

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D4.5 Prototype of the Security Framework II

Date: 2019-02-28

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 2 of 34 Submission date: 2019-02-28

Document control page

Document file: D4.5 Prototype of the Security Framework II v1.0.docx
Document version: 1.0
Document owner: ATOS

Work package: WP4 – Secure Data Management and Exchange in Manufacturing
Task: T4.1 – Security by design for cloud-based data exchange
 T4.3 - Knowledge Protection, IPR Protection and Trust for Collaborative…
 T4.4 - Cyber Security for Factories
Deliverable type: OTHER

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Nacho González, Rodrigo Díaz,
David Rojo, Mario Faiella (ATOS)

2019-01-02 First version of the deliverable.

0.2 Nacho González, Rodrigo Díaz,
David Rojo, Mario Faiella (ATOS)

2019-02-07 Security Framework architecture update

0.3 Nacho González, Rodrigo Díaz,
David Rojo, Mario Faiella (ATOS)

2019-02-14 Deployment contributions

0.4 Nacho González, Rodrigo Díaz,
David Rojo, Mario Faiella (ATOS)

2019-02-20 Update on deployment contributions.
Ready for internal review

0.5 Patrick McCallion (BSL) 2019-02-22 Internal review by BSL

0.6 Matteo Pardi (NXW) 2019-02-25 Internal review by NXW

1.0 Nacho González, Rodrigo Díaz,
David Rojo, Mario Faiella (ATOS)

2019-02-27 Internal review comments addressed

 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Patrick McCallion (BSL) 2019-02-22 • Update table of acronyms

• Typos

• Grammar and orthography

Matteo Pardi (NXW) 2019-02-25 • Typos

• Issues with the architecture diagram

• Reorganize the chapters

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 3 of 34 Submission date: 2019-02-28

Index:
1 Abbreviations and Acronyms ... 4

2 Introduction .. 5
2.1 Purpose, context and scope of this deliverable ... 5
2.2 Content and structure of this deliverable ... 5

3 General Security Framework architecture ... 6
3.1 REST API Security with Border Gateway .. 6

4 Deployment ... 8
4.1 RaaS Deployment .. 8

4.1.1 RaaS authorization policies ... 8
4.2 GaS (GUI Authorization Service) Deployment ..10

4.2.1 Overview ..10
4.2.2 GaS authorization policies ...11

4.3 Keycloak ..13
4.4 EPICA overview and deployment ..13

4.4.1 RaaS – EPICA Integration ...15
4.4.2 GaS – EPICA Integration ...17

4.5 COMPOSITION Reputation Model Deployment ..19
4.5.1 Agent-based Reputation Model Implementation and Deployment19

4.6 XL-SIEM Deployment ..20
4.6.1 XL-SIEM Engine Deployment ..21
4.6.2 XL-SIEM Agents Deployment ..21

5 Conclusion ..22

6 Annex 1 – Keycloak management ..23
6.1 Admin console ...23
6.2 The Master realm ...25
6.3 Creating a new realm ...25
6.4 User search ..26
6.5 Create new user...27
6.6 Deleting users ..28
6.7 User configuration ..28

6.7.1 Details ..29
6.7.2 Attributes ..29
6.7.3 Credentials ...30
6.7.4 Role mappings ...30
6.7.5 Groups ...31

7 Annex II – RabbitMQ configuration parameters ..32

8 List of Figures and Tables ...33
8.1 Figures ...33
8.2 Tables ..33

9 References ..34

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 4 of 34 Submission date: 2019-02-28

1 Abbreviations and Acronyms

Acronym Meaning

OTP One Time Password

SSL Secure Sockets Layer

HTTPS Hyper Text Transfer Protocol Secure

REST Representational State Transfer

RaaS RabbitMQ authentication and authorization Service

GaS GUI authorisation Service

PAP Policy Administration Point

XACML eXtensible Access Control Markup Language

PA Policy Administrator

PDP Policy Decision Point

BGW Border Gateway

MQTT Message Queuing Telemetry Transport

JWT JSON Web Token

AMQP Advanced Message Queuing Protocol

UUID Universally Unique Identifier

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 5 of 34 Submission date: 2019-02-28

2 Introduction

2.1 Purpose, context and scope of this deliverable

This document provides an update of the implementation and deployment of the specifications and
requirements of the Security Framework. The first version of this document, delivered in M20, reported the
initial stages of the deployment process, and this document will update that information with a report of the
changes performed due to specific needs of the project and the implementation and deployment of new and
pending components of the Security Framework, aimed to address the requirements and the securitization of
the different components and processes of the COMPOSITION environment.

The previous deliverables where the specification and requirements were stated are:

• D4.1 – Design of the Security Framework I (delivered in M12)

• D4.2 – Design of the Security Framework II (delivered in M18)

And the previous version of this document is:

• D4.4 – Prototype of the Security Framework (delivered in M20)

The final version of the Security Framework prototype guarantees confidentiality and integrity of the information
transmitted. This is assured by three groups of security mechanisms:

• Authentication

• Access control: based on a security token included in different requests and the evaluation of security
policies.

• Transport security

2.2 Content and structure of this deliverable

The structure of this document is divided into two main blocks

• General Security Framework architecture: description of the architecture and main updates from
the first version of the Security Framework.

• Deployment: functional and technical report about the implementation and deployment of the different
components of the Security Framework.

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 6 of 34 Submission date: 2019-02-28

3 General Security Framework architecture

The Security Framework provides a complete securitization of the COMPOSITION platform components, in
terms of authentication, authorization and cybersecurity of all the communications involved in the different
processes.

Below we can find an update of the architecture of the Security Framework. The main differences from the
previous version described in D4.4 – Prototype of the Security Framework I are:

• GaS component: aimed to address the securitization of the different graphic user interfaces.

• XL-SIEM component which will provide real-time event analysis and protection against cybersecurity
threats.

Figure 1 Security Framework architecture diagram

3.1 REST API Security with Border Gateway

All COMPOSITION components which expose RESTful APIs over the internet must enforce authentication
using OpenID Connect. LinkSmart Border Gateway1 (BGW) can secure these APIs by providing an overlay on
top of all RESTful APIs, passing only authenticated and authorized requests to them.

These two authentication methods are currently available for COMPOSITION:

• Basic authentication

1. User provides username/password in the REST request
2. BGW intercepts the request and negotiates with an OpenID Connect server for an access

token

1 https://docs.linksmart.eu/display/BGW

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 7 of 34 Submission date: 2019-02-28

3. If authenticated, BGW forwards the request to API

• Bearer token

1. User directly negotiates with an OpenID Connect server for an access token.

2. User provides the access token in the request

3. BGW intercepts the request and validates the token

4. If authenticated, BGW forwards the request to the API

Regarding authorization, BGW is able to enforce policy-based authorization based on request path and HTTP
methods. The policy should be given to BGW as part of the JWT during authentication. The policies are profile
attributes assigned to users and groups as part of their accounts in the OpenID Connect server. The rules
format allows wildcards # and + in the same way it is commonly used for MQTT topics (see here2 for a more
elaborate documentation).

The following diagram shows the HTTP communication within the ecosystem:

Figure 2 HTTP communication within the COMPOSITION ecosystem

2 https://docs.linksmart.eu/display/BGW/Setting+up+Keycloak+as+an+OpenID+Connect+provider

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 8 of 34 Submission date: 2019-02-28

4 Deployment

4.1 RaaS Deployment

RaaS exposes different REST APIs, each of them associated to a different level of access control. The
following figure describes the endpoints and methods of the API:

Figure 3 RaaS API endpoints

RaaS is used for granting access to the rabbitMQ message broker, while GaS component, described in the
next section, is used by the need of granting authorization policies to the different GUIs of the COMPOSITION
platform.

Regarding the deployment, the deployment has been done on the production server. The configuration
parameters can be found in the chapter 7 – Annex II and the following plugins are activated:

• rabbitmq_auth_backend_http

• rabbitmq_auth_backend_cache

• rabbitmq_mqtt

• rabbitmq_web_mqtt

4.1.1 RaaS authorization policies

RaaS component will fetch any request that is coming from the RabbitMQ3 broker. It exposes five different
APIs, summarized in Table 1. The first four of them are related to different level of access control, as well
explained in RabbitMQ specification for access control4, where also specific concepts such as ‘virtual host’,
‘resource’, ‘topic’ and ‘routing key’ are explained. Instead, the last API simply allows the user retrieving some
generic information about the set of REST APIs, indeed it will not be taken in consideration from now on.

Table 1 RaaS Exposed APIs

Endpoint Method Path Description

User POST /auth/user Used for authenticating the user. Authorization is not involved at
this step.

Vhost POST /auth/vhost Verify if a user is authorized access a specific virtual host

Resource POST /auth/resource Verify if a user is authorized to access a specific resource (e.g.,
exchange, queue)

3 http://www.rabbitmq.com/
4 https://www.rabbitmq.com/access-control.html

http://www.rabbitmq.com/
https://www.rabbitmq.com/access-control.html

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 9 of 34 Submission date: 2019-02-28

Topic POST /auth/topic Verify if a user is authorized to access a specific AMQP (or
MQTT) topic, associated to a specific resource (e.g., exchange,
queue)

Info GET /auth/info Retrieves information about the application. Used to verify if
REST API works or not.

Every time a user requests the usage of a specific resource to RabbitMQ, he made four different sequential
calls to the endpoints specified in Table 1, and for each of them an access control policy is created. For each
request it receives, RaaS firstly interacts with Keycloak for getting the token on behalf of the user who is making
the request itself. All the information needed for generating the policies can be found in this token, specified
through the custom attribute “raas_authz_rules”, that can contain more than one authorization rule, separated
by two white spaces characters. Each rule is composed by at most four attributes, following a specific order,
separated by a single white space character, and, depending on which attributes are specified, the parser can
infer what kind of RabbitMQ access control level is requested.

The set of attributes that could be specified, and the related order, is the following:

• Exchange (optional): name of the exchange involved in the received request (only when /topic
endpoint is called)

• Vhost (mandatory): name of the virtual host that want to be accessed

• Permission (mandatory): type of operation that the user would like to perform on the selected
resource (e.g., write, read, configure)

• Resource_regexp (optional): regular expression used for matching the name of the resource
(/resource endpoint) or the routing key (/topic endpoint) received through the request

For example, if just the two mandatory attributes are specified, the rule parser can infer that this authorization
rule should be used when the user asks for the permission of accessing a specific virtual host (/vhost endpoint).
If both the optional parameters are present, then the rule should be considered when /topic endpoint is called.
Finally, if just the ‘resource_regexp’ parameter has been specified, together with the mandatory ones, it means
that the /resource endpoint has been called, that is a user is requesting the permission to perform an operation
on the selected resource belonging to a specific virtual host.

Besides, to increase the rules flexibility, special wildcards could be used, merging the guidelines of both MQTT
(add footnote in confluence) and AMQP5 protocols, which are both supported by RabbitMQ and used in
COMPOSITION context. More precisely, the available wildcards are the following:

• #: every combination of characters is allowed starting from this character. It could be used for virtual
hosts, MQTT and AMQP resources names (e.g., exchanges, queues) and topics

• +: if used for ‘permission’ parameter, every possible operation is allowed (write, read or configure for
AMQP cases, while publish and subscribe for MQTT ones). Besides, it could also be used for
expressing a generic single word between two ‘-’ characters when MQTT resources and topics are
involved.

• *: it could be used for expressing a generic single word between two ‘.’ characters when AMQP
resources and topics are involved.

In Table 2, some examples are described:

Table 2 RaaS Authorization Rules examples

Rule Endpoint called Description

vh=/ write amq.example.# /resource Allows write operation on every
resource whose name start with
"amq.example.", which belongs to
the default virtual host (/).

vh=/ read mqtt-composition-
example

/resource Allows read operation (equivalent of
subscribe operation for MQTT) on
resources named mqtt-composition-

5 https://www.rabbitmq.com/tutorials/tutorial-five-python.html

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 10 of 34 Submission date: 2019-02-28

example, which belongs to the
default virtual host (/).

amq.topic vh=example +
Composition.BMS.#

/topic Allows every operations on
amq.topic exchange, belonging to
virtual host example, if the routing
key specified in the request match
the regular expression in the rule.

vh=# /vhost Allows the access on every virtual
host.

vh=# + # /resource Allows every operation on every
resource in every virtual host.

RaaS is able to parse each rule located in the ‘raas_authz_rules’ attribute of the Keycloak token, and create a
JSON with a predefined structure needed by EPICA component, described in Section 4.4.1, for creating the
final access control policy, or better, the final policy set, considering that each rule will be converted into a
single policy, and all of them embedded in the same policy set. The integration between RaaS and EPICA will
be explained in Section 4.4.2. Additionally, the concept of group in Keycloak will also be used for implementing
a basic policy inheritance. This means that if a user belongs to a group, he will automatically inherit all the
authorization rules associated to that group, specified through the group-level attribute
‘raas_authz_rules_<group_name>’, which could be also extracted from the token, but only if the user is
effectively a member of that group. For more information about how groups are handled in Keycloak, the reader
is advised to read Keycloak documentation.

4.2 GaS (GUI Authorization Service) Deployment

4.2.1 Overview

GaS component will be in charge of guaranteeing the authorization service for GUIs6 It does not perform
authentication, as RaaS does, indeed it expects to receive the Keycloak token in the request. The caller is
responsible for retrieving the Keycloak access token and, then, forward it to GaS. It will be another secure
entry-point for the Security Framework.

Figure 4 GaS API endpoints

GUI authorization Service (GaS) has been added to handle authorization of Graphical User Interfaces
(GUIs), used in COMPOSITION scenarios. When RaaS is involved, it means that the user is trying to access
a specific resource (usually a MQTT/AMQP resource), sending the request through the RabbitMQ broker.
Once the request reaches RaaS, it will interact both the Authentication Service (Keycloak) and the
Authorization Service (EPICA), to authenticate the user and check if he has the rights for performing the
requested operation.

When GUI are involved, instead, the workflow is slightly different. Indeed, the GUI itself must interact directly
with Keycloak, for example during the login, to authenticate the user who is using the application, without
passing through the broker. This is possible allowing the so-called “Implicit Flow”7, specifying in Keycloak
itself all the available URLs to which Keycloak can redirect the application after the user login.

More in details, the GUI performs a GET request to the following URL:

• https://<keycloack_domain>/keycloak/realms/<realm_name>/protocol/openid-connect/auth

6 https://auth.composition-ecosystem.eu/gas/gas-api/index.html
7 https://www.keycloak.org/docs/3.3/server_admin/topics/sso-protocols/oidc.html

https://auth.composition-ecosystem.eu/gas/gas-api/index.html

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 11 of 34 Submission date: 2019-02-28

Specifying the following parameter in the URL:

• client_id: id of the Keycloak client involved

• redirected_uri: URL to which Keycloak will redirect the application, in case of successfully login

• response_type: equal to “token”. Allows obtaining the access token which could be retrieved from
the callback URI provided by Keyloak in case of successfully login

• nonce: a random UUID will be specified

The redirection will end successfully if the redirected_uri, specified by the GUI, is present in the list of valid
redirecting URLs, in the configuration of the used Keycloak client, where also the “Implicit Flow” must be
enabled.

Finally, the GUI can retrieve the access token, from the callback URL provided by the Authentication Service.
At this point, the user, through the GUI, is authenticated, but not still authorized. For this reason, GaS
component has been added to the Security Framework. The GUI creates the access control request,
specifying the token in the Authentication Header of the HTTP POST request, sent to GaS, together with the
information of the resource that want to be accessed. This component will extract all the information from the
incoming request, interacting with EPICA for checking if the user is authorized. EPICA final answer, is
returned to the GUI, which, in turn can complete the overall process.

In Section 4.2.1, how GaS authorization policies are built, starting from the Keycloak access token, is
described. Instead, in Section 4.4.2, the integration between GaS and EPICA, in terms of policies creation,
management and enforcement will be detailed.

We can synthetize what GaS does in the following diagram:

Figure 5 GaS activities diagram

4.2.2 GaS authorization policies

GaS authorization policies will be defined starting from the authorization rules specified in the Keycloak token,
through the ‘bgw_rules’ attribute, in a similar way already explained for RaaS component in Section 4.1.1. As
discussed in the previous section, GaS receives requests not from the broker, but directly from the GUIs, that
have already interacted with Keycloak by themselves for retrieving the token, for requesting the access of a
specific URI. Parameters have a predefined order, and, as for RaaS case, more rules could be specified in the
same ‘bgw_rule’ attribute. Rules will be separated among each other by a single white space character, while
the different attributes composing a single rule, by a ‘/’ character.

The set of parameters, and the order, is the following:

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 12 of 34 Submission date: 2019-02-28

• Protocol: transfer protocol (e.g. HTTP, HTTPS)

• Method: method regarding the protocol (e.g. GET, POST, DELETE)

• Domain: fully qualified domain name (FQDN)

• Port: TCP port

• Path: it represents resource information and may contain slashes itself. For HTTP, it is the resource
path

For GaS cases, every parameter is mandatory. Also, for this component, some wildcards are allowed, for
having more flexibility when defining authorization rules in Keycloak. An important difference with respect to
RaaS, with respect to wildcards usage, is related to the possibility of specifying more parameters using one of
these special characters. The available wildcards are the following:

• #: every combination of characters is allowed starting from this character. If applied to a specific
attribute, it will be implicitly extended to all the subsequent attribute, considering the predefined order

• +: used for representing a generic word, or character combination, between two ‘/’ characters. It means
that it has a validity only for single parameters.

In Table 3 some practical examples are described:

Table 3 GaS Authorization Rules Examples

Rule Description

HTTPS/GET/intra.composition-ecosystem.eu/443/sc/# Allows

• GET method over HTTPS

• on domain intra.composition-
ecosystem

• port 443

• path sc as well as any other one
starting with sc

HTTPS/+/intra.composition-ecosystem.eu/443/# Allows

• all methods

• over HTTPS

• on domain intra.composition-
ecosystem

• port 443

• with any path

HTTPS/+/+/443/sc/admin Allows

• all methods

• over HTTPS

• on every domain

• port 443

• with path equal to sc/admin

HTTPS/# Allows

• all methods

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 13 of 34 Submission date: 2019-02-28

• over HTTPS

• on every domain

• on every port

• with any path

Also, for GaS, the policy inheritance functionality has been implemented exploit how Keycloak manage groups.
The approach is the same described for RaaS in Section 4.1.1. The only differences are the name of the
Keycloak attribute that should be extracted, called ‘bgw_rules_<group_name>’ and, obviously, the syntax of
the rules, as explained above.

As Raas does, this component can convert these authorization rules in a predefined JSON understandable by
EPICA for allowing it building the overall policy set. The integration between GaS and EPICA will be detailed
in Section 4.4.2.

4.3 Keycloak

The authentication service has been deployed using Keycloak. For management purposes, we’ve elaborated
a cheat sheet available in Annex 1 with the most common operations to be performed by the different users of
the authentication service.

4.4 EPICA overview and deployment

EPICA is an Attribute Based Access Control (ABAC) tool based on XACML v3.08. The main idea behind EPICA
is to provide the means to manage access control policies and then, evaluate incoming requests against these
policies, when specific accesses should be granted. More specifically, the role of EPICA in COMPOSITION is
to provide the Authorization service for the Security Framework. EPICA functionalities have been described in
detailed in (COMPOSITION D4.2, 2018) and (COMPOSITION D4.4, 2018), focusing upon the two sub-
component that characterize this tool, the Policy Administration Point (PAP), in charge of managing access
control policies, and the Authorization Engine, responsible for policies enforcement task. Both offers a set of
REST APIs, used for initiating the related processes.

For the sake of completeness, the overall architecture is depicted in Figure 6.

Figure 6 EPICA architecture

8 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 14 of 34 Submission date: 2019-02-28

The set of REST APIs, instead, of the two sub-components are shown in Figure 7 and Figure 8. The
functionalities offered by each APIs have already been detailed in (COMPOSITION D4.4, 2018), when the first
prototype of the Security Framework has been introduced. With respect of those versions, just few changes
have been made. Regarding the PAP, only a new endpoint has been added, allowing the requester to delete
an empty folder, which previously contained one or more access control policies. For the Authorization Engine,
instead, more changes have been made. Now, it is exposing two POST method, both for initializing the policy
enforcement process, with the difference that the second, which has more relevance in the COMPOSITION
scenario, is expecting the Keycloak token in the Authorization Header of the HTTP request, as can be seen in
Figure 9. This feature is needed by the Authorization Engine for extracting specific attribute from it, to build the
final XACML request.

More information about the APIs will be provided in Section 0 and Section 4.4.2, when the integration between
RaaS and GaS with EPICA will be described.

For improving the flexibility in terms of building authorization rules, which will be converted in access control
policies, the usage of specific wildcards is allowed, following the guidelines for both MQTT and AMQP, as
detailed in Section 4.1.1 and Section 4.2.1. EPICA must handle properly these wildcards, for this reason the
matching of all the parameter (e.g., mqtt/amqp topic and resources, http resource paths) who are using them
will be matched through regular expressions.

Figure 7 Policy Administration Point API

Figure 8 Authorization Engine API

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 15 of 34 Submission date: 2019-02-28

Figure 9 Authorization Engine API Details

To let EPICA able to do that, the Policy Decision Point (PDP), that is based on WSO2 Balana Open Source
implementation9, adding, at runtime, a new matching function to the pool of default function that Balana is
offering, to specially fit the regular expression matching needed in COMPOSITION, without modifying anything
of the core software of Balana itself. More information about EPICA PDP can be found in (COMPOSITION
D4.4, 2018).

About the deployment, a docker version of both the sub-component have been generated and deployed in
ATOS premises using the docker-compose tool, in the same virtual network of the security framework, saving
valuable information, such as logs and policy folders, in docker volumes. For having a better view about the
overall deployment of EPICA, the reader is advised to read (COMPOSITION D4.4, 2018).

4.4.1 RaaS – EPICA Integration

As already explained, RaaS component is one of the entry point of the Security Framework, managing all the
access requests that come from the RabbitMQ broker. First, it authenticates the user who is making the
request, retrieving a token from Keycloak, using the received credentials (username and password). Then, it
extracts the information contained in the token for retrieving the information needed to build a JSON compliant
with the one that the Policy Administration Point (PAP) component of EPICA is expecting to receive (Section
4.1.1). Once this JSON has been built, PAP REST APIs are used for building the real XACML policy, specifying
the policy store in which it will be stored, a UUID as resource identifier, and the JSON itself as the POST
request body.

After that, Authorization Engine API is invoked, specifying the Keycloak token in the Authorization Header of
the request. Moreover, RaaS will forward the information received by the RabbitMQ broker (e.g., vhost,
resource to be accessed, permission, eventual topic), inserting it in the request body, to allow building the
correct XACML request, used for matching the policy created in the above step.

For letting the Authorization Engine able to retrieve the correct policy, also the UUID previously associated to
the policy is added to the body of the incoming request. Depending on the HTTP Status of the HTTP Response,
RaaS can recognize the outcome of the enforcement. Moreover, the Authorization Engine, return, within the
HTTP Response, a body containing a Boolean value, true if the final decision is to allow the access control
request, false otherwise, which will, in turn, forwarded to the broker.

9 https://github.com/wso2/balana

https://github.com/wso2/balana

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 16 of 34 Submission date: 2019-02-28

At the end of the process, RaaS invokes again the PAP REST APIs, this time for deleting first the policy in the
folder identified by the previously created UUID, and, then, the folder itself.

The entire process is summarized through the activity diagram shown in Figure 10.

Figure 10 RaaS - EPICA Activity Diagram

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 17 of 34 Submission date: 2019-02-28

4.4.2 GaS – EPICA Integration

As stated in Section 4.2, GaS component constitutes another entry point for the Security Framework.
Differently from RaaS, it is not connected to the RabbitMQ broker, but used for GUI authentication and
authorization purposes. The requests, indeed, are coming directly from the GUIs.

It is important to remind that, in this case, the component will not directly retrieve Keycloak token, as RaaS
does, but this operation is done separately by the GUI itself, previously interacting with Keycloak. This means
that the GUI will provide the token to GaS, which, in turn, will forward it to EPICA.

However, despite of the differences between the two use cases, the integration with EPICA will be the same,
in terms of workflow. Obviously, the customized JSON to send to PAP REST APIs will consider different
attributes and values, as described in Section 4.2.1. A UUID will be generated and associated to each policy
and passes to PAP as resource identifier.

The same reasoning is applied when interacting with the Authorization Engine for starting the policy
enforcement process. The same API is called, then it will be EPICA that will discriminate what component has
performed the call, depending on the parameter received in the HTTP POST request (e.g., protocol, method,
domain, port, resource path).

Finally, GaS will interact again with the PAP for deleting the created policy and the folder where it has been
stored and, at the end, returns the result of the enforcement to the GUI.

For the sake of completeness, the activity diagram of the interaction between GaS and EPICA is shown in
Figure 11.

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 18 of 34 Submission date: 2019-02-28

Figure 11 GaS - EPICA Activity Diagram

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 19 of 34 Submission date: 2019-02-28

4.5 COMPOSITION Reputation Model Deployment

The aim of the COMPOSITION Reputation Model, called simply Agent-based Reputation Model, is to help
Agents to make trust-based decision when choosing the counterpart with which start a new negotiation. The
details about the Agents belonging to COMPOSITION context have been given in (COMPOSITION D6.3,
2018).

The requirements of the reputation model have been elicited in (COMPOSITION D4.2, 2018), while the details
about the design phase have been provided in (COMPOSITION D4.4, 2018), where the decision to split it into
two sub-models, called respectively Local Reputation Model and Global Reputation Model, has been
explained. However, despite of this decision, the overall model implementation contains both sub-modules,
which will be embedded in the Security Framework, and available on demand as a service, through a specific
set of REST API, as described in Section 4.5.1.

For summarizing, the Local Reputation Model is a type of agent-level personal ranking system. Reputation is
computed by a Requester Agent R with respect to a Supplier Agent S. Requesters handle these values and
update them every time an interaction occurs with the same Supplier. It takes in consideration just a set of
ratings, and their related timestamp, provided by R after each interaction with S. During the computation, the
ratings are aggregated, weighting each of them with the associated timestamp. Indeed, newer ratings are more
relevant and should have a higher weight than older ones, being compliant with the concept of reputation
lifetime.

However, this approach has a huge limitation: indeed, it does not consider opinions of different Agents, which
could be very valuable for having a more complete overview about the past and present behaviour of a specific
Agent, or simply when the Requester has not any previous experience with the selected Supplier. From these
considerations, another sub-module has been designed, called Global Reputation Model, seen more as a
central and collaborative agent ranking system. This type of reputation is computed by a Trusted Third Party,
the Matchmaker Agent (COMPOSITION D6.3, 2018), on behalf of a specific Requester R with respect to a
Supplier S: Local Reputations that a trusted set of Requesters, from R point of view, called NR, has with respect
to S, are aggregated and weighted with the Local Reputation that R has with respect to each Requester
belonging to NR. This allows R having a global and trusted knowledge about S behaviour, depending on the
opinions of other Agents.

Complete details about both Local and Global Reputation Models, especially regarding the mathematical
formulas, together with some simulation tests, and the roles played by the different types of Agents, can be
found in (COMPOSITION D4.4, 2018).

4.5.1 Agent-based Reputation Model Implementation and Deployment

The Agent-based Reputation Model has been implemented in Java and integrated directly within the Security
Framework. A Docker10 container has been built and deployed in Atos premises, in the same virtual network
used for the Security Framework itself, as already done with the other components. It is composed by a set of
APIs, and by an engine, the Agent-based Reputation Model Engine, in charge of the computation of reputation
values.

The first idea was to develop it as a Java library, which could be imported directly by the various Agents
involved (e.g., Requesters, Suppliers, Matchmaker). However, for facilitating the integration, the final decision
was to deploy it in the Security Framework, offering a set of REST API which can be invoked by an Agent,
whenever he needs. Besides, in this way, if a new version of the model is released, or simply if an update is
made, there is no need, from the Agent side, to perform any kind of changes. The Agents itself will handle the
creation and the storage of both ratings and timestamps and provide this value to the engine of the reputation
model through the exposed APIs, shown in Figure 12.

This modification, obviously, does not affect the fulfilment of the requirements stated in (COMPOSITION D4.2,
2018). It just introduces a possible issue, related to the identity of the Agent who is making the request. Indeed,
this potential problem has never been discussed before, considering the idea of deploying the model as an
internal library, from the Agent point of the view. Being a remote service, the Agent-based Reputation Model
Engine needs to understand if the Agents, who are requesting the computation of the reputation, effectively
are the ones who are claiming to be.

10 https://www.docker.com/

https://www.docker.com/

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 20 of 34 Submission date: 2019-02-28

The proposed solution is to leverage on the Authentication Service provided by the Security Framework, that
is Keycloak. More precisely, Agents, when interacting among each other, exchange messages through the
RabbitMQ broker. To be authenticated, they provide, to the RaaS component, their username and password,
or directly the Keycloak token. Indeed, it mandatory for them to have an account in Keycloak. This reasoning
is valid also for the Matchmaker.

The same approach could be also for this scenario. Embedding the credentials in the body of the HTTP POST
request, or directly the token in the Authorization Header, will allow the Agent-based Reputation Model Engine
to infer the identity of the Agent who is asking for the service. The engine itself will retrieve the token from
Keycloak, or simply validates it, if already specified in the request. Only if the authentication is performed
correctly, the reputation will be computed.

The set of exposed APIs is shown in Figure 12. The first and the second are associated to the Local Reputation
concept, respectively for computing the reputation of a Supplier and for allowing a Supplier to check if his
reputation, evaluated on behalf of a specific Requester, is correct. This functionality has been added because
ratings and timestamps are not stored by the Agent-based Reputation Model Engine itself, but they are handled
by each Agent, which, potentially, could send to the engine some fake values. With this method, the Supplier
could check the correctness of the reputation and, in case of some inconsistencies, ask for Matchmaker help.
In (COMPOSITION D4.4, 2018) the potential crucial role of the Matchmaker has been explained in an
exhaustive way.

The third one, instead, is used by the Matchmaker for evaluating Global Reputations. Considering that the
Matchmaker is a trusted entity, there is no need of a checking method for this type of reputation.

All the values needed for performing the computation (e.g., ratings, timestamps, local reputations, username,
password, ID of the involved agents) can be extracted from the body of the incoming HTTP POST request.

The only pending decision regarded the choice of the maximum number of ratings, called Nmax, to consider
during the computation of the Local Reputation. This value is completely application dependent, as explained
in (COMPOSITION D4.4, 2018). Depending on the number of deployed Agents, as well as the expected
interactions among them, a proper value will be proposed for this parameter.

Figure 12 Agent-based Reputation Model APIs

4.6 XL-SIEM Deployment

The SIEM component aims to address cybersecurity threats by providing a real-time information and events
monitoring and management. Security alerts are generated by applications and network hardware. As is
described in (Mario Faiella, 2018), the Cross-Layer SIEM (XL-SIEM) overcomes the features and capabilities
of the solutions analyzed, which most of them don’t provide high-level security risk metrics neither strong
correlation rules.

The basic architecture of the solution is described in Figure 13.

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 21 of 34 Submission date: 2019-02-28

Figure 13 Cross-Layer SIEM architecture

Basically, SIEM agents monitor the infrastructure. In COMPOSITION platform, agents will be deployed in the
production servers where all data are managed. The events gathered are sent to the SIEM engine, which will
be deployed at Atos premises, and will be processed and correlated.

4.6.1 XL-SIEM Engine Deployment

The XL-SIEM processes and analyses the events gathered by the different XL-SIEM agents deployed in the
infrastructure.

There are two different steps in the analysis process of the events:

• Pre-processing and filtering

• Correlation engine which integrates an open source high performance correlation engine (Esper). The
results of this process can be grouped into:

o Detection of patterns

o Definition of data windows

o Aggregation and filtering of incoming events into more complex events

The deployment of the engine is done in the same virtual machine (5.79.93.79) where the Security Framework
components are running. This component is protected by the Nginx firewall for the securitization of the
communications with the cyber agents.

4.6.2 XL-SIEM Agents Deployment

As was previously detailed, the agents will be deployed in the production servers gathering and collecting all
data related to events in order to provide that information to the XL-SIEM engine. Furthermore, the agents will
normalize and transfer the information obtained.

The communication with the XL-SIEM engine supports TLS (Transport Layer Security) certificates, in order to
address all security and privacy requirements.

At this moment of the project, there are planned one agent in each use case production server, with direct
connection to the XL-SIEM for securing the cybersecurity threats.

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 22 of 34 Submission date: 2019-02-28

5 Conclusion

With the deployment of all the components of the Security Framework, all the communications and the
information managed and shared among the different stakeholders of the supply chain are guaranteed in terms
of:

• Security

• Confidentiality

• Integrity

• Availability of the managed information

Furthermore, added value features such as protection against cyber-attacks and a complete authorization,
authentication and reputation model management, ensure a high level of security and protection.

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 23 of 34 Submission date: 2019-02-28

6 Annex 1 – Keycloak management

6.1 Admin console

The admin console is the core component of the management of the authentication service. The way to access
is via URL, to the ATOS’ server in which is deployed:

https://auth.composition-ecosystem.eu/keycloak/

So we enter to the welcome page:

Figure 14 Keycloak welcome page

So, clicking in the “Administration Console” link we proceed to enter our credentials in the login page:

Figure 15 Keycloak administration console login page

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 24 of 34 Submission date: 2019-02-28

Once we enter the admin user and password, it’ll bring us to the Keycloak Admin Console:

Figure 16 Keycloak administration console

 The structure of this page is quite simple but functional. There is one menu on the left, where we can

manage realms (by default it manages “Master” realm).

The menu on the right, just dropping off from the user name allows us to view our user account or logout.

Furthermore, there is a help system embedded. If we’re not sure about any certain field, we can hover our
mouse over any question mark icon, and a tooltip text will appear providing more information about this field.

Figure 17 Keycloak realm management

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 25 of 34 Submission date: 2019-02-28

6.2 The Master realm

Figure 18 Keycloak master realm

The Master realm is the default realm that Keycloak creates when is booted for the first time. Is in the highest
level in the hierarchy tree of the realms, and the admin accounts enclosed in this realm have permissions to
view and manage any other realm created on the server.

The use of the Master realm is recommended for super admins for creation and management of other business
realms in the system. This security model prevents accidental changes and follows the tradition of permitting
user accounts to only those privileges and powers necessary for the successful completion of their current
task.

6.3 Creating a new realm

For creating a new real, we’ve to click in the “Add realm” button that appears in the real drop-down menu on
the left:

Figure 19 Keycloak add realm

Then we complete the information in the Add Realm page. The information we have to provide here is only the
realm name. In other way, we can import a JSON document that defines the new realm.

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 26 of 34 Submission date: 2019-02-28

Figure 20 Keycloak add realm details

6.4 User search

For searching a specific user, we just have to click in the “Users” menu option. A “Lookup” tab will appear and
we can introduce the search information in the textbox:

Figure 21 Keycloak user search

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 27 of 34 Submission date: 2019-02-28

6.5 Create new user

In the “Users” page (same page for the search user option), we can click on the “Add user” button on the
right for creating a new user:

Figure 22 Keycloak new user

So, we enter the page for entering the information of the new user:

• ID

• User name (only field required)

• Email

• First name

• Last name

• User enabled

• Email verified

• Required user actions

Figure 23 Keycloak new user details

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 28 of 34 Submission date: 2019-02-28

6.6 Deleting users

For deleting one user, we’ll have to search first as described in section 4.1.2.1 the user we want to delete. For
example, we’re going to delete the user with username “compositionuser”. Once we find the user, we can click
on the “Delete” button on the right side of the row:

Figure 24 Keycloak delete user

We’ll be asked for our confirmation:

Figure 25 Keycloak delete user confirmation

6.7 User configuration

When we enter into a user profile, we access to a menu where we can edit different options of the user:

Figure 26 Keycloak user configuration

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 29 of 34 Submission date: 2019-02-28

6.7.1 Details

Here we can modify some general options of the user, basically the same we specified in the creation process
of the user (email, first name, last name…)

Figure 27 Keycloak user details

6.7.2 Attributes

In this tab, we can manage specific arbitrary user attributes:

Figure 28 Keycloak user attributes

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 30 of 34 Submission date: 2019-02-28

6.7.3 Credentials

In this tab, we can manage the passwords and the OTP of the users:

Figure 29 Keycloak user credentials

6.7.4 Role mappings

Here we can manage the different roles (a role is a predefined group of actions and behaviours to be applied
to a set of users). Due to organisational and business requirements, sometimes it’ll be helpful to group different
users into a specific role:

Figure 30 Keycloak user role mappings

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 31 of 34 Submission date: 2019-02-28

6.7.5 Groups

In this tab we can manage the grouping of users:

Figure 31 Keycloak user groups

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 32 of 34 Submission date: 2019-02-28

7 Annex II – RabbitMQ configuration parameters

[

 { rabbit, [

 { loopback_users, [] },

 { tcp_listeners, [8182] },

 { ssl_listeners, [] },

 { default_pass, <<"xxxxxxxxxxxxxx">> },

 { default_user, <<"xxxxxxxxxxxxxx">> },

 { hipe_compile, false },

 {auth_backends, [rabbit_auth_backend_cache, rabbit_auth_backend_internal]}

] },

 { rabbitmq_management, [{ listener, [

 { port, 8181 },

 { ssl, false }

] }] },

 {rabbitmq_auth_backend_cache, [

 {cached_backend, rabbit_auth_backend_http}

] },

 {rabbitmq_auth_backend_http, [

 {http_method, post},

 {user_path, "https://auth.composition-ecosystem.eu/raas/raas-rest/auth/user"},

 {vhost_path, "https://auth.composition-ecosystem.eu/raas/raas-rest/auth/vhost"},

 {resource_path, "https://auth.composition-ecosystem.eu/raas/raas-

rest/auth/resource"},

 {topic_path, "https://auth.composition-ecosystem.eu/raas/raas-rest/auth/topic"}

]},

 {rabbitmq_mqtt, [

 {allow_anonymous, false},

 {vhost, <<"/">>},

 {exchange, <<"amq.topic">>},

 {subscription_ttl, 1800000},

 {prefetch, 10},

 {ssl_listeners, []},

 {tcp_listeners, [8183]},

 {tcp_listen_options, [{backlog, 128},

 {nodelay, true}]}

]},

 {rabbitmq_web_mqtt, [

 {tcp_config, [{port, 8184}]},

 {cowboy_opts, [{idle_timeout, 180000}]}

]}

].

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 33 of 34 Submission date: 2019-02-28

8 List of Figures and Tables

8.1 Figures

Figure 1 Security Framework architecture diagram .. 6
Figure 2 HTTP communication within the COMPOSITION ecosystem .. 7
Figure 3 RaaS API endpoints .. 8
Figure 4 GaS API endpoints .. 10
Figure 5 GaS activities diagram .. 11
Figure 6 EPICA architecture .. 13
Figure 7 Policy Administration Point API ... 14
Figure 8 Authorization Engine API .. 14
Figure 9 Authorization Engine API Details .. 15
Figure 10 RaaS - EPICA Activity Diagram .. 16
Figure 11 GaS - EPICA Activity Diagram .. 18
Figure 12 Agent-based Reputation Model APIs .. 20
Figure 13 Cross-Layer SIEM architecture ... 21
Figure 14 Keycloak welcome page .. 23
Figure 15 Keycloak administration console login page ... 23
Figure 16 Keycloak administration console ... 24
Figure 17 Keycloak realm management .. 24
Figure 18 Keycloak master realm .. 25
Figure 19 Keycloak add realm ... 25
Figure 20 Keycloak add realm details ... 26
Figure 21 Keycloak user search .. 26
Figure 22 Keycloak new user .. 27
Figure 23 Keycloak new user details ... 27
Figure 24 Keycloak delete user ... 28
Figure 25 Keycloak delete user confirmation .. 28
Figure 26 Keycloak user configuration .. 28
Figure 27 Keycloak user details .. 29
Figure 28 Keycloak user attributes .. 29
Figure 29 Keycloak user credentials ... 30
Figure 30 Keycloak user role mappings .. 30
Figure 31 Keycloak user groups .. 31

8.2 Tables

Table 1 RaaS Exposed APIs ... 8
Table 2 RaaS Authorization Rules examples .. 9
Table 3 GaS Authorization Rules Examples ... 12

COMPOSITION D4.5 Prototype of the Security Framework II

Document version: 1.0 Page 34 of 34 Submission date: 2019-02-28

9 References

Gustavo González-Granadillo, M.F., S. G.-Z. (2018). Towards an Enhanced Security Data Analytic Platform.

Atos Research and Innovation, Cyber Security Department.
(COMPOSITION D4.2, 2018) D4.2 Design of Security Framework II
(COMPOSITION D4.4, 2018) D4.4 Prototype of the Security Framework I
(COMPOSITION D6.3, 2018) D6.3 COMPOSITION Marketplace I

