in a different sequence based on requesters' ranked preferences. In the case
that the requester prefers price over delivery time and the Marketplace rating is its last preference the pairs of
rules will be applied in the sequence that they are presented above. However, in the case that the requester

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 34 of 52 Submission date: 2019-06-28

prefers delivery time as first choice, the rating as the second and the price as the last one then the Matchmaker
will execute the rules pair from Table 11 and Table 12 then the rules from Table 13 and Table 14 and last the
rules from Table 9 and Table 10.

Offer Level Matchmaking - Raw material service:

Several criteria have been determined for the evaluation of Raw material service offers. Each criterion owns a
weighting factor, defined by the end-user, and a multi-criteria decision-making method is being implemented.
Out of all the methods cited in the literature review, the Analytic Hierarchy Process was chosen. The key
advantage of this method is the automated evaluation of the criteria based on the preferences provided by the
user. Once the criteria weights are calculated, each alternative offer gains a weighted score, with the best one
indicating the best offer.

Figure 14 is a high level illustration of the offer evaluation process, highlighting the involvement of several
criteria extracted from the agent’s input. The properties of the Offer Level Request are annotated in order to
form the weighted criteria. Initially, service, Transportation and Insurance Price sum up to an overall price.
Payment Terms and Delivery Time of service are extracted from the agent’s input. Next, Payment and Delivery
Methods, two optional properties defined by the initial request, are checked by a fulfilment rule and if they
match with the offers’ available methods, their value is set to 1, otherwise to 0. Similarly, a fulfilment rule is
applied in the Certification property and its value (0 or 1) is determined. The last criterion taken into
consideration is the Rating of a Business Entity. All these criteria enter the Automated Criteria Weighting
mechanism where each is assigned with a weight. Finally, the evaluation scores for each offer alternative are
calculated and result in the best suggested offer.

Figure 14: Offer Level evaluation process

Automated Criteria Weighting

The AHP method computes the weights of the criteria starting by a pairwise comparison matrix with MxM

dimensions, where M is the number of available criteria. Each element 𝑎𝑗𝑘 of the matrix is the importance of

the 𝑗 − 𝑡ℎ criterion in relation with 𝑘 − 𝑡ℎ criterion. Specifically,

• 𝑎𝑗𝑘 > 1, when 𝑗 − 𝑡ℎ criterion is more important than 𝑘 − 𝑡ℎ criterion

• 𝑎𝑗𝑘 < 1, when 𝑗 − 𝑡ℎ criterion is less important than 𝑘 − 𝑡ℎ criterion

• 𝑎𝑗𝑘 = 1, when 𝑗 − 𝑡ℎ criterion is equally important with 𝑘 − 𝑡ℎ criterion

The elements 𝑎𝑗𝑘 and 𝑎𝑘𝑗 satisfy the constraint:

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 35 of 52 Submission date: 2019-06-28

 𝑎𝑗𝑘 . 𝑎𝑘𝑗 = 1 (3)

The importance between two criteria is measured according to a numerical scale from 1 to 9, as shown in
Table 15, where it is assumed that the 𝑗 − 𝑡ℎ criterion is equally or more important than the 𝑘 − 𝑡ℎ criterion.

Table 15: Table of criterion relative scores

Value of 𝒂𝒋𝒌 Meaning

1 𝑗 criterion is equally important with 𝑘

3 𝑗 criterion is slightly more important than 𝑘

5 𝑗 criterion is more important than 𝑘

7 𝑗 criterion is strongly more important than 𝑘

9 𝑗 criterion is absolutely more important than 𝑘

The relative importance of the criteria is indirectly defined by the user (User Preferences property). The user
selects the order of preference among all the available criteria with the first being the most important and the
last being the least important. There is an initial default order in case the user does not wish to choose,
presented below.

The pairwise comparison matrix is filled out automatically based on the user’s preferences. The normalized
Eigen vectors of the pairwise comparison matrix are then calculated. The principal Eigen vector is the Eigen
vector that corresponds to the highest Eigen value and is called priority vector since it contains the final weights
of the criteria.

Everything being considered, the criteria are presented below, given in the following default order:

• Price (service, transportation and insurance)

• Delivery time

• Payment terms (credit)

• Business ranking

• Certificate

• Delivery methods (optional)

• Payment methods (optional)

Evaluation Score

The weighted scores are then calculated by an alternative version of equation (1) and the best score indicates
the best offer. The best score is:

𝐵𝑒𝑠𝑡 𝑆𝑐𝑜𝑟𝑒 = min

𝑖
∑(

𝑞𝑖𝑗

max(𝑞𝑗)
𝑤𝑗)

𝑁

𝑗=1

, 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝑀. (4)

where 𝑁 is the number of decision criteria, 𝑞𝑖𝑗 is the actual value of the 𝑖 − 𝑡ℎ offer in terms of the 𝑗 − 𝑡ℎ

criterion, max(𝑞𝑗) is the maximum in terms of the 𝑗 − 𝑡ℎ criterion and 𝑤𝑗 is the weight of importance of the 𝑗 −

𝑡ℎ criterion. Note that the best score is the minimum of the sum, since the most important criterion usually is
price and the optimal case is the minimum price. Correspondingly, the values of the criteria that are optimized
with small values (e.g. Delivery time) are assigned with a positive sign, whereas the values of the criteria that
are optimized with great values (e.g. Business ranking) are assigned with a negative sign.

Figure 15 is a diagram that shows the way the criteria are related to the offers with the aim of finding the best
offer for the raw material service.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 36 of 52 Submission date: 2019-06-28

Figure 15: The evaluation criteria diagram for raw material service

At this point, a complete paradigm of Analytic Hierarchical Process is presented. The priority of preferences is
the default aforementioned order and the optional properties are not taken in consideration. In accordance
with Table 15, the pairwise comparison matrix is created.

Table 16: The pairwise comparison matrix and the priority vector

 Price Delivery time Payment terms Business rating Certificate
Priority
Vector

Price 1 3 5 7 9 51.28

Delivery time 1/3 1 3 5 7 26.15

Payment terms 1/5 1/3 1 3 5 12.9

Business ranking 1/7 1/5 1/3 1 3 6.34

Certificate 1/9 1/7 1/5 1/3 1 3.33

Briefly, the Price criterion is slightly more important than the Delivery time criterion (𝑎12 = 3), more important

than the Payment terms criterion (𝑎13 = 5), strongly more important than Business rating criterion (𝑎14 = 7)
and absolutely more important than Certificate criterion (𝑎15 = 9). Obviously, the diagonal elements are equally

important with themselves (𝑎11 = 1). The lower triangular matrix is filled by the equation (3). The rest of the
matrix is filled respectively.

Next, the normalized Eigen vectors are calculated and the principal Eigen vector gives the Priority Vector,
hence the weight for each criterion presented in the last column of Table 16. Finally, Table 17 shows the four
offers with their values and the extraction of best score. Offer 2 raised the best score apparently, although it
does not have the best price or the best ranking, it owns the best delivery time value and the lowest payment
term value.

Table 17: A paradigm of best score calculation

WEIGTHS: 0.51 0.26 0.13 0.65 0.35

 Price (€)
Delivery time
(Days)

Payment
terms (Days)

Business
rating (1-5)

Certificate
(0/1)

SCORE

Offer 1 222 2 60 3 0 0.57

Offer 2 210 1 50 4 1 0.45

Offer 3 195 3 100 3 0 0.55

Offer 4 212 2 60 5 1 0.51

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 37 of 52 Submission date: 2019-06-28

8 Matchmaker Quality Control, Scalability and Security

8.1 Quality Control

A quality control plan has been followed during the Task 6.5 and its development processes. Before, the
implementation face, a thorough analysis of related works and state-of-the-art was conducted.

During the implementation phase of COMPOSITION Matchmaker, the quality control was focused on general
software quality criteria, the overall COMPOSITION system architecture’s compatibility and the project’s
deliverables about Project Quality Control Plan. More precisely the quality plan consists of the following factors:

• Identification of the requirements related to the Matchmaker

• Analysis of existing technologies and adoption of the best suitable with the COMPOSTITION system’s
architecture. Use of REST web services and JSON format for messages exchange as both
technologies have defined as supported by COMPOSITION architecture at D2.4-The COMPOSITION
architecture specification II. These will ensure the compatibility with other project’s components.

• Use of software tools which were proposed at D1.1 & D1.2 Project Quality Control Plan I & II and
support quality of software:

o Use of Eclipse IDE1 as the development environment

o Use of Git for control versioning. The EGit2 plugin from Eclipse IDE was used.

o Use of Maven3 as build tool for dependency management and build of source code

o Use of Docker4 for deployment

• Test procedures were applied. For software quality assurance both static and dynamic analysis
techniques applied:

In static analysis the PMD5 tool was used. It is an open source tool which offers source code analysis
and offered as an Eclipse IDE plugin. It is able to detect possible bugs, empty statements, unused
variables and methods, duplicate code, classes with high cyclomatic complexity etc. by offering built-
in sets of rules. The tool categorizes the possible problems as violations distributed in 5 categories
based on priority: block, critical, urgent, important and warning

About 300 rules from 20 different rules sets were used. The rules sets were the following: Basic, Basic
POM, Braces, Code size, Complexity, Controversial, Design, Empty code, Import statements, J2EE,
Junit, Naming, Optimization, Security code guidelines, Strict Exceptions, String & StringBuffer, Style,
Unnecessary and Unused code.

The analysis results were evaluated during the development face and the most important possible
bugs were handled. At the current version of code there are no block, critical, important and warning
violations. Currently there are only few urgent violations which are related to excessively long variable
names, variables with short names, multi occurrences of some string literals etc. These violations are
considered as false positives.

In dynamic analysis, tests in runtime have been executed. Generally, in dynamic analysis Unit tests,
Integration tests and System tests were executed.

We built automated tests in source code package which was created by Maven. The TestCase class
from JUnit was extended and member functions were added. Every function represents a test of a
supported web service. The tests are able to be executed without deploying the project at an external
and using an external HTTP client. We used Eclipse Jetty server which provides a Web server and
javax servlet container. So, the test cases deployed and executed using Jetty. This provided us fast
execution and testing of the source code without the need to deploy the project to an external server
in order to test every change in the code. The tests were called both separately or in combination.

1 https://www.eclipse.org/ide/
2 http://www.eclipse.org/egit/
3 https://maven.apache.org/
4 https://www.docker.com/
5 https://pmd.github.io/

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 38 of 52 Submission date: 2019-06-28

Moreover, the Matchmaker was tested in integration with the Marketplace agents. Both Matchmaker
and agents were deployed as Docker images. The Agents image was able to call successfully the
Matchmaker’s APIs services from the deployed image as well. Furthermore, the correctness of the
Matchmaker responses was checked too. More details about agents and Matchmaker interaction,
Matchmaker APIs and the deployment of the component are presented to the following chapter.

8.2 Scalability

The COMPOSITION Matchmaker has been designed in order to offer high performance in matching processes
and support large Marketplaces with numerous of participants and services. It is designed after a thorough
research for available tools, technologies, related works and methodologies as it was documented in previous
sections of this deliverable.

As the Matchmaker component (Matchmaker, Ontology Query API and Ontology Store) is packaged and
deployed in an Apache Tomcat server, the maximum number of connections that this component can access
and process depends on Tomcat web server configuration. Based on official Apache Tomcat 8 Configuration
6 the server is able to support over than 8000 connections.

Furthermore, an RDF-triple store is used as the data store of the Marketplace. Based on the COMPOSITION
project’s pilot partners and use cases there was no need for a big data store for the Marketplace. However, in
order to create a Marketplace that can be used beyond the project, triple-store was used. Two cases were
examined based on Jena API. The first was the usage of SDB store which is a SQL database store. The
second was the usage of TDB component for storing. The second approach was selected. As native triple
store the TDB is faster, more scalable and better supported than SDB store. The SDB store is backed by SQL,
so queries from SPARQL have to “turn” into SQL queries. This adds complexity and it is not as efficient as a
native triple store. A native triple store is faster and supports the storage of millions of individuals. Using TDB
every change at the ontology takes place at an ontology model stored in the file system leaving the original
ontology immutable. This means that the original version of the ontology can be used in order to initialize new
Marketplaces.

The performance of the Matchmaker and its included components was tested for the COMPOSITION use
cases such as UC KLE-4 and the online bidding process. The Matchmaker responses in a reasonable time
(less than 5 seconds). However, in order to examine the performance of some sub-components in large
Marketplaces, automated JUnit tests were created and applied. Over 20.000 companies and services created
and added to the Marketplace Ontology Store. Then some queries were applied and the responses were still
in reasonable time (near 5 seconds). Only in the case that the instances were created simultaneously the
required response were some minutes. But this is not considered as a serious problem as the Marketplaces
was initialized once and after that every new instance is added as soon as a new company arrives at the
Marketplace or offers a new service etc.

8.3 Security

COMPOSITION Matchmaker exposes its endpoints as RESTful web services. These services should be
secured and compatible with the requirements of the project’s Security Framework from WP4.

Generally, all COMPOSITION components, which expose RESTful APIs over the internet, must enforce
authentication using OpenID Connect. The LinkSmart® Border Gateway (BGW)7 can secure these APIs such
as the one from the Matchmaker package by providing an overlay on top of all RESTful APIs, passing only
authenticated and authorized requests to them.

A Basic Auth authentication will be used in order to secure the Matchmaker API’s (including Ontology API) end
points. For the COMPOSITION purposes:

• User provides username/password in the REST request

• BGW intercepts the request and negotiates with an OpenID Connect server for a token

• If authenticated, BGW forwards the request to API and caches the token for upcoming requests until
it expires

6 http://tomcat.apache.org/tomcat-8.5-doc/config/http.html
7 https://docs.linksmart.eu/display/BGW

https://docs.linksmart.eu/display/BGW

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 39 of 52 Submission date: 2019-06-28

Furthermore, COMPOSITION Security Framework also supports authorization services. BGW is able to
enforce policy-based authorization based on request path and HTTP methods. The policies are profile
attributes assigned to users and groups as part of their accounts in the OpenID Connect server. For a
component, such as a Marketplace Agent, that wants to have access on Ontology it should ask to be able to
access the following component, method and resource:

• GET: https://inter.composition-ecosystem.eu/matchmaker/#

• POST: https://inter.composition-ecosystem.eu/matchmaker/#

The above links indicates to Keycloak8 framework that a component is authorized to call both GET and POST
methods on Matchmaker endpoints.

8 https://www.keycloak.org/

https://www.keycloak.org/

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 40 of 52 Submission date: 2019-06-28

9 Matchmaker APIs and Deployment

In this chapter the services offered by the Matchmaker API are presented. Furthermore, the deployment of the
Matchmaker component is presented as well.

9.1 Matchmaker API Web Services

The Matchmaker is connected with the Marketplace agents through RESTful web services and HTTP protocol.
An API is offered to the agents. The implemented Matchmaker API contains two web services. As depicted in
Figure 16 below, both of the offered web services are POST requests

Figure 16: Matchmaker API Services

This web service was designed in order to support the online bidding processes over the COMPOSITION
Marketplace. Based on the request’s body the matchmaker decides if it is going to apply Offer Level or Agent
Level matchmaking as both are required in a bidding process. The collaboration scheme of the agents and the
Matchmaker presented to the following figure:

Figure 17: Matchmaker and Agents Communication

9.1.1 Service “performMatchmaking”

As mentioned before the request’s body defines the type of the matchmaking which will be triggered. The body
is defined in JSON in a format compatible with the agents’ CXL. In order to trigger the Agent Level
matchmaking, the following body is posted to the Matchmaker:

conversation_id string

example: kjhfewKJDGWHJGWH7856186GBFWE

required: true

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 41 of 52 Submission date: 2019-06-28

sender_id string

example: agent_req_1

required: true

agent_owner string

example: KLEEMANN

required: true

type string

example: OFFER

required: true

service string

example: Provide_raw_materials

required: true

offer_details {
 good string

example: Tube

required: true

 expiration string

example: 2017-06-07T24:00:00+01:00

required: true

 currency string

example: USD

required: true

 quantity double

example: 120.0

required: true

 quantity_uom string

example: tons

required: true

 delivery_methods string array

example: ["Delivery mode freight", “DHL”]

required: false

 payment_methods string array

example: ["Direct debit", "Cash"]

required: false

 }
offers [Json array

required: true (empty if “type” : “CFP”)

]

Figure 18: Request Body for Agent Level Matchmaking

In the abovementioned request’s body:

• conversation_id is the unique id of the conversation allows to track request / reply sequences

• sender_id is the id of the requester agent

• agent_owner describes the business entity’s agent generating the message

• type describes the type of the request and defines the level of matchmaking (Agent or Offer)

• service describes the type of service requested, either Waste_management or Provide_raw_material
service

• offer_details object describes the details of the request such as the good/service type that is
requested, the expiration date of the request, the currency, the requested quantity and its
corresponding unit of measurement. Also, delivery and payment methods are optional and describe
additional requirements that the requester can set in order to receive a more accurate matchmaking
result based on services capabilities were described at the Collaborative Manufacturing Services
Ontology.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 42 of 52 Submission date: 2019-06-28

The Agent Level matchmaking sends back the response with the matching business entities. As depicted in
Figure 19 the response’s body contains the agent details (conversation_id, agent_owner, sender_id) and the
details of the matching business entities (agent_owner and sender_id).

conversation_id string

example: kjhfewKJDGWHJGWH7856186GBFWE

required: true

sender_id string

example: agent_req_1

required: true

agent_owner string

example: KLEEMANN

required: true

matching
BusinessEntities

[

 {

 agent_owner string

example: Company_A

required: true

 sender_id string

example: agentA@composition

required: true

 }

 ...

]

Figure 19: Response of Agent Level Matchmaking

9.1.2 Service “offersEvaluation”

The Offer Level requests consists of both the Agent-Level request and the provided offers details, as shown
in Figure 20.

conversation_id string

example: kjhfewKJDGWHJGWH7856186GBFWE

required: true

sender_id string

example: agent_req_1

required: true

agent_owner string

example: KLEEMANN

required: true

type string

example: OFFER

required: true

service string

example: Provide_raw_materials

required: true

offer_details {
 good string

example: Tube

required: true

 expiration string

example: 2017-06-07T24:00:00+01:00

required: true

 currency string

example: USD

required: true

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 43 of 52 Submission date: 2019-06-28

 quantity double

example: 120.0

required: true

 quantity_uom string

example: tons

required: true

 delivery_methods string array

example: ["Delivery mode freight", “DHL”]

required: false

 payment_methods string array

example: ["Direct debit", "Cash"]

required: false

 }
offers [Json array

required: true (empty if “type” : “CFP”)

 {

 offer_details { Json object

required: false

 sender_id string

example: agent_supplier_1

required: true

 agent_owner string

example: Company_A

required: true

 good string

example: Tube

required: true

 delivery {

 time double

example: 2

required: true

 methods string array

example: ["Delivery mode

freight", “DHL”]

required: true

 }

 payment {

 methods string array

example: ["PayPal",

"Direct debit", "Discover",

"Cash"]

required: true

 terms double

example: 90

required: true

 currency string

example: USD

required: true

 }
 price {
 service double

example: 120

required: true

 insurance double

example: 30

required: true

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 44 of 52 Submission date: 2019-06-28

 transportation double

example: 20

required: true

 }

}
}

 ...
]
preferences { Json object

required: true

 priority_1 integer (1-7)

example: 2

required: false

 priority_2 integer (1-7)

example: 5

required: false

 ...

 priority_7 integer (1-7)

example: 1

required: false

 }

Figure 20: Request Body for Offer Level Matchmaking

The offers field is a mandatory field which is empty in case of Agent Level request or contains the available
Offers with the corresponding details in case of Offer Level request. In order to call the Offer Level of
matchmaking in the request body the type property is set as “OFFER”. The array containing the offers which
were provided by the supplier agents is added to the body object with the following properties:

• sender_id is the id of the supplier agent

• agent_owner describes the business entity’s agent generating the offer

• good is the type of good which is provided by the business entity

• delivery including methods and time, are the details of delivery of the offered good

• payment including methods, currency and terms, are the details of payment for the offered good

• price including service, insurance and transportation, are the details of the cost of the offered good

The ranked preferences of the Offer Level matchmaking are added as well, defining the priority of the following
criteria, each with a number assigned:

1. Price

2. Delivery time

3. Payment terms

4. Business ranking

5. Certificate

6. Delivery methods (optional)

7. Payment methods (optional)

The preference property includes all the above criteria for the Raw_material service and the first three for the
Waste_management service.

Respectively, Figure 21 presents the response body of an Offer Level Matchmaking request. Specifically, it
contains the request details and the suggested offer produced by the Multi-criteria decision-making module of
the Matchmaker, along with the corresponding information. The offer_details property is exactly the same as
in the request body of Offer Level Matchmaking (Figure 20).

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 45 of 52 Submission date: 2019-06-28

Request: json

Required:true

 {

 conversation_id string

example: kjhfewKJDGWHJGWH7856186GBFWE

required: true

 sender_id string

example: agent_req_1

required: true

 agent_owner string

example: KLEEMANN

required: true

 suggested_offer [Json array

required: true

 offer_details { Json object

required: false

 }

 ...

]

Figure 21: Response of Offer Level Matchmaking

9.1.3 Service “findCustomers”

This web service is designed in order to enable agents to find possible customers for their services in the
COMPOSITION Marketplace. This functionality is related to Atlantis use case scenarios in which the
Marketplace should offer solutions to its participant. This service offers the opportunity to the Marketplace
participants to advertise its services and products to possible customers. The functionality of this service was
presented in more details at chapter 6 of this report. The request’s body schema is presented to the following
figure:

conversation_id string
example: kjhfewKJDGWHJGWH7856186GBFWE

required: true

sender_id string
example: agent_req_1

required: true

agent_owner string
example: KLEEMANN

required: true

Request_type string
example: KLEEMANN

required: true

Figure 22: Request Body for findCustomers Service

The response of the findCustomers services has the same schema as the Agent Level Matchmaking response
presented at Figure 19.

Figure 23 depicts the supported services that can be requested by an agent in the COMPOSITION ecosystem
and the specific goods/products that are available for each service.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 46 of 52 Submission date: 2019-06-28

Figure 23: Matchmaker supported services and goods

9.2 Matchmaker Deployment

The Matchmaker component was decided to be deployed as a Docker image as the rest of the project’s
component based on the Deployment View of D2.3 The COMPOSITION architecture specification I.

Docker is an open-source project aiming at automating the deployment of applications as portable, self-
sufficient containers that can run virtually anywhere, on any kind of server. It can be considered as a lightweight
alternative to full machine virtualization provided by hypervisors. While in the traditional hypervisor approaches
each virtual machine (VM) needs its own operating system, in Docker applications operate inside a container
that resides on a single host operating system that can serve many different containers at the same time.

The Matchmaker’s Docker image contains the complete component as it is described at Figure 1 at chapter 4.
In this image the Rule-based Matchmaker, the Query Engine, the Ontology Store and their corresponding APIs
are containing.

In order to create the Matchmaker’s Docker image and the corresponding container the official Docker image
for Apache Tomcat (Apache Tomcat, 2018) was used. Tomcat was selected as the web server environment
as it is web server environment in which Matchmaker’s Java code can run. So, for the creation of the
aforementioned Docker image the Web Application Resource file from the Matchmaker was added to the
Tomcat’s image. The corresponding Docker container of the Matchmaker image was deployed at the
COMPOSITION inter-factory Portainer (Docker, 2018) which offers management of Docker environments. A
view of the COMPOSITION inter-factory Portainer which is related to Marketplace components presented at
Figure 24.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 47 of 52 Submission date: 2019-06-28

Figure 24: COMPOSITION Inter-factory Production Server

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 48 of 52 Submission date: 2019-06-28

10 Conclusions

In conclusion, this deliverable describes the effort spent from M5 to M34 and represents the final outcome of
Task 6.5 - Brokering and Matchmaking for Efficient Management of Manufacturing Processes of WP6.
Moreover, this report documents the implemented COMPOSITION Matchmaker. Some minor updates are
possible as part of the continuous evaluation of the complete system by the end of the project (M36) and they
can be related with the UIs modifications and updates.

The COMPOSITION Matchmaker has been implemented and presented after an analysis of related works and
available tools and technologies. Moreover, the implemented version of the Matchmaker was presented in this
report with emphasis on semantic rules as it is a rule-based matchmaker which infer new knowledge by
applying rules. Furthermore, the enhancements in offers evaluation which are based on weighted scores
algorithms are presented as well.

After consideration of project’s requirements and architecture, and after an analysis of available technologies
and tools, a Matchmaker API is developed in Java and it is offered through RESTful web services. It provides
to the Marketplace agents access to the matchmaking functionalities. The last working version of the
Matchmaker component which contains the Rule-based Matchmaker and its corresponding API, the Ontology
API and the Ontology Store has been deployed as a Docker container in the COMPOSIITON inter-factory
container. This deployment enables the usage of these components by the Marketplace agents in a secure
way by using the provided capabilities of the implemented Security Framework from WP4.

The outcome of this deliverable mainly affects the WP6 and its components, the agents. By using the
Matchmaker services the agents are able to execute automated bidding processes in the Collaborative
Ecosystem or to find possible future customers within this ecosystem. In Task 6.5 were used already known
technologies such as semantics and rules, but they were applied in a Manufacturing Marketplace for matching
and evaluating offers in real-time which is not so usual. The implemented system was able to extend the usage
of Ontology. It was not used only for interoperability, but it is used also for real-time decision-making capitalizing
on knowledge inference. Furthermore, the COMPOSITION Matchmaker enhance its evaluation capability by
adopting weighted scores algorithms.

Finally, as it is perceived, the Matchmaker package is a complete system that can support online
manufacturing ecosystems that are focused on requests for suppliers and online negotiations. Further research
and development will be conducted for this component in future research projects (such as eFactory EU
project). There, the work has done in the COMPOSITION Matchmaker will be extended and its functionalities
will be combined with machine learning techniques which are going to upgrade the component’s intelligence.

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 49 of 52 Submission date: 2019-06-28

11 List of Figures and Tables

11.1 Figures

Figure 1: Matchmaker component in relation to COMPOSITION Collaborative Ecosystem architecture 8
Figure 2: Collaborative Manufacturing Services Ontology Class Overview .. 9
Figure 3: UC KLE-4 Data Flow .. 14
Figure 4: UC-KLE-7 Data Flow .. 15
Figure 5: UC-ATL-1 Data Flow .. 15
Figure 6: Apache Jena’s framework architecture (Apache Jena, 2018) ... 19
Figure 7: COMPOSITION Semantic Framework Architecture .. 22
Figure 8: Jena Rules Syntax (Apache Jena, 2018) ... 23
Figure 9: Jena Rule Example Representation ... 24
Figure 10: Agent to Matchmaker request sequence diagram ... 25
Figure 11: An example of the matchmaking of an agent request for provision of raw material Tube 27
Figure 12: Find Possible Customers Based on Materials Capability .. 29
Figure 13: Pseudocode of Offer Level Matchmaking Module ... 31
Figure 14: Offer Level evaluation process ... 34
Figure 15: The evaluation criteria diagram for raw material service ... 36
Figure 16: Matchmaker API Services .. 40
Figure 17: Matchmaker and Agents Communication .. 40
Figure 18: Request Body for Agent Level Matchmaking ... 41
Figure 19: Response of Agent Level Matchmaking ... 42
Figure 20: Request Body for Offer Level Matchmaking .. 44
Figure 21: Response of Offer Level Matchmaking .. 45
Figure 22: Request Body for findCustomers Service .. 45
Figure 23: Matchmaker supported services and goods .. 46
Figure 24: COMPOSITION Inter-factory Production Server .. 47

11.2 Tables

Table 1: Collaborative Manufacturing Services Ontology Classes ... 11
Table 2: Main Matchmaker Requirements... 20
Table 3: Jena Rule Example ... 23
Table 4: Examples of Built-in Primitives .. 24
Table 5: Rule for Matching Business Entities .. 26
Table 6: Rule for Filtering Based on Rating Requirement ... 27
Table 7: Rule for Capability Fulfilment ... 28
Table 8: Rule for Finding Possible Customers .. 29
Table 9: Find Best Available Price ... 31
Table 10: Rule to Match Request to Best Price... 32
Table 11: Rule to Find Best Available Delivery Time .. 32
Table 12: Rule to Match Request to Best Delivery Time ... 32
Table 13: Rule to Find Best Available Rating .. 33
Table 14: Rule to Match Request to Best Rating .. 33
Table 15: Table of criterion relative scores .. 35
Table 16: The pairwise comparison matrix and the priority vector .. 36
Table 17: A paradigm of best score calculation .. 36
Table 18: Rule for Certification Fulfilment ... 51
Table 19: Rule for Payment Methods Matching .. 51
Table 20: Rule for Delivery Methods Matching ... 51

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 50 of 52 Submission date: 2019-06-28

12 References

(Ameri, 2012) Ameri, F. and Patil, L. (2012). Digital manufacturing market: a semantic web-based
framework for agile supply chain deployment. Journal of Intelligent Manufacturing,
23(5), 1817-1832.

(Ameri, 2006) Manufacturing Service Description Language
https://www.researchgate.net/publication/267486591_An_Upper_Ontology_for_Man
ufacturing_Service_Description

(Apache Jena, 2018) Retrieved from JENA: https://jena.apache.org/documentation/inference/

(Apache Maven, 2018) Apache Maven: https://maven.apache.org/

(Apache Tomcat, 2018) Apache Tomcat: http://tomcat.apache.org/

(Belton and Gear,1983) Belton, V., and T. Gear, "On a short-coming of Saaty's method of analytic
hierarchies," Omega, 228-230, 1983.

(Benayoun, et al., 1966) Benayoun, R., B. Roy, and N. Sussman, "Manual de reference du programme electre,
Note de Synthese et Formation," No. 25, Direction Scientifique SEMA, Paris, Franch,
1966.

(Docker, 2018) Docker: https://www.docker.com/

(Fishburn, 1967) Fishburn, P.C., Additive Utilities with Incomplete Product Set: Applications to Priorities
and Assignments, Operations Research Society of America (ORSA) Publication,
Baltimore, MD, 1967.

(FITMAN-SeMa, 2018) Retrieved from http://www.ware4industry.com/?portfolio=metadata-and-ontologies-
semantic-matching-sema/

(FIWARE, 2018) Retrieved from FIWARE: http://www._ware4industry.com/

(GoodRelations Language, 2018) Retrieved from GoodRelations Language:
http://www.heppnetz.de/projects/goodrelations

(Hwang and Yoon,1981) Hwang C.L. and K. Yoon, Multiple Attribute Decision Making: Methods and
Applications, Springer-Verlag, New York, NY, 1981.

(Keycloak, 2018) Retrieved from Keycloak: https://www.keycloak.org/

(Lemaignan, 2006) Manufacturing’s Semantics Ontology or MASON is a manufacturing ontology, aimed
to provide a common semantic net in manufacturing domain.
http://ieeexplore.ieee.org/document/1633441/

(Miller and Starr, 1969) Miller, D.W., and M.K. Starr, Executive Decisions and Operations Research, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1969.

(M. C. Suárez-Figueroa, 2010) NeOn Methodology for Building Ontology Networks: Specification,
Scheduling and Reuse

(Nodine, 2000) Nodine M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M., and Unruh, A. (2000).
Active information gathering in InfoSleuth. International Journal of Cooperative
Information Systems, 9(1/2)

 (Roy, 1973) Roy, B., "How the outranking relation helps multiple criteria decision making." In:
Multiple Criteria Decision Making, Cochrane and Zeleny (Eds.), University of South
Carolina Press, SC, 179-201, 1973.

(Saaty, 1994) Saaty, T.L., Fundamentals of Decision Making and Priority Theory with the AHP, RWS
Publications, Pittsburgh, PA, U.S.A., 1994.

(Sycara, 1999) Sycara, K., Klusch, M., Wido, S., and Lu, J. (1999). Dynamic Service Matchmaking
Among Agents in Open Information Environments, volume 28, 47-53. ACM, New
York, NY, USA.

https://www.researchgate.net/publication/267486591_An_Upper_Ontology_for_Manufacturing_Service_Description
https://www.researchgate.net/publication/267486591_An_Upper_Ontology_for_Manufacturing_Service_Description
https://maven.apache.org/
https://www.docker.com/
http://www.ware4industry.com/?portfolio=metadata-and-ontologies-semantic-matching-sema/
http://www.ware4industry.com/?portfolio=metadata-and-ontologies-semantic-matching-sema/
http://www._ware4industry.com/

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 51 of 52 Submission date: 2019-06-28

13 ANNEX

Table 18: Rule for Certification Fulfilment

Textual Format Jena Rule Format

Business Entity X
requests an Offer X
And Business Entity X
matches with Business Entity Y
Which has an Offer that includes a Service
with an Operation allowed for a Material that
has certification Cert Y

Then Offer Y has a certification fulfillment

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[certificationFulfillment:

 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?x comp:matchesWith ?y)
 (?y v1:offers ?Offery)
 (?Offery v1:includes ?Servicey)
 (?Servicey comp:hasOperationy ?Operationy)
 (?Operationy p1:allowedProcessFor ?Materialy)
 (?Materialy comp:hasCertification ?Certy)
 ->
 (?Offery comp:hasCertificationFulfillment ?Certy)
]

Table 19: Rule for Payment Methods Matching

Textual Format Jena Rule Format

Business Entity X
requests an Offer X
that has price specification Price Spec X
that applies to Payment Method X
And Business Entity X
matches with Business Entity Y
Which has an Offer that has accepted
Payment Method X

Then Offer Y has a payment method match

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[PaymentMethodsMatch:

 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx v1:hasPriceSpecification ?PriceSpecx)
 (?PriceSpecx v1:appliesToPaymentMethod ?Methodx)
 (?x comp:matchesWith ?y)
 (?y v1:offers ?Offery)
 (?Offery v1:hasAcceptedPaymentMethod ?Methodx)
 ->
 (?Offery comp:hasMatchingPaymentMethod ?Methodx)
]

Table 20: Rule for Delivery Methods Matching

Textual Format Jena Rule Format

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix comp: <http://www.composition-
project/ontologies/COMPOSITIONv01#>.
@prefix v1: <http://purl.org/goodrelations/v1#>.
@prefix p1: <http://www.owl-ontologies.com/mason.owl#>.
@prefix MSDL: <http://www.composition-project.eu/ontologies/MSDL#>.

[DeliveryMethodsMatch:

COMPOSITION D6.10 COMPOSITION Brokering and Matchmaking Components II

Document version: 1.0 Page 52 of 52 Submission date: 2019-06-28

Business Entity X
requests an Offer X
that is available for Delivery Method X
And Business Entity X
matches with Business Entity Y
Which has an Offer that has Available
Delivery Method X

Then Offer Y has a delivery method match

 (?x rdf:type v1:BusinessEntity)
 (?x v1:seeksOffer ?Offerx)
 (?Offerx v1:hasAvailableDeliveryMethods ?Methodx)
 (?x comp:matchesWith ?y)
 (?y v1:offers ?Offery)
 (?Offery v1:hasAvailableDeliveryMethods ?Methodx)
 ->
 (?Offery comp:hasMatchingDeliveryMethod ?Methodx)
]

