

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D6.8 Collaborative Manufacturing Services Ontology and
Language II

Date: 2019-02-28

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 2 of 59 Submission date: 2019-02-28

Document control page

Document file: D6.8 Collaborative manufacturing services ontology and language II-v1
Document version: 1.0
Document owner: CERTH

Work package: WP6–COMPOSITION Collaborative Ecosystem
Task: T6.4 – Collaborative manufacturing services ontology and language
Deliverable type: OTHER

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Dimosthenis Ioannidis,
Alexandros Nizamis (CERTH)

2019-02-05 Revisions on Document Structure and
updates related to Architecture

0.2 Alexandros Nizamis, Vakakis
Nikolaos (CERTH)

2019-02-11 Updates on Chapters 4, 5 and 6 related to
SotA and Ontology

0.3 Mathias Axling (CNET),
Giuseppe Pacelli (ISMB)

2019-02-12 Updates on Chapter 4 related to Marketplace
and Agents

0.4 Alexandros Nizamis, Vakakis
Nikolaos, Alexopoulos Nikolaos
(CERTH)

2019-02-19 Updates and input on Chapters 7, 8 and 9
related to Ontology API, Security and
Deployment

0.5 Alexandros Nizamis (CERTH) 2019-02-20 Finalization for internal review

0.6 Vakakis Nikolaos, Ntinas
Christos (CERTH)

2019-02-27 Updates based on Peer Review Comments

1.0 Alexandros Nizamis (CERTH) 2019-02-28 Final version to be submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

 Alexander Grass (FIT) 2019-02-25 Minor changes and comments

 Peter Haigh (TNI-UCC) 2019-02-21 Minor edits and some edits to formatting.

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 3 of 59 Submission date: 2019-02-28

Index:
1. Executive Summary ... 4

2. Abbreviations and Acronyms ... 5

3. Introduction .. 6
3.1 Purpose, Context and Scope of this Deliverable ... 6
3.2 Content and Structure of this Deliverable .. 6

4. Collaborative Manufacturing Services Ontology in COMPOSITION Overall Architecture7
4.1 Overview .. 7
4.2 COMPOSITION Marketplace ... 7
4.3 Ontology and Agents ... 8
4.4 Ontology and Rule-based Matchmaker ... 9

5. State Of The Art Analysis of Ontology Languages, Building Methodologies and Tools10
5.1 Semantic Modelling ...10

5.1.1 Definitions ..10
5.1.2 Components ...10

5.2 Ontology Languages ..11
5.2.1 Traditional Ontology Languages ..11
5.2.2 Ontology Mark-up Languages ...12

5.3 Methodologies for Building Ontologies ..13
5.4 Leading Tools for Building Ontologies ...14

6. COMPOSITION Collaborative Manufacturing Services Ontology16
6.1 Imported Ontologies ..16

6.1.1 MSDL ...16
6.1.2 MASON ..17
6.1.3 GoodRelations Language ..17

6.2 COMPOSITION Ontology ..18
6.2.1 Methodology ..18
6.2.2 Ontology Specifications ...26

7. COMPOSITION Ontology API ..43
7.1 Methodology and Implementation Technologies ...43

7.1.1 Introduction to Apache Jena ..43
7.1.2 Implementation Details ..44

7.2 Supported Interfaces ...48

8. COMPOSITION Ontology’s Quality Control, Deployment and Security49
8.1 Quality Control ...49

8.1.1 Collaborative Manufacturing Services Ontology ..49
8.1.2 Ontology API ..49
8.1.3 Scalability of Ontology and Ontology API ..51

8.2 Deployment ..51
8.3 Ontology and Security Framework ..52

9. Conclusions ..53

10. List of Figures and Tables ...54
10.1 Figures ...54
10.2 Tables ..54

11. References ..56

12. ANNEX I ...58

13. ANNEX II ..59

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 4 of 59 Submission date: 2019-02-28

1. Executive Summary

The deliverable presents the work has done and the results of the Task 6.4 Collaborative Manufacturing
Services Ontology and Language. It aims to describe and analyse the COMPOSITION Ontology, which is
delivered as software alongside with this report. In addition, in this report the design of the Ontology API, which
is part of the complete semantic framework of the project, is described. The ontology framework design is
driven by COMPOSITION project use cases, requirements, WP6 activities related to Marketplace and
connections with other WPs.

COMPOSITION Collaborative Ecosystem needs a knowledge base in order to support flexible specification
and execution of manufacturing collaboration schemes. The knowledge base should enable the description of
supply and demand entities participating in the Ecosystem as well as the description of manufacturing services’
capabilities and resources for participating entities. In order to cover these needs a Collaborative
Manufacturing Services Ontology is adopted and will be used as a common vocabulary to offer interoperability
and representation of both meanings and data.

As the knowledge store keeps information about business entities and their services, the Ecosystem Agents
are able to communicate and make transactions based on this common information. An agent who requests a
service or a product will be able to find matching agents who support this service or product based on the
information of COMPOSITION Marketplace Ontology. Moreover, the Marketplace will be able to match
possible solutions or services providers by inferring new knowledge from the Ontology store and the
Matchmaking mechanisms from Task 6.5.

This document updates the D6.7 Collaborative manufacturing services ontology and language I. The structure
of the D6.7 was adopted also for this document. All the information from previous version, which is still up-to-
date or they are related to methodologies and tools that we have built the ontology were kept in this version
as well, in order to provide to the reader a complete picture of Task 6.4. In this updated version, information
related to Ontology’s extension is added. The updates are new classes, properties and individual and they are
integrated to first version’s descriptions in order to create a coherent document that documents in detail the
ontology. Moreover, the design of the Ontology API has been updated. In contrast, with the first version, in
the current one the API is part of the Matchmaker package and not a standalone application. The catalogue
of the supported web services of the API has been extended as well. Furthermore, both Ontology and Ontology
API have been deployed as a Docker1 container. As introduced in this version, they are also integrated with
the Marketplace Agents. The Agents are able to call services from Ontology API and modify the Ontology.
Their communication with the Agents is secured as it is based on services offered by the project’s Security
Framework. The connection of Ontology with the Security Framework is introduced in this report as well.

Besides purpose, context, and scope the first part of this document is devoted to the content and structure of
this Deliverable. The next parts describe both general information about Ontologies as well as specific
information about COMPOSITON’s Ontology. The general information is a state-of-the-art analysis of Ontology
languages, methodologies and tools. The COMPOSITION specific parts describe in details the Collaborative
Manufacturing Services Ontology and its implementation process. Furthermore, the COMPOSITION Ontology
API which has been developed for the purposes of this project is described. Details about the usage of the
delivered Ontology and conclusions of Task 6.4 are also provided.

1 https://www.docker.com/

https://www.docker.com/

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 5 of 59 Submission date: 2019-02-28

2. Abbreviations and Acronyms

Table 1: Abbreviations and acronyms are used in this deliverable

Acronym Meaning

API Application Programming Interface

BGW Border Gateway

CVS Concurrent Versions System

CXL COMPOSITION eXchange Language

DAML DARPA Agent Markup Language

DoA Description of Action

FLogic Frame Logic

IDE Integrated Development Environment

JSON JavaScript Object Notation

KIF Knowledge Interchange Format

MASON Manufacturing’s Semantics Ontology

MSDL Manufacturing Service Description Language

OCML Operational Conceptual Modeling Language

OIL Ontology Interchange Language/Ontology Inference
Layer

ORSD Ontology Requirements Specification Document

OKBC Open Knowledge Base Connectivity

OSF Open Semantic Framework

OWL Web Ontology Language

PAL Pedagogic Algorithmic Language

RDF Resource Description Framework

RDFa Resource Description Framework in Attributes

RDFS Resource Description Framework Schema

RDQL RDF Data Query Language

SMEs Small and medium-sized enterprises

SPARQL Simple Protocol and RDF Query Language

URI Uniform Resource Identifier

VM Virtual Machine

WP Working Package

XML eXtensible Markup Language

XOL XML-based Ontology Language

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 6 of 59 Submission date: 2019-02-28

3. Introduction

3.1 Purpose, Context and Scope of this Deliverable

The purpose of Task 6.4 Collaborative Manufacturing Services Ontology and Language and its corresponding
deliverables is the development of an Ontology framework as a part of COMPOSITION’s Agent Marketplace.
The scope of this deliverable is to describe the work that has been done for Task 6.4 and to present the
Collaborative Manufacturing Services Ontology. It further describes the release of an API, which offers services
for the manipulation of the Ontology, and it is part of the complete COMPOSITION semantic framework
alongside with the Ontology and the Matchmaker.

The current version of Ontology contains classes, properties and instances related to use cases, the
manufacturing domain, the supply-chain domain and software solutions for manufacturing ecosystems. Some
extensions in the current version of Ontology are possible and after the end of this task as the task is strongly
correlated with the Task 6.5 – Matchmaker which will be active for further 4 months. Prior to reaching M14 and
the first version of this deliverable the focus of Task 6.4 was the research in the Ontology field and the creation
of a first version of Collaborative Manufacturing Services Ontology based on well-known manufacturing and
e-commerce domain ontologies. Furthermore, technologies and APIs related to ontologies were examined and
in the context of COMPOSITION, the most suited were used in the software design. In the next period and
until the second iteration of the document (M30) further research conducted for the Ontology extension.
Furthermore, more individuals were created based on pilots’ needs and so a more stable version of the
Ontology was created, the Ontology API was extended, and both Ontology and the corresponding API was
deployed as Docker images (part of semantic framework) in order to be connected with the rest Marketplace
components such as the Marketplace Agents.

3.2 Content and Structure of this Deliverable

In this deliverable the COMPOSITION’s Collaborative Manufacturing Services Ontology and Language is
presented. The COMPOSITION’s Ontology API and its supported services are described too. In order to
properly describe the specifications of the Ontology components we decided to include the following basic
sections in this report:

Section 4 describes the integration of the Ontology component with the overall COMPOSITION architecture
and its interaction with other COMPOSITION components. Special attention is given to interactions with the
Marketplace Agents and the Matchmaker.

Section 5 includes a brief state-of-the-art analysis in the field of Ontologies and Semantic Modelling. Ontology
languages, methodologies and leading tools for building ontologies are presented.

Section 6 contains two main parts. In the first part the ontologies which are imported at COMPOSITION’s
Collaborative Manufacturing Services Ontology are analyzed. In the second part the current version of
Collaborative Manufacturing Services Ontology is presented and analysed.

Section 7 is about the COMPOSITION’s Ontology API. Implementation and current supported interfaces are
presented.

Section 8 contains the quality plan, the deployment and the connection with the Security Framework of the
project.

Section 9 outlines the conclusions of Task 6.4 and sums up this deliverable’s outcomes.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 7 of 59 Submission date: 2019-02-28

4. Collaborative Manufacturing Services Ontology in COMPOSITION Overall Architecture

This section describes the position of Collaborative Manufacturing Services Ontology and the position of the
Ontology API in COMPOSITION project. The main interactions of the previous two components with the rest
of the project’s components are described too. Also we present a short description of the Marketplace in order
to be clearer about the Ontology’s location and usage.

4.1 Overview

Task 6.4 Collaborative Manufacturing Services Ontology and Language and its corresponding software
deliverables are part of WP6 COMPOSITION Collaborative Ecosystem. The implemented Ontology is a core
part of Collaborative Ecosystem/ Marketplace, as it constitutes the ecosystem’s knowledge base.

Figure 1: COMPOSITION Marketplace components

As depicted in Figure 1, the Collaborative Manufacturing Services Ontology and the Ontology API belong to
the Agents framework. More precisely, they are parts of the Matchmaker package. Collaborative Manufacturing
Services Ontology initializes the Triple Store component and the Ontology API is the Ontology Query API
interface of the Query Engine. The Rule-based Matchmaker component uses the Ontology, which is stored in
the Ontology/Triple Store and after that; it applies rules in order to infer new knowledge from the Ontology.
Moreover, the Marketplace’s Agents are able to use the Ontology API and Ontology store via Broker and
AMQP Adapter components in order to read or store data.

4.2 COMPOSITION Marketplace

Modern manufacturing does not only involve the processes of a single factory, but an intricate network of
suppliers, sub-manufacturers and service providers connected in global supply chains. As stated in Strategic
Objective 1 (COMPOSITION, 2016), COMPOSITION will provide a digital automation framework for optimizing
the value chain; the production processes of the single factory. The goal outlined in Strategic Objective 2
(COMPOSITION, 2016), is to extend the single factory information management system to support a flexible
network of connected and interoperable factories in a collaboration ecosystem. Innovative services and
practices enabled by this ecosystem could optimize manufacturing and logistics processes and lead to faster
production cycles, increased productivity, less waste and more sustainable production. The COMPOSITION
Marketplace corresponds to the “Business” IT Layer and “Connected World” Hierarchy Level of the RAMI 4.0
Reference Architecture.

The COMPOSITION collaborative ecosystem will be realized through an interoperable agent-based
marketplace where the stakeholders are represented by agents that can exchange information, negotiate deals
and find new collaboration opportunities and models. Instead of custom-built, ad-hoc integrations with suppliers

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 8 of 59 Submission date: 2019-02-28

or sub-contractors, the goal of the agent-based marketplace is to provide automation of co-ordination,
negotiation and data sharing. There will be human intervention and supervision built in, but the degree of
autonomy of the agents will be sufficient to find and negotiate with previously unknown parties. The definition
of such a marketplace is simply that it is a set of intelligent agents interacting using a common vocabulary
through the same shared Broker, using the same shared platform services, i.e. Security Services, Management
Services, Matchmaker etc. (Figure 1 COMPOSITION Marketplace components).

Three distinct types of marketplaces have been identified: Open Marketplaces, Closed Marketplaces and
Virtual Marketplaces. These provide support for varying degrees of exclusivity in the configuration of a
marketplace, which has been identified in the requirements as a major factor in acceptance and adoption of
such a system.

An Open Marketplace is open to any stakeholder with valid COMPOSITION credentials; anyone who has
acquired valid credentials may enter their offers and requests and collaborate with any other stakeholder.
There may be several open marketplaces, primarily organized by the type of supply chain that is supported. A
stakeholder may participate in several marketplaces.

A Closed Marketplace is owned - and likely also operated - by one stakeholder and open only to a trusted
subset of other COMPOSITION stakeholders. It is a physically separate infrastructure from the Open
Marketplace, hosted as a separate platform with its own set of services and components. The Closed
Marketplace may be public, allowing join requests by agents in the Open Marketplace, or private, with
membership allowed by invitation only.

A Virtual Marketplace is a closed group of agents in the Open Marketplace that have chosen to collaborate
exclusively in the context of one or several negotiations. The Virtual Marketplace may exist only for a single
negotiation or be persistent over several negotiations, e.g. to support a specific business process or a specially
trusted group based on a formalized reputation and trust model.

D9.9 “Sustainable Business Models for IIMS in Manufacturing Industries” describes the evaluation of the
COMPOSITION Marketplace from a business perspective. A digital marketplace product (or virtual or online
marketplace) is a type of e-commerce site where product or service information is provided by multiple third
parties. Transactions are processed by the marketplace operator and then delivered and fulfilled by the
participating suppliers or wholesalers. (The classes, properties and instances in the domain of each business
model the marketplace platform is applied to are described by the Collaborative Manufacturing Services
Ontology.) Business models and value generation for three aspects of the COMPOSITION marketplace were
evaluated in D9.9: Waste Management Marketplace, Software Virtual Marketplace and Supply Chain
Marketplace. The model showed a positive net cashflow for all actors in all three cases. The final pricing
models and revenue streams for the COMPOSITION collaborative ecosystem will be selected and presented
in D9.11 “Final Exploitation Strategy and Business Plans”.

4.3 Ontology and Agents

Agents are implemented and operated by different organizations, in general different from the bodies operating
the COMPOSITION Marketplace or specifying the Collaborative Manufacturing Services Ontology.
Nevertheless, Agent’s core behaviour and internal aspects must necessarily reflect the classes, functions and
attributes defined in the common ontology, so to enable interoperable behaviour.

Due to the “open” and potentially evolving nature of the marketplace, suitable techniques must be applied to
ensure that the agent’s implementation and the data models linked with the Ontology remain aligned.

To do so, and for agents to have a fully-transparent communication with the Matchmaker and keeping up with
the evolving ontologies, a proxy-like service has been implemented in the Agent Management System (AMS).
Keeping the complexity of interactions in the AMS allows the definition of a common protocol and data format
with the stakeholder agents who no longer need to care about adapting to the evolving ontologies.

Agents contact the AMS in order to request the Matchmaker services through a simple JSON, in order to:

• Request the list of the suitable agents for a certain negotiation, e.g. the agents offering a certain
service on the marketplace

• Evaluate the offers that have been received during a negotiation

A more detailed description about agents and their interaction is available in deliverables:

- D6.5: Connectors for Inter-factory Interoperability and Logistics I

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 9 of 59 Submission date: 2019-02-28

- D6.3: COMPOSITION marketplace I

Further updates will be provided in D6.4: COMPOSITION Marketplace II.

4.4 Ontology and Rule-based Matchmaker

COMPOSITION’s Rule-based Matchmaker and Collaborative Manufacturing Services Ontology are two
extremely connected components. The Matchmaker is strongly correlated with the Collaborative
Manufacturing Services Ontology and its functionality depends exclusively on the Ontology store.

Ruled-based Matchmaker’s main goal is to match Agents’ offers and requests. Matchmaker supports semantic
matching in terms of manufacturing capabilities, in order to find the best possible supplier to fulfill a request for
a service, raw materials or products involved in the supply chain. Matchmaker considers different decision
criteria for supplier selection according to several qualitative and quantitative factors.

In order to be able to perform matching, the Ruled-based Matchmaker infers new knowledge by applying
semantic rules in the knowledge stored into the Collaborative Manufacturing Services Ontology. By applying
this set of rules, the Matchmaker is able to extract useful conclusions from ontology and connect Agents which
are not explicitly connected. The matchmaking process will be analysed in more details at D6.9 and D6.10
deliverables. Also, some details about matchmaking process and Ontology’s usage will be mentioned at
Section 6 from the current report.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 10 of 59 Submission date: 2019-02-28

5. State Of The Art Analysis of Ontology Languages, Building Methodologies and Tools

This section is a thorough analysis of Ontology field, languages, building methodologies and tools.

5.1 Semantic Modelling

In a general sense, semantics is the study of meanings of the message behind the words. “Semantic” in the
context of data means “from the user’s perspective”. It is the data in context-where the meaning is. Information
is also often defined as the data in context. Semantic therefore, while not synonymous with information, carries
with it the same sense of data at work, or data in the worker’s hands. The semantic data model is a method of
structuring data in order to represent it in a specific logical way. It is a conceptual data model that includes
semantic information that adds a basic meaning to the data and the relationships that lie between them. This
approach to data modelling and data organization contributes to easy development of application programs
and also easy maintenance of data consistency when data is updated.

5.1.1 Definitions

In computer and information science, ontology is a technical term denoting an artefact that is designed to
enable the modelling of knowledge. One of the most well-known definitions was presented by Studer and
colleagues [Studer et al., 1998]: “An ontology is a formal, explicit specification of a shared conceptualization”.
The definition explains the ontology as an approach of an abstract model of some incident in the world with
relevant concepts of that incident. Concepts and constrains are defined in an accurate way. The ontology
should be machine-readable as well as generally accepted.

Ontology can be viewed as a level of abstraction of data models intended for modelling knowledge about
individuals, their properties, and their association to other individuals. Ontologies are typically specified in
languages that allow abstraction away from data structures and implementation strategies. In practice, the
languages of ontologies are closer in expressive power to first-order logic than languages used to model
databases. For this reason, ontologies are said to be at the "semantic" level, whereas database schemas are
models of data at the "logical" or "physical" level.

A strong advantage regarding ontologies is that they are independent from lower level data models and used
for integrating heterogeneous databases, enabling interoperability among disparate systems, and specifying
interfaces to independent, knowledge-based services. In the technology stack of the Semantic Web standards,
ontologies are called out as a definitive layer. A multitude of standard languages and a variety of tools have
been built for creating and working with ontologies.

5.1.2 Components

Gruber (Gruber, 1993a) proposed modelling ontologies using frames and first order logic. He identified five
kinds of components: classes, relations, functions, formal axioms and instances.

Classes represent concepts, which are taken in a broad sense. For instance, in the traveling domain, concepts
are: locations (cities, villages, etc.), lodgings (hotels, camping, etc.) and means of transport (planes, trains,
cars, ferries, motorbikes and ships). Classes in the ontology are usually organized in taxonomies through
which inheritance mechanisms can be applied. We can represent a taxonomy of entertainment places (theater,
cinema, concert, etc.) or travel packages (economy travel, business travel, etc.). Classes can represent
abstract concepts (intentions, beliefs, feelings, etc.) or specific concepts (people, computers, tables, etc.).

Relations represent a type of connection between concepts of the domain. They are formally defined as any
subset of a product of n sets, that is: R ⊂ C1 x C2 x ... x Cn. Ontologies usually contain binary relations. The
first argument is known as the domain of the relation, and the second argument is the range. For instance, the
binary relation Subclass-Of is used for building the class taxonomy. Examples of classifications are: a Four-
Star-Hotel is a subclass of a Hotel, a Hotel is a subclass of Lodging, and a Flight is a subclass of Travel, which
is identified by the flight-number.

Functions are a special case of relations in which the n-th element of the relation is unique for the n-1 preceding
elements. This is usually expressed as: F: C1 x C2 x ... x Cn-1 ⇒ Cn. An example of a function is Pays, which
obtains the price of a room after applying a discount. The lambda-body expression on the definition is written
in KIF and denotes the value of the function in terms of its arguments.

Formal axioms are a priori assertions always assumed to be true. They are normally used to represent
knowledge that cannot be formally defined by the other components. In addition, formal axioms are used to

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 11 of 59 Submission date: 2019-02-28

verify the consistency of the ontology itself or the consistency of the knowledge stored in a knowledge base.
Formal axioms are very useful to infer new knowledge. An axiom in the traveling domain would be that it is not
possible to travel from the USA to Europe by train.

Instances are used to represent elements or individuals in ontology. They form the ground or atomic level of
the ontology. An example of instance of the traveling domain concept is the flight that arrives at Seattle on
February 8, 2002 and costs 300 (US Dollars, Euros, or any other currency).

5.2 Ontology Languages

Ontology languages are formal languages used to construct ontologies. They allow the encoding of knowledge
about specific domains and often include reasoning rules that support the processing of that knowledge. The
Selection of an Ontology Language is one of the key decisions to take in the ontology development process.
There are many ontology implementation languages and general Knowledge Representation (KR) languages
and systems that have been used for implementing ontologies. One must firstly decide what is needed
regarding expressiveness and reasoning in order to come to a conclusion about which languages satisfy these
requirements.

There are several steps in the implementation of different ontology components in a language taking into
account the Knowledge Representation modelling underlying the language. The first step is to describe how
concepts are built and then how concept attributes are defined. Usually there are two kinds of attributes
distinguished: instance attributes which describe concept instances and can take their values in those
instances and class attributes which describe the concept and take their values in it. Next step is the attribute
constraint specification and then the creation of concept taxonomies.

Relations are very important components in ontology modelling as they describe the relationships that can be
established between concepts, and consequently, between the instances of those concepts. Depending on
the language, relations should be given different names. Afterwards, functions are described, in case they can
be defined in the language. In many languages, functions are usually defined as special cases of relations.

Upcoming is the definition of formal axioms. Formal axioms can appear embedded in other ontology definitions
or as independent definitions in the ontology. Next, instances are included along with comments about how
they can be created, how their attribute values can be filled and how a relation that holds between instances
can be represented in the language. Finally, other components that can be expressed in the language, such
as rules, procedures, ontology mappings, are presented. The remainder of this chapter examines specific
languages that are used in ontology modelling.

5.2.1 Traditional Ontology Languages

Ontolingua and KIF

Ontoligua is an ontology language based on KIF (Genesereth and Fikes, 1992; NCITS, 1998) and on the
Frame Ontology (Gruber, 1993a). KIF (Knowledge Interchange Format) development was designed to solve
the problem of language heterogeneity in knowledge representation, and to allow the interchange of knowledge
between diverse information systems. KIF is a prefix notation of first order predicate calculus with some
extensions. It permits the definition of objects, functions and relations with functional terms and equality. KIF
has declarative semantics and permits the representation of meta-knowledge, reifying functions and relations,
and non-monotonic reasoning rules.

LOOM

LOOM (MacGregor, 1991; LOOM tutorial, 1995) was being developed by the Information Science Institute
(ISI) of Southern California University. LOOM was not exactly built as a language for implementing ontologies
but as an environment for the construction of general-purpose expert systems and other intelligent
applications. LOOM is based on the description logics (DL) paradigm and is composed of the “description” and
the “assertional” sublanguages.

OKBC

OKBC (Chaudhri et al., 1998) is the acronym for Open Knowledge Base Connectivity. The objective of KBC
was to create a frame-based protocol to access knowledge bases stored in different knowledge representation
systems.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 12 of 59 Submission date: 2019-02-28

OCML

OCML (Motta, 1999) stands for Operational Conceptual Modeling Language. One of several pragmatic
considerations that were taken into account in its development was its compatibility with Ontolingua. OCML
can be considered as a kind of “operational Ontolingua” that provides theorem proving and function evaluation
facilities for its constructs.

FLogic

FLogic (Kifer et al., 1995) is the acronym of Frame Logic. FLogic was initially developed as an object oriented
approach to first order logic. It was specially used for deductive and object-oriented databases, and was later
adapted and used for implementing ontologies. FLogic integrates features from object-oriented programming,
frame-based KR languages and first order logic.

5.2.2 Ontology Mark-up Languages

SHOE

SHOE (Luke and Heflin, 2000) stands for Simple HTML Ontology Extension. SHOE was created as an
extension of HTML with the aim of incorporating machine-readable semantic knowledge in Web documents. It
provides specific tags for representing ontologies. As these tags are not defined in HTML, the information
inside them is not shown in standard Web browsers. There is also a slight variant of the SHOE syntax for XML
compatibility.

XOL

XOL (Karp et al., 1999) stands for XML-based Ontology exchange Language. The purpose of this language
was to provide a format for exchanging ontology definitions among a heterogeneous set of software systems.
Therefore, XOL was not intended for developing ontologies, it was created as an intermediate language for
transferring ontologies among different database systems, ontology-development tools, and application
programs.

RDF and RDF Schema

RDF (Lassila and Swick, 1999) stands for Resource Description Framework. It is being developed by the W3C
to create metadata for describing Web resources, and it has been already proposed as a W3C
recommendation. The RDF data model is equivalent to the semantic networks formalism and consists of three
object types: resources, properties and statements.

The RDF data model does not have mechanisms for defining the relationships between properties and
resources. This is the role of the RDF Vocabulary Description language (Brickley and Guha, 2003), also known
as RDF Schema or RDFS. RDF(S) is the term commonly used to refer to the combination of RDF and RDFS.
Thus, RDF(S) combines semantic networks with frames but it does not provide all the primitives that are usually
found in frame-based knowledge representation systems. In fact, neither RDF, nor RDFS, and nor their
combination in RDF(S) should be considered as ontology languages per se, but rather as general languages
for describing metadata in the Web. RDF(S) is widely used as a representation format in many tools and
projects, and there exists a huge amount of resources for RDF(S) handling, such as browsing, editing,
validating, querying, storing, etc. In the section about further readings, we provide several URLs where updated
information about RDF(S) resources can be found.

OIL

OIL (Horrocks et al., 2000; Fensel et al., 2001) stands for Ontology Interchange Language and Ontology
Inference Layer. Like the other languages previously presented, for example, SHOE and RDF(S), OIL was
built to express the semantics of Web resources. OIL was superseded by DAML+OIL, however, software is
still available to manage and reason with OIL ontologies.

DAML+OIL

DAML+OIL (Horrocks and van Harmelen, 2001) was developed by a joint committee from the USA and the
European Union (mainly OIL developers) in the context of the DARPA project DAML (DARPA Agent Markup
Language). The main purpose of this language is to allow semantic markup of Web resources.

OWL

OWL (Dean and Schreiber, 2003) is the result of the work of the W3C Web Ontology (WebOnt) Working Group,
which was formed in November 2001. This language derives from and supersedes DAML+OIL. It covers most

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 13 of 59 Submission date: 2019-02-28

of DAML+OIL features and renames most of its primitives. As the previous languages, OWL is intended for
publishing and sharing ontologies in the Web.

OWL 2

The OWL 2 Web Ontology Language or OWL 2 is an ontology language for the Semantic Web with formally
defined meaning. OWL 2 is an extension and revision of the OWL Web Ontology Language developed by the
W3C Web Ontology Working Group. OWL 2 has similar structure with OWL 1 and offers new features such as
richer datatypes, data ranges, keys, property chains, cardinality restrictions etc. OWL 2 ontologies provide
classes, properties, individuals, and data values and are stored as Semantic Web documents. The ontologies
were written on OWL 2 can be used along with information written in RDF, and OWL 2 ontologies themselves
are primarily exchanged as RDF documents.

SPARQL

Even if it is not an ontology language, SPARQL (E. Prud’hommeaux et al, 2008) is mentioned here because it
supports querying the previous languages. SPARQL allows performing queries over RDF data and, since both
RDF-S and OWL are based in RDF, also over RDF-S and OWL ontologies. SPARQL can be used to express
queries across diverse data sources and its syntax is similar to SQL to facilitate its adoption.

Query in the Semantic Web context means technologies and protocols that can programmatically retrieve
information from the Web of Data. RDF provides the foundation for publishing and linking data, allowing many
technologies to embed data in documents, such as RDFa, or expose what is stored in databases, or make it
available as RDF files.

The SPARQL has been designed to send queries and receive results, e.g. through HTTP or SOAP, within the
Semantic Web, which is typically represented using RDF as a data format. This query language is based on
(triples) patterns that are similar to RDF triples, and the results of a SPARQL query will be the resources for
all triples that match those patterns. Thus, it provides a powerful tool that allows extracting complex information
(i.e., existing resource references and their relationships) and present them in different friendly format (i.e.
tables).

5.3 Methodologies for Building Ontologies

The goal of this section is to present the foremost methodologies used to build ontologies. The methodologies
that will be presented are METHONTOLOGY, On-To-Knowledge, DILIGENT and the most recently developed,
NeOn methodology.

METHONTOLOGY

This methodology was developed within the Ontology group at Universidad Politécnica de Madrid. It enables
the construction of ontologies at the knowledge level. METHONTOLOGY has its roots in the main activities
identified by the software development process (IEEE, 1996) and in knowledge engineering methodologies
(Gómez-Pérez et al., 1997; Waterman, 1986). This methodology includes the identification of the ontology
development process, a life cycle based on evolving prototypes, and techniques to carry out each activity in
the management, development-oriented, and support activities.

On-To-Knowledge

The aim of the On-To-Knowledge project (Staab et al., 2001) is to apply ontologies to electronically available
information for improving the quality of knowledge management in large and distributed organizations. A
methodology and tools were developed for intelligent access to large volumes of semi-structured and textual
information sources in intra-, extra-, and internet-based environments.

The methodology includes a structure for building ontologies to be used by the knowledge management
application. Therefore, the On-To-Knowledge methodology for building ontologies proposes to build the
ontology taking into account how the ontology will be used in further applications. Consequently, ontologies
developed are highly dependent of the application. Another important characteristic is that On-To-Knowledge
proposes ontology learning for reducing the efforts made to develop the ontology. The methodology also
includes the identification of goals to be achieved by knowledge management tools, and is based on an
analysis of usage scenarios (Staab et al., 2001). On-To-Knowledge is considered as a methodology because
it has a set of techniques, methods, principles for each of its processes, and because it indicates the
relationships between such processes.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 14 of 59 Submission date: 2019-02-28

DILIGENT

DILIGENT is a methodology, which is intended to support domain experts in a distributed setting to engineer
and evolve ontologies. It comprises five main activities: build, local adaptation, analysis, revision and local
update. The process starts by having domain experts, users, knowledge engineers, and ontology engineers
build an initial ontology. DILIGENT focuses on distributed ontology development involving different
stakeholders, who have different purposes and needs and who usually are not at the same location. Moreover,
we do not require completeness of the initial shared ontology with respect to the domain. DILIGENT is not
constrained to a certain ontology formalism or language. The methodology covers the whole range of possible
ontologies, starting with simple taxonomies, vocabularies and topic hierarchies (represented as instances of
topic ontology) up to foundational ontologies with many axioms.

NeOn

NeOn aims to advance the state of the art in using ontologies for large-scale semantic applications in the
distributed organizations. Particularly, the methodology improves the capability to handle multiple networked
ontologies that exist in a particular context, are created collaboratively, and might be highly dynamic and
constantly evolving. It is a scenario-based methodology that supports different aspects of the ontology
development process, as well as the reuse and dynamic evolution of networked ontologies in distributed
environments, where knowledge is introduced by different people (domain experts, ontology practitioners) at
different stages of the ontology development process. This methodology has been used to build ontology
networks in different domains and areas and by people with diverse background.

5.4 Leading Tools for Building Ontologies

In order to ease the task of building ontologies and implementing them in ontology languages, a lot of tools
and building environments were created. There are interfaces that help users in the ontology development
process by performing some of the main activities, such as conceptualization, implementation, consistency
checking and documentation. An overview of the new generation ontology engineering environments is
presented hereafter.

Protégé

Protégé is an open platform oriented to the task of ontology and knowledge-based development. It is an open
source, standalone application (also available on-line through Web Protégé), with an extensible architecture.
The core of this environment is the ontology editor, and it holds a library of modules that can be plugged, called
plug-ins, to add more functions to the environment.

Protégé knowledge model is based on frames and first order logic. The main modelling components of protégé
are classes, slots, facets and instances. Classes are organized in class hierarchies where multiple inheritances
is permitted and slots can also be organized in slot hierarchies. The knowledge model allows expressing
constraints in the PAL language, which is a subset of KIF, and allows expressing metaclasses, which are
classes whose instances are also classes. Classes can be concrete or abstract. The former may have direct
instances while the latter cannot have them; instances of the class must be defined as instances of any of its
subclasses in the class taxonomy.

In terms of interoperability, once an ontology have been created in Protégé, there are many ways to access
Protégé ontologies from ontology-based applications. All the ontology terms can be accessed with the Protégé
Java API. Hence it is easy for ontology-based applications to access ontologies as well as use other functions
provided by different plug-ins.

Open Semantic Framework

Open Semantic Framework (OSF) is an integrated software stack using semantic technologies for knowledge
management. It has a layered architecture that combines existing open source software with additional open
source components. OSF is designed as an integrated content platform accessible via the Web, which
provides needed knowledge management capabilities to enterprises.

The OSF framework is made operational via ontologies that capture the domain or knowledge space, matched
with internal ontologies that guide OSF operations and data display. This design approach is known as
ODapps, for ontology-driven applications. Ontologies are, in essence, graph structures. Graphs are among
the most ubiquitous models of both natural and human-made systems. They can be used to model many types
of relations and process dynamics multiple systems. Any problem of practical interest may be represented by
a graph. They are especially well suited to capture and manage knowledge domains.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 15 of 59 Submission date: 2019-02-28

Anzo

Anzo is software based on Semantic Web Technologies for data management and advanced analytics. The
Anzo software can be used for data integration, search, analysis, visualization, and interaction. The collection
of Anzo modules is also well-suited to building agile, real-time applications that integrate with varied data
sources, and allow for easy customization and evolution as business environments change providing
significant end-user self-service.

There are three products in the Anzo suite. The first, Anzo Data Collaboration Server is a semantic-standards-
compliant environment for connecting systems and storing/accessing data. Second is Anzo on the Web, a
Web visualization tool with which non-technical users can create mashed-up views of any data accessible
through the Anzo Data Collaboration Server. Anzo on the Web supports semantic lenses that match
themselves with data, automatically providing appropriate views to users depending on the type of data they
are working with. Last is Anzo for Excel, a plug-in for MS Excel that enables Excel spreadsheets to be mapped
to an ontology and the data within the spreadsheets to be stored as RDF in the Anzo Server. All of the Anzo
software products leverage semantic standards including RDF, SPARQL, RDFS, OWL, and RDFa.

Vocol

Vocol (L. Halilaj, et al., 2016) is an Integrated Environment for Collaborative Vocabulary Development. Vocol
environment tool supports the basic activities such as modeling, population and testing during vocabulary
development. The tool is based on agile software and content development methodologies and it is available
on the following Github2 repository: https://github.com/vocol/vocol. Vocol supports ontology development,
syntactic and semantic errors’ checking, generation of documentation and visualization, a query
engine(supports SPARQL) and a version control system.

Mobi

Mobi3 is a free and open source tool that links data sources to knowledge graphs. The tool offers a web-based
collaborative environment for teams to create, share, and evolve data models together. Mobi requires Java 8
and it is built with Apache Karaf4 and utilizes OWL 2 for authoring ontologies. Mobi offers ontology managing
and versioning. It supports SPARQL as query language and handling graph data modelled using the Resource
Description Framework. Mobi is also available as a Docker image on Docker Hub.

2 https://github.com/
3 https://mobi.inovexcorp.com/
4 http://karaf.apache.org/

https://github.com/vocol/vocol
https://github.com/
https://mobi.inovexcorp.com/
http://karaf.apache.org/

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 16 of 59 Submission date: 2019-02-28

6. COMPOSITION Collaborative Manufacturing Services Ontology

This section consists of two sub-sections. The first one is a brief analysis of the well-known ontologies in
manufacturing and e-commerce domains, which selected and imported to COMPOSITION’s Collaborative
Manufacturing Services Ontology. The second part is a thorough analysis of the design of COMPOSITION’s
Collaborative Manufacturing Services Ontology. Both the methodology has been followed for Ontology’s
development and the Ontology’s specifications are analysed. Furthermore, the COMPOSITION’s Ontology
has further extended and re-engineered after the import of existing ontologies in order to meet the
requirements of the project. This process is described in this chapter as well.

6.1 Imported Ontologies

The manufacturing domain should be supported as the COMPOSITION Ontology should be able to represent
manufacturing services and resources. For this reason, the hereinafter presented ontologies MSDL (Ameri,
2006) and MASON (Lemaignan, 2006), are imported to the COMPOSITION Ontology as they are
manufacturing domain specific and they offer a large variety of classes and properties about this domain. On
the other hand, the COMPOSITION Ontology should be able to support collaboration mechanism between
business entities. It should be able to describe relations and transactions between supply and demand entities
which participate in Marketplace. This need lead us to import the GoodRelations Language (GoodRelations,
2011) ontology, which is one of the most well-known and widely used ontologies in e-commerce domain.

6.1.1 MSDL

The Manufacturing Service Description Language or MSDL, is an OWL-based ontology developed for formal
representation of manufacturing services. PLM Alliance research group at the University of Michigan started
MSDL development and the first version released at 2005. Currently it is maintained and extended under
supervision of Farhad Ameri in the INFONEER Research Group at Texas State University.

MSDL provides sufficient expressivity and extensibility for manufacturing knowledge modelling. MSDL is
particularly suitable for description of manufacturing capabilities of SMEs. MSDL describes manufacturing
capability into different level of abstraction (shop-level, supplier-level, machine-level, process-level, and
device-level) and it is designed to enable automated supplier discovery in distributed environments with focus
on mechanical machining services.

Figure 2: Core Classes of MSDL (Ameri, 2006)

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 17 of 59 Submission date: 2019-02-28

MSDL has two basic parts, MSDL core and MSDL extension. MSDL core is a static part which contains the
basic classes for the manufacturing domain description and it is public available as part of many related public
reports by the authors. The core classes are presented to Figure 2. MSDL extension is the dynamic part which
includes sub-classes and instances built by users. This means that a specific industry is able to build its
ontology based on MSDL core part by creating an extension as a dynamic part dedicated to its special domain
needs.

6.1.2 MASON

MASON (MAnufacturing’s Semantics ONtology) is a manufacturing ontology, aimed to draft a common
semantic net in the manufacturing domain. MASON was first proposed by Lemaignan in MASON: A Proposal
for an Ontology of Manufacturing Domain. The proposed ontology is written in Web Ontology Language (OWL).
The MASON OWL file is public available.

MASON ontology is built over three main concepts:

• Entities which aim to provide concepts for specifying an abstract view of a product

• Operations relate to processes linked to the manufacturing domain and cover manufacturing, logistic,
human and launching operations

• Resources represents the whole set of manufacturing linked resources, tools, human resources, and
geographic resources like factories and workshops

Figure 3 presents an overview of MASON main classes and sub-classes, and the object properties which
connect them:

Figure 3: MASON main classes and properties (Lemaignan, 2006)

As depicted in the figure MASON achieves to semantically connect all of its main concepts using object
properties. More precisely it is able to connect resources with the operations in a way that it becomes clear,
which human resource executes an operation and what materials and machines are required for this execution.
Also, it connects operations and resources with the entities they produce. An entity is connected with raw
materials, tools, and manufacturing processes which induces costs to this entity.

6.1.3 GoodRelations Language

GoodRelations Language by Martin Hepp is a standardized ontology or vocabulary for products, company
data, prices and stores. Nowadays it is one of the most popular ontologies in e-commerce. It can be embedded

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 18 of 59 Submission date: 2019-02-28

at web pages and can be processed by many users. In this way increases the visibility of companies’ services
and products in search engines and other relevant applications.

GoodRelations Language goal is to define data structures for e-commerce that are:

• Industry-neutral in a way to be suitable for many kind of services and goods

• Syntax-neutral. This means that it should support a large variety of popular syntax such as RDF/XML,
RDFa and JSON

• Valid across the different stages of the value chain. It has to be valid from raw materials to after-sales
supporting services

Figure 4: GoodRelations Language main classes and properties5

The above figure illustrates the main classes of GoodRelations Language in a graph format produced by
Protégé tool. The most important of these classes that lead GoodRelations Language to reach its goals are:

• BusinessEntity: For a company or individual representation

• Offering: For an offer to sell, or repair something, or to express interest for something

• ProductOrService: For the description of a product or a service

• Location: For the description of a store location from which an offer is available

By combining these basic classes with the other classes and properties it allows, GoodRelations Language to
offer a wide vocabulary, which is suitable to describe almost any kind of e-commerce transactions.

6.2 COMPOSITION Ontology

6.2.1 Methodology

As mentioned in previous sections, Collaborative Manufacturing Services Ontology and Language should be
able to describe both the manufacturing and e-commerce domain. In order to achieve this, well-known
ontologies from each of these domains will be imported and re-engineered.

From the presented methodologies in section 5.3 – Methodologies for Building Ontologies of this report, the
NeOn methodology is selected as the most appropriate one, to cover the needs of the COMPOSITION
Ontology’s design process. Methodologies such as DILIGENT, METHODOLOGY and On-to-Knowledge are

5 http://www.heppnetz.de/ontologies/goodrelations/v1.html#uml

http://www.heppnetz.de/ontologies/goodrelations/v1.html#uml

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 19 of 59 Submission date: 2019-02-28

highly respected and were been used for years from researchers and developers in ontologies design but in
cases of a single ontology development from specifications to implementation. In the case of COMPOSITION
we have to combine two different domains, to associate some of intra-factory elements with the Marketplace
and to create a domain which will be capable to express and match offers and requests based on
manufacturing services and capabilities. Therefore, a methodology, which supports existing knowledge re-
usage, re-engineering and offers guidelines in order to build new ontologies, is more related to COMPOSITION
targets. This led us to choose the NeOn Methodology over the other methodologies which do not support this
kind of design guidelines. More details about the NeOn Methodology are provided in the following sub-section.

Regarding the tools which were presented at the section 5.4 - Leading Tools for Building Ontologies, as a part
of our literature review, we have selected Protégé as our main tool for Ontology’s implementation. It supports
OWL 2.0 and RDF and offers a friendly user interface environment. Protégé is an open-source standalone
application compatible with the COMPOSITION project’s needs for open and free tools. Protégé supports
reasoners6 which infer logical consequences from a set of axioms and a wide variety of plugins which offers
functionalities related to ontology querying, graphical representation and documentation. Some pictures of
Protégé environment are available on ANNEX section.

6.2.1.1 NeOn Methodology

The selected methodology for the construction of the Collaborative Manufacturing Services Ontology is the
NeOn methodology as already mentioned. The NeOn Methodology (M. C. Suárez-Figueroa, 2010) proposes
a variety of different pathways to develop ontologies. These pathways are classified by nine proposed
scenarios which manage to cover the most commonly needs occurred during ontology design phase.

The aforementioned nine scenarios for ontology and ontology networks building are the following:

Scenario 1: From Specification to Implementation is about ontology development from scratch without any
previous knowledge reuse.

Scenario 2: Reusing and re-engineering non-ontological resources unfolds those cases where non-ontological
resources were analysed and used in order to build the new ontology

Scenario 3: Reusing ontological resources covers the case of reusing ready ontological resources.

Scenario 4: Reusing and re-engineering ontological resources refers not only in ontological resources reuse.
These resources been engineered again.

Scenario 5: Reusing and merging ontological resources cover the case in which the developers choose more
than one of ontological resource to use.

Scenario 6: Reusing, merging, and re-engineering ontological resources covers the case that developers not
only choose and merge ontological resources but they also re-engineer them.

Scenario 7: Reusing ontology design patterns. Here, developers access repositories in order to reuse design
patterns.

Scenario 8: Restructuring ontological resources is related to cases developers restructure the ontological
resources to be integrated in the building ontology network.

Scenario 9: Localizing ontological resources, here the ontology developers adapt ontology to other languages
and create a multilingual ontology.

Except the above scenarios the following three valuable components are also provided by NeOn methodology:

• The NeOn Glossary of processes and activities. This glossary identifies and defines the processes
and activities involved in ontology’s construction. It tries to address the lack of a standard in Ontology
Engineering.

• Two ontology network life cycle models. These models specify how to organize the processes and
activities based on NeOn Glossary into phases.

• A set of methodological guidelines for the processes and activities included in the NeOn Glossary are
provided.

6 https://en.wikipedia.org/wiki/Semantic_reasoner

https://en.wikipedia.org/wiki/Semantic_reasoner

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 20 of 59 Submission date: 2019-02-28

Figure 5: Set of nine scenarios for building ontologies and ontology networks (M.C. Sua´rez-Figueroa, 2012)

For the COMPOSITION Ontology’s design the three ontologies should be imported, combined and re-
engineered in order to eliminate duplicate information and create a new coherent ontology. As depicted in
previous figures and from the aforementioned brief analysis of nine scenarios for building ontologies, Scenario
6 Reusing, merging, and re-engineering ontological resources is the one which is completely related to
COMPOSITION Ontology’s purposes and specifications.

In more details, in Scenario 6 the ontology developers should apply the following steps during the building
phase:

1. Select the best possible ontological resources to reuse based on their needs

2. Decide how to reuse the selected ontological resources

3. Perform:

a. Ontology aligning activity which targets in obtaining a set of alignments among the
selected resources

b. Ontology merging activity which merge the resources using the previous alignments in
order to avoid possible overlapping

4. Carry out the ontological resource re-engineering process. Here the resources should be modified
in order to be fully compatible with the design’s purposes.

5. Development of ontologies

a. Specify the requirements that the ontology should fulfil (use Ontology Requirements
Specification Document - ORSD)

b. Ontology implementation activity. Here developers start from structure description and
semi-computable models and finally implements a computable model using an ontology
language.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 21 of 59 Submission date: 2019-02-28

6.2.1.2 Collaborative Manufacturing Services Ontology and Methodology

This sub-section analyses and describes the design and implementation process of COMPOSITION’s
Collaborative Manufacturing Services Ontology. The above described NeOn methodology has been adopted
and followed. So, the ontology’s building phase is described in alignment with NeOn methodology’s proposed
building steps.

Selection of imported ontological resources

The first step was the selection of the best possible ontological resources to reuse based on COMPOSITION
project needs. As mentioned before, Collaborative Manufacturing Services Ontology should be able to
represent manufacturing services and resources. Based on literature review and project needs, MASON and
MSDL ontologies were selected as the most compatible for COMPOSITION’s purposes. They offer sufficient
expressivity and extensibility for manufacturing knowledge modelling and they draft a common semantic net
in manufacturing domain.

MSDL also provides classes and properties for supply chain description. But after evaluation MSDL considered
as unsuitable to cover all of COMPOSITION Collaborative Ecosystem’s requirements. Thus, the use of
GoodRelations Language aims to cover the requirements of the Collaborative Ecosystem. GoodRelations
Language is one of the most well-known and widely used ontologies in e-commerce domain and offers a large
variety of classes and properties in order to describe relations and transactions between supply and demand
entities. MSDL, MASON and GoodRelations ontologies are presented in more details at section 6.1 of this
report.

Decide how to reuse the selected ontological resources

As the COMPOSITION Collaborative Ecosystem aims to be a system capable of hosting a wide range of
companies specified in different sub-domains, it was decided the core versions of selected ontologies to be
imported to the COMPOSITION Ontology. The proposed ontology intends to be a common vocabulary for the
description of supply and demand entities related to the manufacturing domain. This approach aims to make
the proposed ontology capable for the description of all Ecosystem participants instead of being an ontology
dedicated to one manufacturer or supplier. Thus, the imported core versions of the ontologies are evaluated
as the most suitable versions as they offer abstract classes for manufacturing and e-commerce domains
description.

More precisely, MASON ontology was selected exclusively for the manufacturing domain description and
GoodRelations Language for the description of supply or demand entities and their transactions. On the other
hand the use of MSDL is not so strict. Classes and properties of this ontology used for both of domains. Also
MSDL offers the central idea of how to connect e-commerce with manufacturing domain by its structure
examination.

Ontology aligning and merging activities

After the selection of ontological resources and the decision of the way they will be reused for COMPOSITION
purposes two main overlappings have been detected:

• MSDL and MASON have overlapping and duplicate structures within manufacturing domain

• MSDL and GoodRelations Language have overlapping and duplicate structures in e-commerce
domain

In the following tables the overlapping is presented in class level. Also the selected class in the final merged
version is indicated. In the most of the cases MASON or GoodRelations was selected over MSDL as they are
specific in only one domain and they offer better expressivity for these domains.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 22 of 59 Submission date: 2019-02-28

Table 2: MSDL and MASON overlapping classes’ alignment

MSDL Ontology MASON Ontology COMPOSITION Ontology

Process represents a
manufacturing process which is
offered by a Service

Operation covers manufacturing,
logistic, human and launching
operations-processes

Operation. COMPOSITION
Ontology followed the MASON
approach. This class describes
processes related to
manufacturing but it also
provides some
operations/processes that
support this domain. Moreover,
this class provides more relations
(properties) between
operations/processes and
connected resources than MSDL
does.

MfgResource represents
machine-tools and geographic
resources)

Resource represents linked
resources, like machine-tools,
tools, human resources, and
geographic resources like plants
and workshops)

Resource class from MASON
was adopted by COMPOSITION
Ontology because it offers more
resources’ descriptions such as
human resources. Also it
describes more machine-tools.

Material class covers the
materials related to
manufacturing processes

Raw Material covers the list of
materials which are machined by
tools and they are related to
operations/processes

Raw Material is the selected
class. As Operation and
Resource classes are selected
from MASON ontology the Raw
Material class seems to be the
best choice as it is strongly
connected with them. Moreover it
provides a larger list of materials
in comparison with Material class
from MSDL

Geometric Shape covers the
shape of the parts which are
accepted from machining
processes

Geometric Entity represents the
shape of entities can be
processed by operations and
tools

Geometric Entity is the selected
class. As Operation and
Resource classes are selected
from MASON ontology the
Geometric Entity class seems to
be the best choice as it is
strongly connected with them.

Table 3: MSDL and GoodRelations Language overlapping classes’ alignment

MSDL Ontology GoodRelations Language COMPOSITION Ontology

Service class defines a service
that a stakeholder supports/offer
s. This services is connected with
manufacturing process and
resources such as materials and
tools

ProductOrService class
represents a product or a service
which is included in an offer or in
a request

Service from MSDL was adopted
by COMPOSITION Ontology. We
need to connect a Service with
manufacturing processes and
resources to an offer/request.
MSDL provides these
connections as object properties.
Actually, processes and
resources will be derived from
MASON ontology although
properties from MSDL can be
applied here as they describe
similar concepts

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 23 of 59 Submission date: 2019-02-28

MSDL Ontology GoodRelations Language COMPOSITION Ontology

Supplier class represents an
agent who offers a manufacturing
service

BusinessEntity class describes
an agent who makes or seeks an
offer

Keep BusinessEntity class as
part of COMPOSTITION
Ontology because it is connected
with offers and requests. These
are two very important concepts
for Marketplace and they are
missing from MSDL core version

Customer class represents an
agent who seeks a
manufacturing service

BusinessEntity class describes
an agent who makes or seeks an
offer

Keep BusinessEntity class as
part of COMPOSTITION
Ontology because it is connected
with offers and requests. These
are two very important concepts
for Marketplace and they are
missing from MSDL core version

RFQ is not MSDL-core class but
an extension. Although, the case
to use this class was examined in
order to decide if it is a better
way to represent an offer for a
service

Offer describes an
announcement for the services
which a Business Entity provides
or the services this Business
Entity is looking for

Offer class from GoodRelations
is finally adopted by
COMPOSITION Ontology
because it provides a large set of
properties and connections to
other classes and it is able to
describe better the offer as this
class was derived for an e-
commerce specific ontology.

Advertisement is not MSDL-core
class but an extension. Although,
the case to use this class was
examined in order to decide if it is
a better way to represent a
request for a service

Offer describes an
announcement for the services
which a Business Entity provides
or the services this Business
Entity is looking for

Offer class from GoodRelations
is finally adopted by
COMPOSITION Ontology
because it provides a large set of
properties and connections to
other classes and it is able to
describe better the request as
this class was derived for an e-
commerce specific ontology. It is
the same class that described
above. It is called Offer and it is
distinguished is it is actually an
offer or a request by object
properties.(A Business Entity
offers or seeks for an Offer)

Ontological resources’ re-engineering process

As soon as aligning and merging activities have been completed, the ontological resources should be modified
in order to be fully connected to each other and be compatible with the design’s purposes. Many classes from
imported ontological resources have been rejected during the previous process in which the overlapping parts
have been erased. This process left some classes unconnected and the ontology inconsistent.

In order to create a coherent ontology version which is aligned with COMPOSITION project’s requirements the
ontological resources, need to be re-engineered. Object properties should be changed as they should be able
to cover and connect new concepts after merging activities. The classes represent the domain or the range
of some properties is possible to have been replaced by classes of an overlapping resource so these properties
should be deleted or they should point now in a new domain or range. Moreover, new classes, new sub-
classes and new properties should be added to cover COMPOSITION Ecosystem requirements. The basic
goals of the re-engineering process were the following:

• Connect a Service(MSDL) with corresponding Operations(MASON)

• Connect a Service(MSDL) with an Offer(GoodRelations)

• Connect a Service(MSDL) with a Business Entity(GoodRelations)

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 24 of 59 Submission date: 2019-02-28

• Create a Generic Terms catalogue which enables the use of same terms for similar concepts

• Associate concepts with Generic Terms

• Create concepts helpful to COMPOSITION Matchmaker

Extension of ontology and its concepts

The extension of the ontology follows the above-described processes of ontology alignment, merging and re-
engineering. The imported ontologies covers the largest part of the required concepts for the projects pilot
cases and in general cases related to manufacturing marketplaces. However, in order to cover all the use
cases requirements and the needs of a complete and real manufacturing ecosystem, many concepts related
to waste management and software for supporting the manufacturing domain should be added. The main
goals of this extension process were the following:

• Extend Services to be able to support waste management concepts as they are part of
COMPOSITION project

• Extend Operations and resources in order to be able to support waste management concepts

• Extend Services and Operations to be able to support concepts related to software and consulting
solutions connected to manufacturing domain

Development of ontology

The last stage of design and implementation process was the development of the ontology. First the
requirements were specified based on Ecosystem’s needs and D2.2 Initial requirements specification, D2.5
Lessons Learned and updated requirements report I and D2.6 Lessons Learned and updated requirements
report II. Then the ontology was implemented using Protégé tool.

The requirements of the Collaborative Manufacturing Services Ontology modelled to the Table 4, Ontology
Requirements Specification Document (ORSD), as it proposed by NeOn methodology.

After the definition of basic requirements of Collaborative Manufacturing Services Ontology the ontology was
implemented using Protégé tool:

• A new empty ontology OWL file was created using Protégé

• MSDL, MASON, GoodRelations imported using Protégé

• Based on work in aligning and merging activities the overlapping concepts were deleted using the
interface of the tool

• Based on project’s requirements new classes, sub-classes and properties were added. Also others
were modified

• The stable Ontology version was continuously updated in order to cover project needs

• After the development of the final OWL file, it was deployed as part of the Matchmaker package which
consists the complete semantic framework of the COMPOSITION Project. Then the Marketplace
Agents who add more individuals automatically extend the Collaborative Manufacturing Services
Ontology.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 25 of 59 Submission date: 2019-02-28

Table 4: ORSD of COMPOSITION Collaborative Manufacturing Services Ontology

 ONTOLOGY REQUIREMENTS SPECIFICATION DOCUMENT

1 Purpose

 The purpose of creating the Collaborative Manufacturing Services Ontology is to be used as a knowledge
base able to support flexible specification and execution of manufacturing collaboration schemes

2 Scope

 The scope of the Collaborative Manufacturing Services Ontology is to enable both the description of
supply/demand entities participating in the Ecosystem and the description of manufacturing services’
capabilities and resources for entities participating in the Ecosystem

3 Implementation Language

 The Collaborative Manufacturing Services Ontology will be implemented in the OWL 2 language using the
Protégé tool

4 Intended End-Users

 User 1: Marketplace Agents

• Supplier Agent

• Requester Agent

User 2:

• Matchmaker

5 Intended Uses

 Use 1: Keep information and data about agents. An agent represents a business entity at the Marketplace.
Data about a business entity, its resources and services are stored to the ontology.

Use 2: Provide data about agents and their resources and services

Use 3: Describe offers and requests during transactions and bidding processes in the Marketplace

Use 4: Used by Matchmaker. Matchmaker infers new knowledge by applying semantic rules to ontology

6 Ontology Requirements

 a. Non- Functional Requirements

 1. Ontology should be a knowledge base for the Ecosystem
2. Ontology should describe manufacturing domain
3. Ontology should describe supply/demand entities
4. Ontology should be able to support concepts from waste management domain
5. Ontology should be able to describe concepts related to software solutions for the manufacturing

domain
6. Ontology should be updated by agents and generally be available to them – Ontology individuals

should be created automatically by the agents that participate in the Ecosystem
7. Ontology should be correlated with Matchmaker
8. Ontology should be implemented in ontology language
9. Ontology should be compatible with Marketplace’s definition

 b. Functional Requirements

 1. How a business entity will be described into the Ecosystem? The Ontology should contain and
describe concepts of the e-commerce domain in correlation with services, operations, resources,
of manufacturing domain.

2. How a supplier or requester will be able to express their offers or demands? The COMPOSITION
Ontology should have concepts for the description of offers and requests. Also it should connect
these information with the corresponding business entity

3. How an agent can update knowledge base’s information? The Ontology should be able to be
queried from agents with SPARQL queries. This requirement is also connected with Ontology API

4. Should the ontology help Matchmaker to infer knew knowledge? COMPOSITION Ontology should
offer classes or properties that will be helpful to Matchmaker. These concepts will be filled by
Matchmaker’s rules and will provide the new knowledge

5. Should the ontology represent all the knowledge from IIMS to Marketplace? Ontology should offer
concepts and relations only for data necessary to the Marketplace. There is no need to hold data
from sensors for example.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 26 of 59 Submission date: 2019-02-28

Figure 6: COMPOSITION Collaborative Manufacturing Services Ontology’s Class Overview

6.2.2 Ontology Specifications

In this sub-section the specifications of the new created ontology are described. The main classes of the
aforementioned ontology are presented. Moreover, some basic object and data properties are presented. Full
documentation of the COMPOSITION Collaborative Manufacturing Ontology is provided alongside with this
report. The documentation was exported using OWLDoc plugin of Protégé tool.

For each class we define:

• Class name: the name of the class which is described

• Description: a short description for this class

• Class hierarchy: we provide a graph with the sub-classes(if any exists) of mentioned class

• Object properties: we provide a table with main object properties of the class

• Data properties: we provide a table with main data properties of the class

Business entity class

The “Business entity” class and its sub-classes represent an Ecosystem Agent who has a service (e.g.
manufacturing service) and provides or seeks an offer. Every agent who is associated with the Marketplace
has this type. The figure below presents sub-classes of “Business entity” class. The following tables present
basic object and data properties, respectively.

Figure 7: "Business entity" class and sub-classes

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 27 of 59 Submission date: 2019-02-28

Table 5: Object Properties of "Business entity" class

Object Property Description Range

offers Refers to the offers provided by a business
entity

Offer

seeksOffer Refers to the offers requested by a
business entity

Offer

hasService Refers to the services provided by a
business entity

Service

matchesWith Refers to a business entity which is
matched with another business entity for a
specific term

Business entity

hasPOS Refers to the position of a business entity Location

requestFulfilledBy Refers to request of a business entity
fulfilled by a specific offer

Offer

Table 6: Data Properties of "Business entity" class

Data Property Description Type

legalName The legal name of a business entity Literal

hasID The agent(business entity) ID within the
Marketplace

String

hasRating The business entity’s rating within the
Marketplace

Integer

description A short textual description of an entity. Literal

hasGlobalLocationNumber The Global Location Number is a thirteen-
digit number used to identify parties and
physical locations.

String

hasName Equivalent to the title of an entity. Not the
legal name

Literal

taxID The Tax ID of a business entity. It is usually
assigned by the country of residence

String

valueAddID The Value-added Tax ID of a business
entity

String

Business entity type class

The “Business entity type” class represents the legal form, the size and the position of a business entity in
value chain. It is used to specify eligible customers for an offer. There are no sub-classes for this class. Also
there are no object properties. We create only individuals of this class which consist the range of the object
property, named eligibleCustomerTypes from class “Offer”.

Table 7: Data Properties of "Business entity type" class

Data Property Description Type

description A short textual description of an entity. Literal

hasName Equivalent to the title of an entity Literal

Capability class

The “Capability” class and its sub-classes represent the capability of a service. It describes manufacturing
capabilities based on machining capabilities, waste management capabilities related to supported tonnages
of the services and the software solutions capabilities related to supporting functionalities such as security etc.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 28 of 59 Submission date: 2019-02-28

Figure 8: "Capability" class and sub-classes

Table 8: Data Properties of "Capability" class

Data Property Description Type

hasUnit The unit of measurement of a capability
value

String

hasWeight The weight of stock Float

description A short textual description of an entity Literal

hasName Equivalent to the title of an entity Literal

Dates and Times class

The “Dates and Times” class represents the days that a business entity has opening hours. Also it can
represent the day of delivery or the day of availability of a service. This class also supports the description of
opening hours of a business entity. So it has two sub-classes: Days of the week and Opening hours
specification. The main properties of these sub-classes are presented in the following tables.

Figure 9: "Dates and Times" class and sub-classes

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 29 of 59 Submission date: 2019-02-28

Table 9: Object Properties of "Dates and Times" class

Object Property Description Range

hasNext Refers to next day of the week Day of the week

hasPrevious Refers to previous day of the week Day of the week

hasOpeningHoursDayOfWeek Specifies the day of the week to which
opening hours is related

Day of the week

Table 10: Data Properties of "Dates and Times" class

Data Property Description Type

closes The closing hour of a specific location of
business entity on a given day of the week

Time

opens The opening hour of a specific location of
business entity on a given day of the week

Time

description A short textual description of an entity. Literal

hasName Equivalent to the title of an entity Literal

Delivery method class

The “Delivery method” class and its sub-class define the available delivery options for a service or product.

Figure 10: "Delivery method" class and sub-classes

“Delivery method” instances are used only as the range for other object properties.

Table 11: Data Properties of "Delivery method" class

Data Property Description Type

description A short textual description of an entity. Literal

hasName Equivalent to the title of an entity Literal

Entity class

The “Entity” class and its sub-classes represent an entity as a result of a manufacturing process and describe
its geometric flaw and entity, assembly entity and raw material. The sub-classes are presented in the next
figure.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 30 of 59 Submission date: 2019-02-28

Figure 11: "Entity" class and sub-classes

The next tables contain some of the basic object properties of “Entity” class and its sub-classes:

Table 12: Object Properties of "Entity" class

Object Property Description Range

hasPrice Refers to the price of an entity Unit price specification

hasShape Refers to the shape of a geometric flaw Shape

isMachinableWithTool Refers to the tool which process a raw
material

Tool

isMachinableByProcess Refers to the operation in which an entity is
processed

Operation

isMadeOf Refers to the material that a part is made of Raw material

hasCertification Refers to the certification of an entity or part
or material

Certification

Table 13: Data Properties of "Entity" class

Data Property Description Type

hasVolume A finished part has volume float

hasRugosity The rugosity of a geometric flaw float

description A short textual description of the entity. Literal

hasName Equivalent to the title of an entity. Literal

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 31 of 59 Submission date: 2019-02-28

Generic Term class

The “Generic Term” class and its sub-classes define common operations, materials and tools. This will enable
the use of same terms for similar concepts. The vendor-specific concepts will be mapped with corresponding
terms of the common “Generic term” class’ instances.

Figure 12: "Generic term" class and sub-classes

The “Generic term” class is not the domain of any object property. It is used as a common dictionary and it is
the range of the properties that map other operations, materials and tools to the concepts of this dictionary.
Moreover, there are no data properties correlated with this class.

This class is a core concept of the Matchmaker component’s functionality. Every business entity use its own
terms to describe one of its offered services. But every one of these vendor specific terms will be mapped with
a common generic term. In this way, on the one hand every business entity will be able to participate in the
Marketplace and advertise its services, products etc. with its own terms. On the other hand, the Matchmaker
will be able to match similar concepts in order to set the Marketplace capable to relate offers and requests
among stakeholders or to find possible solutions for some Marketplace participants. The following figure
describes in a very simple and abstract way, how the vendor specific operations for scrap metal management
of three different business entities is mapped to the same concept.

Figure 13: Mapping of vendor specific concepts

Offer class

The “Offer” class represents a public announcement of a business entity that provides or seeks a certain
service or product. This is a key class for the description of offers and requests of business entities which are
involved into COMPOSITION Ecosystem. The “Offer” class has not any sub-classes. Its basic object properties
are presented at the table below.

Table 14: Object Properties of "Offer" class

Object Property Description Range

includes Refers to the service or product which is
provided by an offer

Service

acceptedPaymentMethods Refers to the available payment methods
for a certain offer

Payment method

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 32 of 59 Submission date: 2019-02-28

Object Property Description Range

addOn Points to other offers which are linked
with a basic offer

Offer

availableAtOrFrom Refers to the location where the offered
service or product is available

Geographic resource

availableDeliveryMethods Refers to the available delivery methods
of a certain offer

Delivery method

advancedBookingRequirements Refers to the min and max amount of
time that is required between accepting
the Offer and the actual usage of the
resource or service.

Quantitative value

eligibleDuration Refers to the minimal and maximal
duration for which the given Offer is valid

Quantitative value

eligibleCustomerTypes Refers to the eligible types of customers
for a certain offer

Business entity type

eligibleTransactionVolume Indicates the minimum purchasing
volume

Price specification

hasPriceSpecifification Links an offer to price specifications Price specification

hasWarrantyPromise Links an offer with a warranty promise
for a product or service by business
entity

Warranty promise

deliveryLeadTime Refers to the delivery time of the offered
service

Quantitative value

eligibleQuantity Specifies the quantities for which an
offer is valid

Quantitative value

offerProvidedBy Points to the business entity which
provides or seeks an offer

Business entity

hasInventoryLevel Specifies the current approximate
inventory level of the products that
included in an Offer

Quantitative value

Except the object properties some of main data properties of class “Offer” are also presented in the following
table.

Table 15: Data Properties of "Offer" class

Data Property Description Type

validFrom The beginning of the validity of an offer dateTime

validThrough The end of the validity of an offer dateTime

eligibleRegions The geo-political regions where an offer is
available

string

availabilityStarts Specifies the beginning of the availability of
the Service included in the Offer

dateTime

availabilityEnds Specifies the end of the availability of the
Service included in the Offer

dateTime

hasOfferID The identity number of an offer inside the
Marketplace

string

description A short textual description of an entity. Literal

hasName Equivalent to the title of an entity or
resource.

Literal

serialNumber Refers to alphanumeric number. This
property can be attached to an Offer in
cases where the included products are not
modelled in more details

String

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 33 of 59 Submission date: 2019-02-28

Data Property Description Type

quantityFulfilment The property was designed to be filled and
used from the Matchmaker for matching
processes

Boolean

productID The given ID of a product contained in an
Offer or Service

String

Operation class

The “Operation” class and its sub-classes represent the processes of a service. Especially the manufacturing
processes. But supporting operations related to human or launching processes are represented as well.
Moreover, this class offers the representation of waste management processes and software solutions, which
are strongly related with the COMPOSITION project.The following tables present basic object and data
properties, respectively.

Table 16: Object Properties of "Operation" class

Object Property Description Range

induces Refers to the price cost that induces the
execution of an operation

Price specification

isExecutedBy Refers to the human resource that executes
an operation

Human resource

mappedToCommonTerm A specific operation is mapped to a generic
term

Generic term

allowedProcessFor Refers to material which is valid for a
manufacturing operation

Raw material

handlingMaterial Refers to materials that can be handled by
waste management operations

Raw material

requiresTruck Refers to the truck resources that are
required to a supply-chain operation

Resource

requiresTool Refers to the tool that is required to a
manufacturing operation in order to execute
a process related to a raw material

Tool

requiresMachine Refers to the machine resource that is
required to a manufacturing operation in
order to execute a process

Machine resource

previousOperation Points to a previous operation Operation

Table 17: Data Properties of "Operation" class

Data Property Description Type

hasDuration The duration of an operation possitiveInteger

hasDelay The delay of an operation possitiveInteger

isContinuous Describe if an operation is a continuous
process

Boolean

description A short textual description of an entity Literal

hasName Equivalent to the title of an entity Literal

modifiesGeometry Indicates if an operation modifies the
geometry of a material or part

Boolean

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 34 of 59 Submission date: 2019-02-28

Figure 14: "Operation" class and sub-classes

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 35 of 59 Submission date: 2019-02-28

Payment method class

The “Payment method” class describes the available procedures for transferring the requested amount for a
purchase. It contains only a sub-class which is related to credit cards as a payment method.

Figure 15: "Payment method" class and sub-classes

The individuals of this class and its sub-class are well-known payments methods that are commonly used in
transactions such as cash, bank transfer, VISA, PayPal etc. The only purpose of this class is to create this
kind of individuals and they will be used as the range of properties of other classes such as “Offer” and “Price
specification”. As a result there was no need to construct object properties with domain the “Payment method”
class.

Table 18: Data Properties of "Payment method" class

Data Property Description Type

description A short textual description of the class Literal

hasName Equivalent to the title of an entity Literal

Price specification class

The “Price specification” class and its sub-classes specify the price of a unit, additional delivery costs and
additional costs related to a payment method. The figure below presents sub-classes of “Price specification”
class. The following tables present basic object and data properties, respectively.

Figure 16: "Price specification" class and sub-classes

Table 19: Object Properties of "Price specification" class

Object Property Description Range

appliesToPaymentMethod Refers to the available payment methods Payment method

appliesToDeliveryMethod Refers to the delivery method which
induces this cost

Delivery method

isInducedBy Refers to the operation which adds costs by
its execution

Operation

Table 20: Data Properties of "Price specification" class

Data Property Description Type

hasCurrency The currency related to a price (e.g. EUR) string

hasCurrencyValue The amount of money for a price or
payment charge

float

hasMaxCurrencyValue The upper bound of the amount of money
for a price or payment charge

float

hasMinCurrencyValue The lower bound of the amount of money
for a price or payment charge

float

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 36 of 59 Submission date: 2019-02-28

Data Property Description Type

valueAddedTaxIncluded Specifies if the value-added-tax is included
in the price

boolean

description A short textual description of the class Literal

hasName Equivalent to the title of an entity Literal

Quantitative value class

The “Quantitative value” class and its sub-classes are used as numerical intervals that represent the range of
a certain property. Their individuals are mainly used as the range of other classes’ object properties related to
quantity measurements. So, we did not adopt any object properties which have this class and its sub-classes
as domain. The sub-classes and main data properties related to “Quantitative value” class are presented
below.

Figure 17: "Quantitative value" class and sub-classes

Table 21: Data Properties of "Quantitative value" class

Data Property Description Type

hasValue The property is a single point value Literal

hasMinValue The property captures the lower limit of a
value

Literal

hasMaxValue The property captures the upper limit of a
value

Literal

hasValueFloat A quantitative property is a single point float
value

float

hasMinValueFloat The property captures the lower limit of a
float value

float

hasMaxValueFloat The property captures the upper limit of a
float value

float

hasValueInteger A quantitative property is a single point
integer value

int

hasMinValueInteger The property captures the lower limit of an
integer value

int

hasMaxValueInteger The property captures the upper limit of an
integer value

int

hasUnitOfMeasurement The unit of measurement of a quantitative
value

string

Resource class

The “Resource” class and its sub-classes represent the total set of linked resources of a business entity. They
are able to describe resources such as buildings and sites, human resources, truck resources, machines and
tools. The figure below presents sub-classes of “Resource” class.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 37 of 59 Submission date: 2019-02-28

Figure 18: "Resource" class and sub-classes

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 38 of 59 Submission date: 2019-02-28

The following tables present some of basic object properties of “Resource” class and its sub-classes,
respectively.

Table 22: Object Properties of "Resource" class

Object Property Description Range

contains Refers to the material resource which is
included in a geographical resource

Material resource

includes Refers to a geographical resource which
is included in another geographical
resource

Geographical resource

enablesRealisationOf Refers to an operation which requires a
machine resource

Machine resource

execute Refers to an operation which is executed
by a human resource

Human resource

becomes Refers to transformation of one resource in
another after machining processes

Material Resource

isMadeOf Refers to the material that a resources is
made of

Raw Material

usesTool Refers to the tool that is used by a
machine resource

Tool

requiredToolFor Refers to the tool that is required to a
manufacturing operation in order to
execute a process

Manufacturing operation

toolUsableOn Refers to a raw material in which a tool is
used

Raw material

toolMappedToCommonTerm A specific tool is mapped to a tool which is
described in generic terms

Tools

Table 23: Data Properties of "Resource" class

Data Property Description Type

resourceName The name of a resource string

resourceID The ID of a resource string

description Short description of a resource Literal

operatingRate The operating rate for a machine resource float

Certification Class

The “Certification” class conceptualize the certification of an entity success business entities, materials,
machines, processes etc. The certification can be for example an ISO7. The certifications are important
concepts on negotiation and selection processes in a Marketplace. For COMPOSITION purposes, they are
used as names of specific certifications.

Table 24: Data Properties of "Certification" class

Data Property Description Type

description A short textual description of the class Literal

hasName Equivalent to the title of an entity Literal

7 https://www.iso.org/home.html

https://www.iso.org/home.html

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 39 of 59 Submission date: 2019-02-28

Service class

The “Service” class and its sub-classes conceptualize all operations and processes related to a product in an
abstract level. A service includes operations which are related with resources. It is the general concept of what
service or product offers a business entity. The next figure presents the sub-classes of “Service” class.

Figure 19: "Service" class and sub-classes

As this class describes processes in a more abstract level is not the domain in any data property. It is
connected with processes and their own data properties. The basic object properties of class “Service” are the
following:

Table 25: Object Properties of "Service" class

Object Property Description Range

hasManufacturer Links a service or product to the business
entity that produces it

Business entity

hasCapability Refers to the capability of an offered
service

Capability

hasSupportingService Links a service with a supporting service Supporting service

isSupportedBy Refers to a system that supports a service Supporting system

hasOperation Refers to the process/operation which is
actually executed in this service

Operation

seeksOperation Refers to the process/operation which is
actually executed in this service and is
requested by another business entity’s
service

Operation

Table 26: Data Properties of "Service" class

Data Property Description Type

dataTypeServiceProperty Refers to the data type service property Literal

name The name of a service Literal

description Short description of an entity Literal

productID The given ID of a product contained in an
Offer or Service

String

Supporting service class

The “Supporting service” class and its sub-classes represent services which are not basic services but are
related to the basic one and support them. They are actually from a different domain than the main services
of a business entity, but they are valuable for a company’s activities and processes. As described before for
“Service” class, it describes processes in a more abstract level and it is not the domain in any data property. It
is connected with processes and their own data properties. It is the same for the “Supporting service” class.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 40 of 59 Submission date: 2019-02-28

The sub-classes and main object and data properties related to “Supporting service” class are presented
below.

Figure 20: "Supporting service" class and sub-classes

Table 27: Object Properties of "Supporting service" class

Object Property Description Range

supports Links a supporting service to the main
service it supports

Service

hasRelatedOperation Links a supporting service with a human or
logistic operation

Human operation and
Logistic operation

isSupportedBy Refers to a system supports supporting
service

Supporting system

Table 28: Data Properties of "Supporting service" class

Data Property Description Type

description A short textual description of the class Literal

hasName Equivalent to the title of an entity Literal

Supporting system class

The “Supporting system” class and its sub-classes represent some systems which support a business entity’s
services. The figure below presents sub-classes of “Supporting system” class. The following tables present
basic object and data properties, respectively.

Figure 21: "Supporting system" class and sub-classes

Table 29: Object Properties of "Supporting system" class

Object Property Description Range

supportService Links a supporting system to the service it
supports

Service and Supporting
service

usedBy Refers to the human resource that uses a
supporting system

Human resource

isLocatedIn Links a supporting system to a
geographical resource where the system is
contained

Geographical resource

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 41 of 59 Submission date: 2019-02-28

Table 30: Data Properties of "Supporting system" class

Data Property Description Type

systemName The name of a system String

systemID The ID of a system String

description Short description of a system Literal

hasName Equivalent to the title of an entity Literal

Warranty class

The “Warranty” class and its sub-classes represent the duration and the scope of free services that will be
provided to a customer in case of a possible malfunction or problem. The figure below presents sub-classes
of the “Warranty” class. The following tables present basic object and data properties, respectively.

Figure 22: "Warranty" class and sub-classes

Table 31: Object Properties of "Warranty" class

Object Property Description Range

hasWarrantyScope Refers to warranty scope of a warranty
promise

Warranty scope

warrantyPromiseOf Refers to the offer which is related with a
warranty promise

Offer

Table 32: Data Properties of "Warranty" class

Data Property Description Type

durationOfWarrantyInMonths Specifies the duration of a warranty
promise in months

int

description Description of a warranty which comes
alongside with an offer

Literal

hasName Equivalent to the title of an entity Literal

In the next figure, an example of the representation of a Polishing procedure from KLEEMANN factory based
on terms of Collaborative Manufacturing Services Ontology is presented.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 42 of 59 Submission date: 2019-02-28

Figure 23: Modelling of KLEEMANN Polishing Procedure using Collaborative Manufacturing Services Ontology

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 43 of 59 Submission date: 2019-02-28

7. COMPOSITION Ontology API

As described in the executive summary and introductory sections besides the Collaborative Manufacturing
Services Ontology, an API for the manipulation of the ontological resources has been implemented and is
presented in this report. This API provides a basic set of interfaces/services and in this chapter we consider
as a complete API both the interfaces and the query engine in the back-end. The Marketplace components
such as the Agents are able to access and extend the Ontology using this API. On the contrary, of the first
version of this report, the Ontology API is not a standalone application anymore, but it is part of the Matchmaker
component, which consists the complete semantic framework of the project. In this section, some key
components of Ontology API’s implementation and its supported interfaces are presented.

7.1 Methodology and Implementation Technologies

The COMPOSITION Ontology API has been developed in Java and it is offered through RESTful web services.
Its development was built upon Apache Jena API. In advance of the description of the Ontology API’s
implementation, we will offer a brief analysis of Apache Jena which is the key component of COMPOSITION
Ontology API and offers all the necessary functionality to create, connect and modify an ontology store.

7.1.1 Introduction to Apache Jena

Apache Jena is an open source Semantic Web framework for Java that has been extensively used in a wide
variety of semantic web applications and demonstrators. The main component of this framework is an API that
provides data extraction from RDF graphs as well as writing to them. The graphs are defined as an abstract
model. A model can collect data from files, databases, URLs or a combination of these. Jena provides a
programmatic environment for RDF, RDFS and OWL, SPARQL, GRDDL, and includes a rule-based inference
engine. The figure below represents Jena framework’s architecture. Subsequently, the different parts that
compose Jena’s architecture are presented together with the interaction between them.

Figure 24: Apache Jena’s framework architecture (Apache Jena, 2017)

The RDF API - the core RDF API in Jena

RDF can be better comprehended if it is represented in the form of node and arc diagrams, namely in RDF
graphs. Each relationship points only to one direction. Part of the RDF graphs is resources. A resource is some
entity. It could be a web resource or it could be a concrete physical thing. It could also be an abstract idea.
Resources are named by a Uniform Resource Identifier (URI). Resources have attributes called properties and
lastly, properties have data values called literals.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 44 of 59 Submission date: 2019-02-28

Jena is a Java API which can be used to create and manipulate RDF graphs. The interfaces representing
resources, properties and literals are called Resource, Property and Literal respectively. In Jena, a graph is
called a model and is represented by the Model interface.

The basic concepts of RDF containers in Jena are three:

• graph, a mathematical view of the directed relations between nodes in a connected structure

• Model, a rich Java API with many convenience methods for Java application developers

• Graph, a simpler Java API intended for extending Jena's functionality.

The most important of these concepts is Model, thus, it is going to be further analyzed. Each arc in an RDF
Model is called a statement. Each statement asserts a fact about a resource. A statement is called a triple
since it contains three distinct parts: the subject, which is the resource from which the arc leaves, the predicate,
which is the property that labels the arc and the object, which is the resource or literal pointed to by the arc.
The Statement interface provides accessor methods to the subject predicate and object of a statement.

Ontology API

Jena allows a programmer to specify, in an open, meaningful way the concepts and relationships that
collectively characterize some domain. The advantage of ontology is that it is an explicit, first-class description;
it can be published and reused for different purposes.

There is a multitude of different ontology languages available for modeling ontology information on the
semantic web. They range from the most expressive, OWL to the weakest, RDFS. Jena Ontology API aims to
provide a coherent programming interface for ontology application development. The Ontology API is
independent of the language used: the Java class names are not specific to the underlying language.

In order for distinction between various representations to be clear, each of the ontology languages has a
profile, which lists the permitted constructs and the names of the classes and properties. The profile is bound
to an ontology model, which is an extended version of Jena's Model class. The base Model allows access to
the statements in a collection of RDF data. Jena ontology interface provides support for the kinds of constructs
expected to be in ontology: classes (in a class hierarchy), properties (in a property hierarchy) and individuals.

SPARQL API

SPARQL is a query language and a protocol for accessing RDF designed. As a query language, SPARQL is
"data-oriented" in that it only queries the information held in the models and does not infer in the query
language itself. Jena model creates triples on-demand in order to give the impression that they already exist,
including OWL reasoning. SPARQL takes the description of the application demands, in the form of a query,
and returns that information, in the form of a set of bindings or an RDF graph.

Interference API

The Jena inference subsystem is designed to allow a range of inference engines or reasoners to be plugged
into Jena. Such engines are used to derive additional RDF assertions which are entailed from some base RDF
together with any optional ontology information and the axioms and rules associated with the reasoner.

Store API

Two individual parts of the Store API are TDB and SDB, as shown in Figure 5.

TDB is a component of Jena for RDF storage and query. It is a fast persistent triple store that stores directly
to disk and supports the full range of Jena APIs. TDB can be used as a high performance RDF store on a
single machine. A TDB store can be accessed and managed with the provided command line scripts and via
the Jena API. When accessed using transactions, a TDB dataset is protected against corruption, unexpected
process terminations and system crashes.

SDB uses an SQL database for the storage and query of RDF data. Many databases are supported, both
Open Source and proprietary. An SDB store can be accessed and managed with the provided command line
scripts and via the Jena API. Use of SDB for new applications is not recommended. This component is
"maintenance only". However, TDB is faster, more scalable and better supported than SDB.

7.1.2 Implementation Details

The Ontology API is designed for the purposes of the COMPOSITION project. It is the component which
enables the access of Marketplace Agents into the knowledge base. As described at section 4 Agents

https://jena.apache.org/tutorials/rdf_api.html#glos-Statement
https://jena.apache.org/tutorials/rdf_api.html#glos-Subject
https://jena.apache.org/tutorials/rdf_api.html#glos-Predicate
https://jena.apache.org/tutorials/rdf_api.html#glos-Object

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 45 of 59 Submission date: 2019-02-28

components should be able to connect with Collaborative Manufacturing Services Ontology which is the
knowledge base of COMPOSITION Ecosystem. So, this component is implemented to cover these needs and
to offer the expected functionality.

7.1.2.1 Requirements

Based on COMPOSITION project use cases and requirements, and the COMPOSITION system’s proposed
architecture the following main requirements were set for Ontology API implementation:

• The API should be connected with COMPOSITION’s Collaborative Manufacturing Services Ontology

• The API should be offer the following services

o Add instances to ontology

o Update instances to ontology

o Read instances from ontology

o Remove instances from ontology

• The API should be able to connect with other COMPOSITION components in order to offers the
previous services

• The connection should be based on communication protocols and formats accepted from
COMPOSITION system’s architecture

• It should be well designed and be compatible with project’s quality control

• It should be designed in a way to be easily extended and maintained

• It should cover the security requirements of the project and be compliant with the Semantic Framework
from WP4

7.1.2.2 Technologies and Tools

The technologies which are used for Ontology API’s development are described in this sub-section. Their
selection is indicated by the two basic factors:

• Address the requirements were described above

• Use open and free technologies and tools as the project mention to do in DoA

The main selected technologies are the following:

Java was selected as the implementation language. It is a general purpose, object oriented programming
language. Java is one of the most popular programming languages in use, especially for client server web
applications.

Web Services as defined by World Wide Web Consortium is a system designed to support interoperable
Machine to Machine interaction over a network. Web services are server applications which can process and
exchange data. They are selected as a perfect match to represent the required services.

REST or Representational State Transfer was selected as the architectural style of web services. REST offers
better performance, modifiability and scalability to enable web services to work better on the Web. The REST
architecture style is a client/server architecture where clients and servers exchange representations of
resources by using a standardized interface and protocol. Resources are accessed using Uniform Resource
Identifiers (URIs) which are the typical links on the Web.

HTTP stands for HyperText Transfer Protocol and was the selected protocol to be used by the RESTful API.
This application protocol is used to link pages of hypertext and it is a way to transfer files. HTTP is the
foundation of data communication for the Web.

JSON or JavaScript Object Notation was the selected syntax format for exchanging messages. JSON is a text
format that is completely language independent but uses conventions that are familiar to programmers. Also,
it is easy for machines to parse and generate this format. These properties make JSON an ideal format for
data-exchange.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 46 of 59 Submission date: 2019-02-28

Apache Jena was selected as the Java framework API to support COMPOSITION’s Ontology API. As
mentioned before, it is a free and open source tool which supports OWL and RDF languages and offers
querying and storing capabilities. All this, consist Jena framework as the perfect tool for our implementation.

SPARQL was selected as the query language. It is a semantic query language able to manipulate and retrieve
data stored in RDF format. It is standardized of the World Wide Web Consortium, and is recognized as one of
the key technologies of the semantic web.

Eclipse8 IDE is a well-known Java Integrated Development Environment. It is the most widely used Java IDE
and contains a basic workspace and large variety of plug-ins. The Eclipse IDE for Java EE Developers was
the selected package. It offers tools for Java EE and Web applications development and includes many
features such as Eclipse Git Team Provider, Maven Integration for Eclipse etc.

Apache Tomcat9 was the selected web server environment. It is an open-source Java Servlet Container
developed by the Apache Software Foundation. It provides an HTTP web server environment in which Java
code can run.

7.1.2.3 Implementation

The implementation of the COMPOSITION Ontology API was based in the previous mentioned technologies
and tools. The target of the implementation was the development of software which will be able to fulfil the
previous page’s requirements.

The implementation’s architecture was defined in order to be able to support the following processes:

• The OWL files from Collaborative Manufacturing Services Ontology should be stored in a permanent,
scalable and high performance store

• A COMPOSITION Agent sends its request via HTTP and JSON format for message description. The
JSON format is similar to Communication eXchange Language (CXL) of Agents.

• The Ontology API uses Jena API to access the permanent store

• Then the JSON message is translated in a SPARQL query by the Query Engine that back-ends the
API

• The SPARQL query is applied to the ontology store

• The Ontology API sends back to the component an HTTP response in JSON format in a format similar
to CXL

The next figure presents a high-level overview of the architecture design of the complete semantic framework
contains the Ontology, the Ontology API and the Semantic Matchmaker:

8 https://www.eclipse.org/ide/
9 http://tomcat.apache.org/

https://www.eclipse.org/ide/
http://tomcat.apache.org/

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 47 of 59 Submission date: 2019-02-28

Figure 25: COMPOSITION Semantic Framework high-level architecture overview

Updates on Architecture Design and Lessons Learnt

As depicted in the previous figure, the Ontology Querying Component and its exposed API are parts of the
Matchmaker block and they are not a standalone application as in the early stages of the project and the first
version of this document. Firstly, they were considered as two different components. The Matchmaker planned
to call Ontology API services in order to access some of the ontological resources. However, the need to share
the same resources fast and effectively, for both querying and inference, indicates the design of a complete
Semantic Framework. This framework offers, in a common way, to the COMPOSITION Marketplace storing,
querying and reasoning capabilities.

Key Steps and Designing Approaches during the Development Phase

• Eclipse was selected as the IDE for building the semantic framework

• It was created as Maven project in order to configure effortlessly package project’s dependencies such
as Jena library, Jersey library etc.

• The first development activity was the handling of the OWL files which have been created at Protégé
tool. The OWL files which consist the Collaborative Manufacturing Services Ontology were stored in
memory as OntModel using Jena API functionalities

• The next step was the creation of the Ontology Store. The OntModel stored in a permanent store. Two
cases were examined based on Jena API. The first was the usage of SDB store which is a SQL
database store. The second was the usage of TDB component for storing. The second approach was
selected. As native triple store the TDB is faster, more scalable and better supported than SDB store.
The SDB store is backed by SQL, so queries from SPARQL have to “turn” into SQL queries. This adds
complexity and it is not as efficient as a native triple store. The benefits of using a permanent triple
store are that all the queries are applied in the Model which is stored in the tuple space. Therefore,
every creation or deletion of individuals takes place at this Model. This means that the original OWL
files are not modified.

• A set of SPARQL queries was created based on terms of Collaborative Manufacturing Ontology and
Language. All the queries are located in a common directory as .sparql files and they were not created
as Strings inside the source code in order to be easier to modify and extend them.

• The necessary functionalities for the Querying Engine has been designed in order to be able to map
JSON messages from the Agents to SPARQL queries. Then, the SPARQL API form Jena was used
in order to enable the querying of the Ontology Store.

• Last, web services/interfaces were created. Every service as soon as it receives a request, calls the
Ontology Querying Engine to handle the request. The engine maps the services input to SPAQL

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 48 of 59 Submission date: 2019-02-28

queries. Then, it is connected to the permanent store and applies the SPARQL queries. Then the
queries’ result is send back to web services to handle the response.

7.2 Supported Interfaces

The supported web interfaces of the Ontology API are listed below:

Figure 26: Ontology API Interfaces

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 49 of 59 Submission date: 2019-02-28

8. COMPOSITION Ontology’s Quality Control, Deployment and Security

8.1 Quality Control

A quality control plan has been followed during the development processes of both Collaborative
Manufacturing Services Ontology and the corresponding API. This plan alongside with the methodology was
followed are factors that indicate the quality of the implemented components.

8.1.1 Collaborative Manufacturing Services Ontology

The steps that followed for building the Collaborative Manufacturing Services Ontology reflect some of its
quality and they are mentioned below:

• A thorough analysis of ontology languages and tools has been presented in Section 5

• Selection of OWL 2.0 as ontology language and Protégé as the implementation tool after the
evaluation of previous mentioned analysis

• Selection was done after an analysis and based on project’s needs, use cases and requirements the
domain that the ontology should describe

• Import well-known and widely used ontologies of domains of manufacturing and e-commerce. This
ensures quality and enriches ontology with the demanded classes, properties and structures for these
domains’ description

• A thorough analysis of ontology building methodologies and the building of Collaborative
Manufacturing Services Ontology following NeOn methodology (Sections 5 and 6)

• Evaluation of the developed ontology using the open source tool, OntOlogy Pitfall Scanner 10 (OOPS)
to check for crucial errors. This tool analyses the RDF code and offers warnings for a large variety of
possible pitfalls. The produced warnings were manually inspected in order to determine which of them
correspond to actual bugs that require fix, and which are just false alarms (i.e. false positives) After a
first evaluation we focused on the critical pitfalls that could affect the ontology’s consistency,
reasoning, and applicability. Also possible important pitfalls about missing domain or range in
properties, untyped properties and classes are handled too. On the other hand, a good number of the
produced alerts were false positives, and thus they did not require any corrective action. They most
important of them were related in possible wrong equivalent classes. They are not considered as real
threats as the tool tried to check the equality of some classes of the new ontology with the original
classes of imported ontologies as it found them online using their URIs. However these classes had
been re-engineered in the current ontology and the comparison with the original ones has no meaning
as they were never used.

Besides the previous steps that indicate the quality of the implemented ontology, the ontology tested in both
pilot cases that it is involved, KLE-4 and KLE-7, and it was defined that contains the required concepts that
enable the representation of the agents in the Marketplace for this cases. Moreover, it contains all the
necessary means for the Matchmaker. By using this Ontology and its concepts, the Matchmaker was able to
perform matching and offers’ evaluation for both cases. Of course, the Matchmaker task is still in progress and
may lead to further updates on the Ontology.

8.1.2 Ontology API

During the implementation phase of COMPOSITION Ontology APIs, the quality control was focused on general
software quality criteria, the overall COMPOSITION system architecture’s compatibility, and the deliverables
D1.1 Project Quality Control Plan I and Project Quality Control plan II of COMPOSITION project. More
precisely the quality plan consists of the following factors:

• Identification of the Ontology API requirements

• Analysis of existing technologies and adoption of the best suitable with the COMPOSTITION system’s
architecture. Use of REST web services and JSON format for messages exchange as both
technologies have defined as supported by COMPOSITION architecture at D2.3-The COMPOSITION

10 http://oops.linkeddata.es/

http://oops.linkeddata.es/

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 50 of 59 Submission date: 2019-02-28

architecture specification I and D2.4-The COMPOSITION architecture specification II. These will
ensure Ontology API’s compatibility with other project’s components.

• Use of software tools which were proposed at D1.1 Project Quality Control Plan I and D1.2 Project
Quality Control Plan II in order to support quality of software:

o Use of Eclipse IDE as the development environment

o Use of Git for control versioning (actually EGit plugin from Eclipse IDE)

o Use of Maven as build tool for dependency management and build of source code

• Test procedures were applied. For software quality assurance both static and dynamic analysis
techniques applied:

Static analysis

In static analysis the PMD11 tool was used. It is an open source tool which offers source code analysis.
It is able to detect possible bugs, empty statements, unused variables and methods, duplicate code,
classes with high cyclomatic complexity, etc., by offering built-in sets of rules. The tool categorizes the
possible problems as violations distributed in 5 categories based on priority: block, critical, urgent,
important and warning

During Ontology API, which is part of the Matchmaker package, development process the code was
checked for the rules sets which described at the Annex II. About 300 rules were used in different
cycles of the development process, the analysis results were evaluated during these faces, and the
most important were handled. At the current version of code there are no block, critical, important and
warning violations. There are only few urgent violations which are related to excessively long variable
names, multi occurrences of some string literals, variables with short names, etc. These violations are
considered as false positives and there was no further action in order to fix them.

 Dynamic analysis

 In dynamic analysis, tests in runtime have been executed. For the project purposes, Unit tests,
 Integration tests and System tests have been executed.

 Automated tests have been built in a Test source code package which was created by Maven. The
 TestCase class from JUnit was extended and member functions were added. Every function
 represents a test of a supported web service. The tests are able to be executed without deploying
 the component in a server and using an external HTTP client. Eclipse Jetty server which provides a
 Web server and javax servlet container was used. So, the test cases deployed and executed using
 Jetty. This provided us fast execution and testing of the source code without the need to deploy the
 project to an external server in order to test every change in the code.

 As we mentioned before, a test for every supported web service in Figure 26 has been created. Then
 we call every function which contained a test and check if we got the expected output at Eclipse’s
 console. The tests were called separately or in combination. For example we had called a test to check
 if we can get all the companies. After we called a service to delete a company and then called again
 a service to get all companies, in order to decide if the deletion was executed properly. We executed
 plenty of these scenarios and combinations.

 After the development of the Matchmaker package contains the Ontology API, it was deployed in
 Apache Tomcat container. Then all the available web services and the previous test cases were
 executed using Postman12 Rest Client.

 Furthermore, integration units test with the Marketplace Agents has been executed. After the
 deployment of the Matchmaker framework, the deployed Agents calls all the services exposed by
 Ontology API in order to test the connectivity and the correct operation. Complete system tests are
 also executed as Security Framework is also adopted in the communication of the Ontology API and
 Agents.

11 https://pmd.github.io/
12 https://www.getpostman.com/

https://pmd.github.io/
https://www.getpostman.com/

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 51 of 59 Submission date: 2019-02-28

8.1.3 Scalability of Ontology and Ontology API

The COMPOSITION Matchmaker package and the included Ontology and its API have been designed in order
to offer high performance and support large Marketplaces with numerous of participants and services.

As the Matchmaker framework is packaged and deployed in an Apache Tomcat server, the maximum number
of connections that this component can access and process depends on Tomcat web server configuration.
Based on official Apache Tomcat 8 Configuration 13 the server is able to support over than 8000 connections.

Furthermore, a RDF-triple store is used as the data store of the Marketplace. Based on the COMPOSITION
project’s pilot partners and use cases there was no need for a big data store for the Marketplace. However, in
order to create a Marketplace that can be used beyond the project, triple-store was used. TDB was the triple
store, as native triple store is fast, and supports the storage of millions of individuals. Using TDB every change
at the ontology takes place at an ontology model stored in the file system leaving the original ontology
immutable. This means that the original version of the ontology can be used in order to initialize new
Marketplaces.

The performance of the Matchmaker package and its included components was tested for the COMPOSITION
use cases such as UC KLE-4 and the online bidding process. The package services response in a reasonable
time(less than 5 seconds). However, in order to examine the performance of all sub-components in large
Marketplaces, automated JUnit tests were created and applied. Over 20.000 companies and services created
and added to the Marketplace Ontology Store. Then some queries were applied and the responses were still
in reasonable time (near 5 seconds). Only in the case that the instances were created simultaneously the
required response were some minutes. But this is not consider as a serious problem as the Marketplaces was
initialized ones and after that every new instance is added as soon as a new company arrives at the
Marketplace or offers a new service etc.

8.2 Deployment

The semantic framework of COMPOSITION was deployed as a Docker image in alignment with the rest of the
project’s components based on the Deployment View of D2.4 The COMPOSITION architecture specification
II.

Docker is an open-source project aiming at automating the deployment of applications as portable, self-
sufficient containers that can run virtually anywhere, on any kind of server. It can be considered as a lightweight
alternative to full machine virtualization provided by hypervisors. While in the traditional hypervisor approaches
each virtual machine (VM) needs its own operating system, in Docker applications operate inside a container
that resides on a single host operating system that can serve many different containers at the same time.

The Matchmaker package’s Docker image contains all the sub-components as it is described at Figure 1 of
chapter 4. So in this image the Rule-based Matchmaker, the Querying Engine, the Ontology Store and their
corresponding APIs are containing.

Figure 27: Deployment of Matchmaker Package on COMPOSTITION Production Server

In order to create the Matchmaker’s Docker image and the corresponding container, the official Docker image
for Apache Tomcat was used. Tomcat was selected as the web server environment as it is web server

13 http://tomcat.apache.org/tomcat-8.5-doc/config/http.html

http://tomcat.apache.org/tomcat-8.5-doc/config/http.html

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 52 of 59 Submission date: 2019-02-28

environment in which Matchmaker package’s Java code can run. So, for the creation of the aforementioned
Docker image the Web Application Resource file from the Matchmaker was added to the Tomcat’s image. The
corresponding Docker container of the Matchmaker image was deployed at the COMPOSITION production
server and more precisely, on inter-factory Portainer14, which offers management of Docker environments.

8.3 Ontology and Security Framework

COMPOSITION Collaborative Manufacturing Services Ontology and its exposed APIs should be secured and
compatible with the requirements of the project’s Security Framework from WP4.

Generally, all COMPOSITION components, which expose RESTful APIs over the internet, must enforce
authentication using OpenID Connect. The LinkSmart® Border Gateway (BGW)15 can secure these APIs such
as the Ontology API from Matchmaker package by providing an overlay on top of all RESTful APIs, passing
only authenticated and authorized requests to them.

A Basic Auth authentication will be used in order to secure the Matchmaker API’s(including Ontology API) end
points. For the COMPOSITION purposes:

• User provides username/password in the REST request

• BGW intercepts the request and negotiates with an OpenID Connect server for a token

• If authenticated, BGW forwards the request to API and caches the token for upcoming requests until
it expires

Furthermore, COMPOSITION Security Framework also supports authorization services. BGW is able to
enforce policy based authorization based on request path and HTTP methods. The policies are profile
attributes assigned to users and groups as part of their accounts in the OpenID Connect server. For a
component, such as a Marketplace Agent, that wants to have access on Ontology it should ask to be able to
access the following component, method and resource:

• GET: https://inter.composition-ecosystem.eu/matchmaker/#

• POST: https://inter.composition-ecosystem.eu/matchmaker/#

The above links indicates to Keycloak16 framework that a component is authorized to call both GET and POST
services, which is under the Matchmaker package.

14 https://www.portainer.io/
15 https://docs.linksmart.eu/display/BGW
16 https://www.keycloak.org/

https://www.portainer.io/
https://docs.linksmart.eu/display/BGW
https://www.keycloak.org/

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 53 of 59 Submission date: 2019-02-28

9. Conclusions

In conclusion, this deliverable describes the total effort spent from M5 to M30 and represents the outcomes of
Task 6.4-Collaborative Manufacturing Services Ontology and Language of WP6. More specifically, this report
documents the delivered COMPOSITION Ontology and its corresponded API.

Collaborative Manufacturing Services Ontology has been implemented and presented after a thorough
analysis of Ontology languages, methodologies and tools. Moreover, ontologies from the domains of
manufacturing and e-commerce were studied and MASON, MSDL and GoodRelations Language were
selected to be imported to COMPOSITION Ontology. By using these ontologies and by following NeOn
methodology a new ontology was created in OWL language using the Protégé tool. The implemented
Collaborative Manufacturing Services Ontology is able to describe both the supply/demand entities and the
manufacturing domain’s services and resources. The Ontology has further extended with concepts and means
form waste management domain and software solutions domain for manufacturing.

An Ontology API has also been implemented. After consideration of the project’s requirements and
architecture, and after an analysis of available technologies and tools, the Ontology API is developed in Java
and it is offered through RESTful web services. It provides a set of services which offers retrieving and storing
functionalities from and to ontology store as well to the Marketplace agents.

The results presented in this deliverable mainly affect WP6 and its components such as the Agents and the
Matchmaker. In particular, the Matchmaker’s functionality is completely depended from Collaborative
Manufacturing Services Ontology as the Matchmaker performs matching by applying rules to the ontology. In
addition, the agents use as knowledge base the Ontology and they are able to read and store data to the
Ontology Store. This deliverable is also connected with WP3 and its modelling tasks as the ontology illustrates
some intra-factory information such as manufacturing operations and resources, to the Marketplace. This task
is also connected, as the most of the project, with WP4 and the Security Framework.

Finally, as it is perceived, the results of Task 6.4 are presented in this deliverable. The main outcome of this
task, which also consists its unique selling point, is the Collaborative Manufacturing Services Ontology that is
able to describe most of the concepts in a real-world Manufacturing Marketplace. The proposed ontology offers
the concepts for the description and modelling of manufacturing domain connected with supply-chain, waste
management and software solutions domains in order to support a complete ecosystem focused on
manufacturing.

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 54 of 59 Submission date: 2019-02-28

10. List of Figures and Tables

10.1 Figures

Figure 1: COMPOSITION Marketplace components .. 7
Figure 2: Core Classes of MSDL (Ameri, 2006) .. 16
Figure 3: MASON main classes and properties (Lemaignan, 2006) ... 17
Figure 4: GoodRelations Language main classes and properties .. 18
Figure 5: Set of nine scenarios for building ontologies and ontology networks (M.C. Sua´rez-Figueroa, 2012)
 ... 20
Figure 6: COMPOSITION Collaborative Manufacturing Services Ontology’s Class Overview 26
Figure 7: "Business entity" class and sub-classes .. 26
Figure 8: "Capability" class and sub-classes ... 28
Figure 9: "Dates and Times" class and sub-classes ... 28
Figure 10: "Delivery method" class and sub-classes .. 29
Figure 11: "Entity" class and sub-classes .. 30
Figure 12: "Generic term" class and sub-classes .. 31
Figure 13: Mapping of vendor specific concepts ... 31
Figure 14: "Operation" class and sub-classes ... 34
Figure 15: "Payment method" class and sub-classes ... 35
Figure 16: "Price specification" class and sub-classes ... 35
Figure 17: "Quantitative value" class and sub-classes .. 36
Figure 18: "Resource" class and sub-classes ... 37
Figure 19: "Service" class and sub-classes ... 39
Figure 20: "Supporting service" class and sub-classes ... 40
Figure 21: "Supporting system" class and sub-classes ... 40
Figure 22: "Warranty" class and sub-classes .. 41
Figure 23: Modelling of KLEEMANN Polishing Procedure using Collaborative Manufacturing Services
Ontology .. 42
Figure 24: Apache Jena’s framework architecture (Apache Jena, 2017) ... 43
Figure 25: COMPOSITION Semantic Framework high-level architecture overview 47
Figure 26: Ontology API Interfaces ... 48
Figure 27: Deployment of Matchmaker Package on COMPOSTITION Production Server 51
Figure 28: Class hierarchy view .. 58

10.2 Tables

Table 1: Abbreviations and acronyms are used in this deliverable .. 5
Table 2: MSDL and MASON overlapping classes’ alignment ... 22
Table 3: MSDL and GoodRelations Language overlapping classes’ alignment ... 22
Table 4: ORSD of COMPOSITION Collaborative Manufacturing Services Ontology 25
Table 5: Object Properties of "Business entity" class .. 27
Table 6: Data Properties of "Business entity" class .. 27
Table 7: Data Properties of "Business entity type" class ... 27
Table 8: Data Properties of "Capability" class ... 28
Table 9: Object Properties of "Dates and Times" class ... 29
Table 10: Data Properties of "Dates and Times" class ... 29
Table 11: Data Properties of "Delivery method" class ... 29
Table 12: Object Properties of "Entity" class ... 30
Table 13: Data Properties of "Entity" class .. 30
Table 14: Object Properties of "Offer" class .. 31
Table 15: Data Properties of "Offer" class ... 32
Table 16: Object Properties of "Operation" class .. 33
Table 17: Data Properties of "Operation" class ... 33
Table 18: Data Properties of "Payment method" class ... 35
Table 19: Object Properties of "Price specification" class ... 35
Table 20: Data Properties of "Price specification" class .. 35
Table 21: Data Properties of "Quantitative value" class .. 36

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 55 of 59 Submission date: 2019-02-28

Table 22: Object Properties of "Resource" class... 38
Table 23: Data Properties of "Resource" class ... 38
Table 24: Data Properties of "Certification" class .. 38
Table 25: Object Properties of "Service" class .. 39
Table 26: Data Properties of "Service" class ... 39
Table 27: Object Properties of "Supporting service" class .. 40
Table 28: Data Properties of "Supporting service" class ... 40
Table 29: Object Properties of "Supporting system" class .. 40
Table 30: Data Properties of "Supporting system" class ... 41
Table 31: Object Properties of "Warranty" class ... 41
Table 32: Data Properties of "Warranty" class .. 41
Table 33: Static analysis' rules set .. 59

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 56 of 59 Submission date: 2019-02-28

11. References

(COMPOSITION, 2016)GRANT AGREEMENT 723145 — COMPOSITION: Annex 1 Research and
innovation action

(Ameri, 2006) Manufacturing Service Description Language
https://www.researchgate.net/publication/267486591_An_Upper_Ontology_for_Man
ufacturing_Service_Description

(Lemaignan, 2006) Manufacturing’s Semantics Ontology or MASON is a manufacturing ontology, aimed
to provide a common semantic net in manufacturing domain.
http://ieeexplore.ieee.org/document/1633441/

(GoodRelations, 2017) GoodRelations Language, The Web Vocabulary for E-commerce
http://www.heppnetz.de/projects/goodrelations/

(Studer et al, 1998) Studer, R., Benjamins, V. R., & Fensel, D. (1998). “Knowledge engineering:
principles and methods”, Page(s): 161-197.

(Gruber, 1993) Gruber, T. R. (1993). “A translation approach to portable ontology specifications.
Knowledge acquisition”, Page(s): 199-220.

(Genesereth and Fikes, 1992) Genesereth, M. R., & Fikes, R. E. (1992). “Knowledge interchange format-
version 3.0: reference manual.” Computer Science Department, Stanford University,
Technical Report Logic-9201, June 1992.

(MacGregor, 1992) MacGregor, R, 1991. “The Evolving Technology of Classification-Based Knowledge
Representation Systems. In Principles of Semantic Networks: Explorations in the
Representation of Knowledge”, edited by J. Sowa. San Mateo, CA: Morgan
Kaufmann., San Mateo, California.

(Chaudhri et al., 1998) Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., & Rice, J. P. (1998). “OKBC: A
programmatic foundation for knowledge base interoperability”. In Innovative
Applications of Artificial Intelligence Conference, Page(s): 600-607.

(Motta, 1999) Domingue, J., Motta, E., & Garcia, O. C. (1999). “Knowledge modelling in webonto
and ocml: A user guide.”, Knowledge Media Institute, The Open University.

(Kifer et al., 1995) Kifer, M., Lausen, G., & Wu, J. (1995). “Logical foundations of object-oriented and
frame-based languages.”, Journal of the ACM (JACM), 42(4), Page(s): 741-843.

(Luke and Heflin, 2000) Heflin, J., Hendler, J. A., & Luke, S. (2003). “SHOE: A Blueprint for the Semantic
Web. Spinning the Semantic Web”, Page(s): 1-19.

(Karp et al., 1999) Karp, P. D., Chaudhri, V. K., & Thomere, J. (1999). “XOL: An XML-based ontology
exchange language.”, Pangea Systems Inc., Artificial Intelligence Center.

(Lassila and Swick, 1999) Lassila, O., & Swick, R. R. (1999). ”Resource description framework (RDF) model
and syntax specification.”

(Brickley and Guha, 2003) Brickley, D., & Guha, R. V. (2003). “Resource description framework (rdf) schema
specification 1.0: Rdf schema.”, W3C working Draft.

(Fensel et al., 2001) Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., & Patel-Schneider,
P. F. (2001). “OIL: An ontology infrastructure for the semantic web.”, IEEE intelligent
systems, Page(s): 38-45.

(Dean and Schreiber, 2003) Dean, M., Schreiber, G., van Harmelen, F., Hendler, J., Horrocks,
I.,McGuinness. (2003). “OWL web ontology language reference.”

(E. Prud’hommeaux et al, 2008) Prud’hommeaux, E., Seaborne, A.. (2008). “SPARQL query Language for
RDF”, W3C Recommendation, January 15, 2008.

(Gómez-Pérez et al., 1997) Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). “Methontology:
from ontological art towards ontological engineering.”

(Waterman, 1986) Waterman, D. A. (1986). “A guide to expert systems. Addison-Wesley.”

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 57 of 59 Submission date: 2019-02-28

(M. C. Suárez-Figueroa, 2010) NeOn Methodology for Building Ontology Networks:
 Specification, Scheduling and Reuse

(Staab et al., 2001) Maedche, A., & Staab, S. (2001). “Ontology learning for the semantic web.”, IEEE
Intelligent systems, Page(s): 72-79.

(Apache Jena, 2017) A free and open source Java framework for building Semantic Web and Linked Data
applications http://jena.apache.org/index.html

(L. Halilaj, 2016) L. Halilaj, N. Petersen, I. Grangel-González, Ch. Lange, S. Auer, G. Coskun, S.
Lohmann: VoCol: An Integrated Environment to Support Version-Controlled
Vocabulary Development. Proceedings of the 20th International Conference on
Knowledge Engineering and Knowledge Management (EKAW 2016), pp. 303-319,
LNAI vol. 10024, Springer, 2016

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 58 of 59 Submission date: 2019-02-28

12. ANNEX I

Usage instructions for Collaborative Manufacturing Services Ontology

Using OWLDoc

A user can explore Collaborative Manufacturing Services Ontology in a web browser by using the offered
OWLDoc:

1. Download the OntologyV02.zip file and unzip it to a location of your choice.

2. Navigate to OntologyV02 -> Documentation

3. Select the file named index

4. Then open this file with a double click. A web browser window will launch where the user will be able
to explore ontology’s details

Using Protégé tool

In this section, we present instructions in order to open and properly use the current version of the Collaborative
Manufacturing Services Ontology through the Protégé tool:

1. Download the OntologyV02.zip tar file and unzip it to a location of your choice.

2. Download, install and launch Protégé tool (preferred versions 4.2, 4.3 and 5.2)

3. Select File at the top line menu and then select Open at the sub-menu has just been appeared

4. At the new window, navigate to the extracted file from Step 1, OntologyV02-> Ontology - Files and
choose COMPOSITIONv02.owl. Then press Open button

5. Protégé will load the ontology that is contained in the owl file. Protégé will also import the three
imported ontologies. Check that the other three OWL files are also located in the extracted file from
Step 1. After this step, the user is ready to visualize the whole Ontology

Figure 28: Class hierarchy view

* The ontology will be updated by the end of the project. Agents add individuals and some new concepts will
need to be extended for matchmaking etc. Therefore, the last version will be available by the end of the
project

https://www.composition-project.eu/download/2558/
https://www.composition-project.eu/download/2558/

COMPOSITION D6.8 Collaborative Manufacturing Services Ontology and Language II

Document version: 1.0 Page 59 of 59 Submission date: 2019-02-28

13. ANNEX II

Rule set was used for PMD static analysis

Table 33: Static analysis' rules set

Rules set Description

Basic A collection of good practices which
everyone should follow

Basic POM Rules related with dependency management

Braces Contains a collection of braces rules

Code size Ruleset contains a collection of rules that
find code size related problems

Complexity Contains a collection of rules related to
code’s complexity

Controversial Contains rules that, for whatever reason, are
considered controversial.

Design A collection of rules that find questionable
designs

Empty code A collection of rules that find blocks of code
where nothing is done

Import statements Ruleset to deal with different problems that
can occur with a class' import statements

J2EE Rules related to J2EE

JUnit Rules related to problems that can occur
with JUnit tests

Naming Contains a collection of rules about names -
too long, too short etc.

Optimization Ruleset deals with different optimizations
that generally apply to performance best
practices

Security code
guidelines

Contains rules which check the security
guidelines

Strict Exceptions Contains strict guidelines about throwing and
catching exceptions

String &
StringBuffer

Contains rules related with manipulation of
the class String or StringBuffer

Style Ruleset related to name conventions

Unnecessary Ruleset that find unnecessary blocks

Unused code Contains rules that find unused code

