

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D3.9 - Manufacturing Decision Support System II

Date: 2019-02-26

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 2 of 63 Submission date: 2019-02-26

Document control page

Document file: D3.8_Manufacturing_Decision_Support_System_V1.0.docx
Document version: 1.0
Document owner: ATL

Work package: WP3 – Manufacturing Modelling and Simulation
Task: T3.4 – Decision Support System for Optimising Manufacturing Process
Deliverable type: [OTHER]

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Efraimidis Georgios 2019-01-21 ToC and Initial Text

0.2 Papadopoulos Nikolaos (ATL) 2019-01-29 State of the Art

0.3 Nadir Raimondo (LINKS) 2019-01-21 Deep Learning Toolkit

0.4 Vagia Rousopoulou, Thanasis
Vafeiadis, Dimosthenis
Ioannidis, Alexandros Nizamis
(CERTH)

2019-02-08 DFM and SFT

0.5 José Ángel Carvajal Soto 2019-02-08 Learning Agent and LinkSmart

0.6 Ziazios Constantinos,
Oustampasidis Dimitrios (ATL)

2019-02-10 Data Persistence, Data Streaming and
Processing

0.7 Oikonomou Fanis (ATL) 2019-02-16 Summary and Conclusions

0.8 Charisi Vasiliki (ATL) 2019-02-19 Decision Support System and HMI

0.9 Oustampasidis Dimitrios (ATL) 2019-02-19 Final General Improvements

1.0 Charisi Vasiliki (ATL) 2019-02-19 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Giuseppe Pacelli (LINKS) 2019-02-21 The document is well structured and reflects
the work carried out during the task. Only
minor comments have been added.

Mathias Axling, CNet 2019-01-22 Approved with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 3 of 63 Submission date: 2019-02-26

Index:
1 Executive Summary ... 5

2 Abbreviations and Acronyms ... 6

3 Introduction .. 8
3.1 Purpose, context and scope of this deliverable ... 8
3.2 Content and structure of this deliverable ... 8

4 State of the Art Analysis .. 9
4.1 Decision Support Systems ... 9

4.1.1 DSS Structure .. 9
4.1.2 DSS History ...10

4.2 DSS Definition and Description ...10
4.2.1 DSS Types ...11
4.2.2 Modern Technologies Concerning DSS ..12
4.2.3 DSS Research Areas ...13

4.3 Stream Processing Technologies ..14
4.3.1 Storm..14
4.3.2 Flink..15
4.3.3 Kafka ..15
4.3.4 Kinesis ...15
4.3.5 Samza ..16
4.3.6 Rx ...16
4.3.7 StreamInsight ...16

5 Decision Support System – DSS ..17
5.1 Modelling and Persistence ...18
5.2 Data Stream and Processing ...19

5.2.1 Stateful Stream Processing ...21
5.2.2 UC-BSL-2 Predictive Maintenance ..23
5.2.3 UC-KLE-1 Maintenance Decision Support ..26

5.3 Decision Making – Rule Engine ...27
5.3.1 Finite State Machine ..28
5.3.2 Formal Definition of Finite State Machines and Non-Deterministic Finite Automaton28
5.3.3 COMPOSITION DSS Rule Engine ..31
5.3.4 Application of the DSS Rule Engine ..32

5.4 HMI – Human Machine Interaction ..38
5.4.1 React Components ..41

5.5 Data Persistence ...42
5.6 KPIs ...42

5.6.1 Maintenance KPIs ..44

6 COMPOSITION Components Collaboration with DSS ...46
6.1 Simulation and Forecasting – SFT ..46

6.1.1 Enhance Decision Making in Production ...46
6.1.2 Enhance Decision Making over the Supply Chain ...46

6.2 Digital Factory Model – DFM ...48
6.3 LinkSmart® IoT Learning Agent _LA ...49
6.4 Deep Learning Toolkit – DLT ...49

7 Components Integration with DSS ...51
7.1 Keycloak Integration ..51

7.1.1 First Log–in Flow ..53
7.1.2 Default First Log–in flow ..54

7.2 Simulation and Forecasting Toolkit – SFT ...55
7.3 Digital Factory Model – DFM ...56
7.4 LinkSmart® IoT Learning Agent ..57
7.5 Deep Learning Toolkit – DLT ...58

8 Conclusions ..60

9 List of Figures and Tables ...61
9.1 Figures ...61

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 4 of 63 Submission date: 2019-02-26

9.2 Tables ..61

10 References ..62

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 5 of 63 Submission date: 2019-02-26

1 Executive Summary

In this deliverable, it is described the work for the COMPOSITION task T3.4 – Decision Support System for
Optimising Manufacturing Processing. The deliverable is the update of D3.8 – Manufacturing Decision Support
System I. It contains all the updates done in the T3.4 from M20 to M30.

The DSS combines information from included Business Process Diagrams (BPD) and Digital Factory Model
(DFM) and based on the semantic models produced as well as from all stakeholders involved in the complete
supply chain. The task extends the work done in other projects such as SatisFactory (SatisFactory, 2015). The
main aim of the DSS is to make a step forward towards a better understanding of the involved manufacturing
processes and operations, the contribution of individual links of the supply chain, the effect of process
monitoring in productivity, to facilitate communication and knowledge sharing among departments with
different roles and responsibilities, the maintenance requirements and procedures and the detection of daily
production details and flaws (COMPOSITION, 2016).

The data is received via MQTT and AQMP protocols and formats (XML and JSON) provided from the partners
involved in the ongoing processes and is real -time processed. It is be coupled with the associated requests
to certain parts of the supply chain, SOP (standard operating procedures) and response strategies, in order to
offer feedback to the involved internal or external suppliers, in terms of actionable knowledge and
recommendations, including maintenance operations and schedules. The DSS system provides feedback at
fixed and mobile terminals in attractive communication interfaces and visualise KPIs and real-time data
analytics

In this deliverable an analysis of the current State of the Art for DSS is given, including streaming processes
and security options. Also, the COMPOSITION DSS is analysed and examined in detail, along with its
algorithms and. a small description of the components that work together with DSS and the integration of them
in the system

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 6 of 63 Submission date: 2019-02-26

2 Abbreviations and Acronyms

Table 1: Abbreviation and Acronym Table

Acronym Meaning

2FA Two-Factor Authentication

ACL Access Control List

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

ANN Artificial Neural Network

API Application Programming Interface

BDA Big Data Analytics

BMS BigData Manufacturing Storage

BPD Business Process Diagram

BSL Boston Scientific

CMMS Computerised Maintenance Management System

CPU Central Processing Unit

CSP Credential Service Provider

DFA Deterministic Finite Automaton

DFM Digital Factory Model

DLT Deep Learning Toolkit

DM Data Mining

DMA Direct Memory Access

DSS Decision Support System

EHP Energy Harvesting Process

FoF Factories of the Future

FSM Finite State Machine

GDSS Group Decision Support System

GUI Graphical User Interface

HMI Human Machine Integration

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IP Internet Provider

JMS Java Message Service

JSON JavaScript Object Notation

KBS Knowledge Based System

KPI Key Performance Indicator

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 7 of 63 Submission date: 2019-02-26

LA Learning Agent

MIP Mixed Integer Programming

MIS Managing Information System

MQTT Message Queuing Telemetry Transport

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

MVC Model-View - Controller

NDFA Non-Deterministic Finite Automaton

NDSM Non-Deterministic State Machine

OEM Object Exchange Model

OGC ST Open GeoSpacial Sensor Thing

OLAP Online Analytical Processing

OPC Open Platform Communications

PC Personal Computer

PK Port Knocking

RAM Random Access Memory

RBS Rules Based System

REST REpresentational State Transfer

RPM Rounds Per Minute

SoA State of the Art

SOAP Simple Object Access Protocol

SOP Standard Operating Procedures

SQL Structured Query Language

SSO Single Sign-On

TD Temporal Difference

ToC Table of Contents

ubiDSS Ubiquitous Computing Technology-Based Decision Support System

UC Use Case

UI User Interface

WSN Wireless Sensor Network

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 8 of 63 Submission date: 2019-02-26

3 Introduction

3.1 Purpose, context and scope of this deliverable

The purpose of this deliverable is to provide a detailed description of the Manufacturing Decision Support
System used in the COMPOSITION project. The DSS will include information from both Business Process
Diagrams (BPD) and Digital Factory Models (DFM) Based on semantic models produced during the project,
as well as needs and specifications from all stakeholders involved in the supply chain, DSS will be able to
extend its scope and development done during other projects, such as SatisFactory (SATISFACTORY,
2014).In the SatisFactory project the DSS was oriented to worker ease and facilitation. The decision-making
process involved gamification actions for worker satisfaction, safety protocols and task in order to cope with
accidents on the shop floor or abnormal operations that can be dangerous.

Development and Implementation of DSS provides a better understanding of the involved manufacturing
processes and operations, the contribution of individual links of the supply chain, the effect of process
monitoring in productivity, to facilitate communication and knowledge sharing among departments with distinct
roles and responsibilities, the maintenance requirements and procedures and the detection of daily production
details and flaws.

The scope of this deliverable is to provide information about the State-of-the-Art Analysis concerning the
Decision Support Systems and their implementation to manufacturing environments. Furthermore, an analysis
of DSS in the composition project. System architecture, subcomponents, dependencies and connections
between them are analysed in detail, providing the algorithms used in the process. Finally, the connections
and interactions of other COMPOSITION components are explicitly examined. The conclusion of the
deliverable gives a small review of the steps taken during the creation of the DSS and indicates the steps that
should be followed in the future.

3.2 Content and structure of this deliverable

The deliverable follows the structure agreed by all partners concerning all COMPOSITION deliverables. A
Summary is provided in the beginning of the deliverable, providing its key points and it is the first chapter of
the deliverable.

Chapter 3 introduces the deliverable. The Introduction consists of a description of the purpose, context and
scope of the deliverable. Also, a small description of each chapter is given in the introductory chapter.

Chapter 4 gives the State-of-the-Art Analysis about Decision Support Systems. Trends followed in
development of DSS, algorithms and methods applied to improve them are examined in this chapter. Analysis
and cross examination of the pros and cons of each method is provided. Also, reasons why a certain method
or algorithm is chosen against another are available in chapter 3.

Chapter 5 contains the analysis of the actual Decision Support System in the COMPOSITION project. The
overall architecture of the system is examined, its subcomponents and their interactions. Each subcomponent
is analysed and details about its functionality and purpose in the system are given. Also, dependencies of each
subcomponent are described and connections between each subcomponent are analysed. Data flow
throughout the DSS is extensively examined. The DSS API is designed in detail, as well as component
diagrams and flow charts.

Chapter 6 is the representation of the COMPOSITION components that interact with DSS. The components
main functionalities are briefly described in this chapter as well the components’ purposes in the project.

Chapter 7 provides the interaction and integration with the rest of COMPOSITION components.
Communication protocols and data exchange are analysed in this chapter. Data streaming between different
components is given a thorough inspection. Connecting APIs are considered in the length of this chapter.
Diagrams can provide further information in the process.

Chapter 8 contains the conclusions of the deliverable. It describes how development proceeded concerning
the DSS and the further steps should be taken to further improvement.

Finally, the references used throughout the text are given as well as the tables of figures and tables and any
possible annexes.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 9 of 63 Submission date: 2019-02-26

4 State of the Art Analysis

Decision Support Systems (DSS) have been used for several decades to help decision-makers in the
processes concerning help on shop floors and taking the correct decisions in the most suitable time and
situations. The State-of-the-Art Analysis for DSS provides the knowledge of modern technologies concerning
DSS and new trends that improve DSS. Also, DSS definition and types are presented in this chapter, as well
as the new research areas for DSS. Finally, State of the Art Analysis provides information for Stream
Processing techniques and Security options in a system.

4.1 Decision Support Systems

Decision Support Systems are information systems that support business or organisation decision-making
processes. Management, daily operations and planning as well as maintenance are some of the processes in
an organisation that are facilitated by DSSs. Usually higher-level managements need to decide about the
above processes in a rapidly changing environment, considering unpredictable factors in advance. DSS aids
them in the decision-making process and the problems they face in operational and organisational sectors.
The problems are called Unstructured and Semi-Structured decision problems.

4.1.1 DSS Structure

Fully computerised, human–powered and combination DSS exist nowadays. Decision–making processes is
different in concept for academia and manufacturing world. While academics consider DSS as tools for
decision–making process, managers operate them as facilitators in operational processes. Analytical
techniques and models, along with traditional data access and data retrieval functionality are often found in
Decision Support Systems. Also, User Interface (UI) and Human Machine Interaction (HMI) are developed for
DSS, because end–users need to interact with the system in an easy and appealing way. (Shim, et al., 2002)

Raw data from various sources such as sensors and machines on shop floors, documents from all operations,
business models and personal knowledge are the DSS data sources. All information contained in those data
sources is combined by DSS and result to the extraction of KPIs and suggestions for decision-makers. Data
is usually gathered from organisation’s data inventories (databases – both legacy and relational, Data
Warehouses and Data Marts), sales figures and periodic reports, revenue predictions, maintenance reports,
task and scheduling reports and standardised procedures on the shop floor (Pirog - Mazur, 2004).

Depending on the described DSS operation, three main DSS components can be identified: database,
software application and UI. The database is the place where all data is stored. Data acquisition and sources
are already described. The software application is the heart of the system. The software contains all rules and
models that analyse the data and the create suggestions for the decision-makers. Software is coded in high-
level programming language such as C, C++, C#, Java. Finally, DSS UI allows users to have an appealing
communication with the system. Drop-down menus, lists, navigations bars, filling boxes and other user
interface components are used to enable DSS rule creation by user, KPIs and suggestion visualisation.
Graphical environments are developed using the latest trends on application design using HTML and CSS.

DSS are classified as Decision Science tools or Data Science tools. When they are located as a front–end
mechanism in Problem Solving with a well-defined and structured framework which answers business
questions, they are Decision Science tools. On the other hand, Data Science is defined as a sophisticated
version of Data Driven Analytics and Modelling and when DSS are used as ruled engine to create suggestions
for decision-makers according to data analysis and models, they are classified as Data Science tools.

Manufacturing companies collect data on manufacturing processes, supply, customers and production. The
purpose is to create and use a DSS that uses the provided information to support management and decision–
making process based on

• Historical trends

• Projected forecasts based on trends

• Identification of problem causes in production line

Knowledge acquisition through DSS is another major factor for which manufactures prefer those system.
Complex structure of the links and associations between the gathered data and the difficulty to formalise the
data itself leads to the use of DSS in the decision-making process, because they can structure the information
of the data and extract knowledge based on their rule engine the models that allow the discovery of hidden
patterns and connection, between seemingly unrelated data (Miah, 2012).

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 10 of 63 Submission date: 2019-02-26

Furthermore, DSS’ structured data exploitation in based on well–defined rules and the established models
facilitate knowledge acquisition. Data is ample in manufacturing environment and based on the already existing
ruled of DSS, it can be used to train the system for correct prediction. Machine learning and intelligence is the
next step of deploying DSS in manufacturing environment. Training the system is possible depending on the
existence of data and new rules can be created to adapt to the circumstances shown in the data. Adaptive
DSS can be very helpful on shop floor, where unpredicted events often happen during working, help decision–
making processed to maximise processes on the shop floor and minimise costs and time waste.

4.1.2 DSS History

Decision Support Systems have been a constant study case since the early days of computerised systems.
(Shim, et al., 2002) They have evolved from simple model–oriented systems to multifunctional ones. In the
early days of Computer Science, during the 1960’s, DSS were based on powerful and expensive mainframe
computers and their only functionality was to provide periodic reports in an automated and structured way.

Managing Information Systems (MIS) theory was developed a decade later. MIS theory provided a scientific
background for the development of elaborate DSS which supported mainly economical functions such as
promotion, prising and logistical values. In the early 1980’s academia was involved and interested in DSS
provided new and innovative ideas. As a result, DSS development improved vastly during the span of the
decade. The 1990’s was a decade when Information Technology trended and expanded. Personal computers
became common household appliances and more people had access to them. Decision–makers followed the
trend of the decade and demanded more efficient systems. The solidified database technologies helped to the
size expansion of DSS. Innovative technologies, including higher internet penetration lead to client–server
systems that allowed new business operations for DSS. Organisations upgraded their network infrastructure
to accommodate those changes. Object Oriented technology and Data Warehouses made their mark on DSS.
Combining all the above technologies web driven systems with innovative approaches were developed. Online
Analytical Processing (OLAP) is one of the systems developed during 1990’s (Kasie, et al., 2017).

Finally, Decision Modelling was integrated into DSS to fully automate decision–making process without any
added code and no need for rule/order hierarchy inside the rule family.

4.2 DSS Definition and Description

“DSS are interactive computer-based systems that help decision-makers use data and models to solve
ill-structured, unstructured or semi-structured problems.” (Shim, et al., 2002)

They provide many possibilities of data analysis while programming effort is kept to a minimum and are usually
addressed to managers and higher-level personnel without technical background. Search and data analysis
lead to correlation discovery without interference to the MIS, graphical representation of KPIs, suggestion
creation and representation. Another significant DSS, according to managers, is the development of complex
analysis and alternate scenarios to answer different possible outcomes for an event or a situation. “What if”
analysis helps managers to better understand the conditions which lead to certain suggestions by DSS, as
well as to enhance their expertise.

Standalone DSS units were common in the past, but now DSS scope has extended to facilitate multiple users.
Also, there are different kinds of DSS that focus on models, data, communication or even a combination of all
those elements. Depending on what functionality and scope managers prefer in DSS, they are inclined to buy
or use a specific DSS that covers all their needs. Thus, the main services of either standalone DSS units or
multiple user DSS should be considered.

Data and information are crucial for the existence of DSS, but the most crucial factor is the quality of the data
and information provided, instead of the quantity. Unformatted and unlabelled data often causes more
problems than solves. The underline data schema of DSS is important for the prediction accuracy and correct
suggestion. Furthermore, consistency, relevance, persistence of data augments its quality and eliminate the
possibility of information misinterpretation and “bad” decisions by managers (Simon, 1959).

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 11 of 63 Submission date: 2019-02-26

Figure 1: Simon's Decision - Making Process

Figure 1 show Simon’s Decision–Making Process. This process is often followed by managers while they are
obliged to decide, although they almost follow the steps intuitively. This process allows them to identify the
problems, find the existing solutions, pick the one that seems the most suitable solution and apply it. DSS
provides the suggestion to the most suitable solution, aggregating data and information coming from them,
and rules or models from the decision engine. The described process implies that managers should be able
to comprehend the provided data and know the examined operations. The process also implies that data
quantity is critical up to a certain point, but data quality is always critical.

Decision-makers should always be able to understand the existing data and discover the connections,
principles and value behind it. Also, the assumptions and models used by DSS should also be well known and
understood by decision-makers, before asking for more data and information. Exact knowledge leads to better
decisions with less effort. Successful decision-makers should prefer knowledge over information and data
amplitude.

4.2.1 DSS Types

There are many different types of DSS. The most common ones are Table 2 below: (Felsberger, et al., 2016)

Table 2: DSS Types

DSS Type Description

Data Driven They have file drawer, data analysis and analysis information systems. They facilitate
Data Warehouse, access and retrieval from large data bases of structured data

Model Driven There is an underling model that incorporates various disciplines such as:
accounting, financial, representation, optimisation model etc. Model Driven DSS
manipulate models instead of data in the analysis and the decision-making process.
There is no need for large data bases.

Knowledge Driven They provide suggestion and recommendations to users for certain problems. They
also are called management expert systems or intelligent decision support systems.
Problem solving is their main focus and they exploit data mining techniques, such as
browsing big data for relationship in the content of the data

Document Driven Retrieval of unstructured documents and web pages with storage and processing
technologies for document retrieval and analysis. Documents are: company policies,
catalogues, meeting minutes, records, historical documents etc.

Communication
Driven

They are also called GDSS (Group Decision Support Systems). Their first purpose is
to facilitate the communication between the members of a group in the decision-
making process. They support scheduling, document sharing, bulletin boards,
electronic communication etc. They are almost always used as project management
tools.

Hybrid Systems Hybrid DSS are composed by diverse types of DSS. There are Web-based DSS that
include communication, data and knowledge driven systems. OLAP is a software
category with many possible views of information

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 12 of 63 Submission date: 2019-02-26

Intelligent The latest development of DSS. They combine three several types of DSS into one:

• Passive DSS. The classical Data Driven with extensive access to large data
bases and rule engine

• Active DSS, which provide personalised decision-making process depending
on learning processes. Knowledge-Based Systems (KBS) is one of the
Active DSS.

• Proactive DSS, are also known as Ubiquitous Computing Technology-Based
DSS (ubiDSS) and are divided to pull-based proactive, push-based proactive
and push-based automated applications.

4.2.2 Modern Technologies Concerning DSS

Modern DSS vary in types as described in the previous chapter, but their common factor is the use of data
bases and the access to produced data. Modern companies generate substantial amounts of data daily, and
most of it contain useful operational and organisation information. This information can be used during the
decision-making process by managers and lead the company to better results. Big data is nowadays a trend
in which DSS are based on. Also, connectivity between various kinds of DSS or other systems can be used to
enhance learning and suggesting process.

The emerging technologies, derived from the previous description, are: grid computing – where information
sharing is essential between servers (nodes), networks, databases and tools from multiple organisations and
integrated and collaborative resource use is allowed; cloud computing – service-oriented solution which is
defined to incorporate virtualisation and utility computing as a parallel and distributed system; web services –
infrastructure to provide stateless, persistence services and to resolve distributed computing issues; crowd
computing – a service platform for mobile phone data from users; pervasive computing – also known as
ubiquitous computing and enables resource computation and utilisation in mobile or environmentally –
embedded manner (Miah, 2012)

Big data exploitation for DSS should correspond to the main dimensions of it, called Big Data “Vs”. “Vs” are
defined to provide a structure on the data and make it easily accessible and readable. They are:

• Volume – large amounts of data is generated

• Variety – data comes from various sources, has many different types and it may be either structured
or unstructured

• Velocity – data is generated continuously and is captured and stored in real-time conditions

• Veracity – data is always erroneous and inconsistent

• Validity – data should be measured correctly and fit the perceived criteria

• Value – the extraction of knowledge and information from the data and how it is used in the
organisations’ environment.

Implementation of all Big Data “Vs” leads to optimising modes and enhancing improvement of error analysis
and prediction of specific faults and situations allows preventive and proactive measures to be taken. Efficiency
and effectiveness increases, while rule engines provide operational rules to decision-makers. Furthermore,
innovative algorithms and intelligent software applications should be used to produce knowledge and KPIs.

Rules Based System (RBS), Knowledge Based System (KBS), Fuzzy Sets and Neural Networks are some of
the algorithm solutions for reasoning and learning. Artificial Intelligence (AI), Data Mining (DM) and data
visualisation are also critical in the algorithm development of DSS. Machine Learning (ML) approaches are
Artificial Neural Networks (ANN), Genetic Algorithms and Fuzzy Logic.

Rule Engines can be based on classification trees, Branch and Bounce algorithms and Non-Deterministic State
Machines. Both Branch and Bounce algorithm and Non-Deterministic State Machine use possibilities to move
from one state to another. Branch and Bounce algorithm follows certain steps to reach to a final condition and
along the way creates the rule depending on the possibilities. Paths that should be followed are determined
by the algorithm. Branch and Bounce algorithm leads to a progressive succession of steps to reach the final
decision. Contrary, Non-Deterministic State Machines contain states where a parameter is evaluated and
transitions, which comply to certain criteria. While create a decision rule with a state machine the parameter
remains the same during the rule. The states represent the possible situations the decision-maker may face

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 13 of 63 Submission date: 2019-02-26

in the process, while the transitions are the possible paths that can lead from a state to another. Each transition
can be defined by possibilities, numbers, true or false conditions or other criteria. Moving between different
states is defined by the parameter each time, and different transitions can be triggered depending on the
conditions each time.

A major difference between Branch and Bounce algorithm and Non-Deterministic State Machines is that while
using the Branch and Bounce algorithm the system cannot return to its initial state. On the other hand, non-
Deterministic State Machines provides the option to the system to be able to return to its initial state. Simplified
forms of Non-Deterministic State Machines are the Deterministic State Machines which often are used in DSS
with well-defined operational and organisational objectives. The scenarios have already been fully described
and develop, and afterwards the rule engine is deployed. Such systems operate in mature manufacturing
environments with well-established practices and known faults and failures. In such cases, the use of the more
complex Non-Deterministic State Machines is considered redundant.

4.2.3 DSS Research Areas

DSS have always been in the middle of research areas during the last four decades that have been in use.
The most common DSS application are implemented in weather forecasting, production lines, health care
organisations, financial and stock market analysis. Also, air traffic control, advance traffic control centres, as
well as manufacturing decisions are based on DSS and their suggestions. Oil refinement manufacturing, ATM
and bank applications, maintenance decision-making processes are mostly based on DSS.

Large shop floors with many assets are inclined to use DSS instead of CMMS, because CMMS can be
absorbed in the DSS. This dual functionality is a research topic in the COMPOSITION project and all the FoF4
European projects. The need to develop smart factories and solve many maintenance, production and safety
problem in manufacturing environments drive the research about DSS. Decision-making processes concerning
the above factors improve shop floor organisation and maximise benefits while minimising the costs and
problems which often happen on shop floors.

The intelligent techniques used in the most recent research studies about DSS are: Data Mining and ANN,
Temporal Difference (TD) Learning methods, Genetic Algorithms and Fuzzy Logic. Also, Gaussian Dispersion
Model, Mobile Agents and Multi-Agent Systems, as well as the DSS types described in previous chapters are
part of the research areas. A general idea of the intelligent techniques and the task appoint to DSS gives Table
3 below:

Table 3: DSS Research Areas

 Intelligent Techniques Task

Data Mining and ANN Weather Forecasting, Selection and Allocation of Sires and
Dams

ANN and TD Learning Method Sales Prediction

Genetic Algorithm based Fuzzy
Neural Network

Measure the Qualitative Effect on the Stock Market

Fuzzy Set and Gaussian Dispersion
Model

Air Pollution Control at Coal-Fired Power Plants

Case-Based, Mobile Agent and
Multi-Agent

Strategic Choices in term of Technical Interventions on Municipal
Infrastructure

Model Based and Rule Based Measure Enterprise Performance

Knowledge Based System and ANN Evaluation of Urban Development

Knowledge Based System and
Fuzzy Theory

Effective IT Outsourcing Management

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 14 of 63 Submission date: 2019-02-26

MIP-based heuristics and Lot sizing
and scheduling

Time Scheduling and Operation Management systems in
manufacturing (Figueira, et al., 2015)

Decision Support Systems provide a wide variety on research and development. While they have been studied
the previous decades and there are a lot well-documented solutions, the development of big data technologies
and the possibilities of storing and accessing so much data, lead to a renewed research environment for DSS.
Also, internet adaptation and the advance of IoT opens new horizons in the research areas of DSS in
manufacturing environments. DSS and IoT combinations create smart factories and appealing working
solutions for both decision-makers and workers. They also lead to more efficient working progress and less
repair and maintenance times.

4.3 Stream Processing Technologies

Real–time is an essential part of modern industry. It provides information in real-time for every cause and effect
on all industry procedure. It can be used to improve working progress, to avoid lagging times, caused for any
reason, improve maintenance procedures and allow the implementation of safety protocols exploiting all the
available information (Jain, 2018).

On the other hand, the expiration of data is a significant problem. If certain data will not be used in a certain
time frame, its value decreases and the longer it remains idle, the more its value decreases. When data is
unexploited, its value is lost, and the actions or decisions based on it can never occur.

Real-time data come continuously into the systems, therefore it can be called streaming data. It needs precise
and quick handling because sensors provide data very rapidly and insert it to log files. Only a change in
continuous values, can cause severe system changes, but only if it is altered in time.

There are many modern technologies about stream processing in a data pool. It is necessary they are executed
in a well-structured data pool accompanied with strict rules and processes in term of ingestion. The main
technologies are:

• Flink

• Storm

• Kinesis

• Samza

• Kafka

• Rx

• StreamInsight

4.3.1 Storm

Apache Storm is a distributes real-time processing system. It is designed to directed acyclic graphs and can
be used with any programming language. It can compute over one million tuples per second per node, which
is very scalable and provides processing guarantees.

Storm is used for machine learning, real-time data analytics and other application with high data velocity. It
runs on YARN and integrates Hadoop ecosystems. Yarn is a new JavaScript package manager that replaces
the existing workflow for the npm client or other package managers while remaining compatible with the npm
registry. It has the same feature set as existing workflows while operating faster, more securely, and more
reliably. It is a true real-time processing framework, which does not support batch processing. Storm has low
latency and is suitable with data that must be ingested as single entity. Storm provides a bridge between batch
processing and stream processing for Hadoop ecosystems.

Storm highlights are:

• Processing power: over 1 million 100-byte messages/node/sec

• Scalability: works on parallel calculations that run across a cluster of machines

• Reliability: guarantees that each data tuple will be processed at least once or exactly once. Messages
are only replayed when there are failures

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 15 of 63 Submission date: 2019-02-26

4.3.2 Flink

Flink is an Apache streaming data flow engine which provides facilities for distributed computation over
streams of data. It also provides possibilities for batch processes and is equally effective for both batch
processing and real-time processing framework, but it puts stream processing first. Flink supports a number
of API such as: DataStream API, DataSet API for Java, Scala and Python and SQL-like query API for
embedding in Java, Scala static API code. There is also machine learning library implemented in Flink, called
FlinkML, SQL query called MRQL and graph processing libraries

Flink is more stream-oriented compared to Spark and Storm, and often is considered as a hybrid between
Spark and Strom. “Apache Spark is an open-source cluster-computing framework. Originally developed
at the University of California, Berkeley's AMPLab, the Spark codebase was later donated to the
Apache Software Foundation, which has maintained it since. Spark provides an interface for
programming entire clusters with implicit data parallelism and fault tolerance”. (Zaharia, et al., 2010) It
provides a highly flexible streaming window for continuous stream model, which ensures that both batch and
real-time streaming is integrated into one system.

The highlights of Flink technology are:

• Batch and streaming processing in one

• Highly flexible streaming window for continuous stream model

• Integrated with many open source data processing ecosystems

4.3.3 Kafka

Kafka is a publish / subscribe messaging system which integrates data streams. It is fast, scalable and reliable
messaging system which is key component to Hadoop stack technology for supporting real-time analytics or
modernisation of IoT

Kafka can handle many terabytes of data without incurring. It is different from a traditional messaging system
because it is designed to scale very well. It is also designed to deliver three main advantages over AMQP,
JMS

Kafka’s highlights are:

• Highly Reliable: Kafka replicates data and it can support multiple subscribers. In the event of failure, it
automatically balances consumers in the event of failure which is very much reliable in comparison to
similar messaging services

• Superbly Scalable: Kafka, which is a distributed system, is able to scale quickly and easily without
incurring any downtime

• High Performance: For both publishing and subscribing, Kafka delivers high throughput. It can offer
constant levels of performance even when it deals with many terabytes of stored messages

• Durable: Kafka provides intra-cluster replication by keeping messages on the disks which make it
durable messaging system

4.3.4 Kinesis

Kinesis is similar to Kafka, although Kafka is free and it should be made an enterprise-class solution for
organisations. Amazon’s Kinesis is an out-of-the box data streaming solution. It comprises shards from Kafka
partitions.

One of the problems Kinesis solves is real-time aggregation of data which is followed by loading the aggregate
data into a data warehouse, with putting it into Kinesis streams. This technique durability and elasticity. Kinesis
is a managed, scalable, cloud-based service which allows real-time processing of large data streams.

Kinesis highlights are:

• Real-time data processing

• Ingestion of real-time data into data stores like S3, Elasticsearch or Redshift for batch analytics

• Kinesis Analytics analyse data in real-time

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 16 of 63 Submission date: 2019-02-26

4.3.5 Samza

Samza in another Apache stream processing framework, which is tightly associated with Kafka. It is designed
to take advantage of Kafka’s unique architecture and ensures fault tolerance, buffering and state storage.

Samza uses YARN for resource negotiations, and as a result a Hadoop cluster is necessary with Samza. It
can store state using fault-tolerant checkpointing system, implemented as a local key-value store. It helps
Samza to offer delivery security, although there is not reliability and accuracy recovery in the event of failure.
It supports high-level abstractions making easier to work. On the other hand, it only supports JVM language.

The Samza highlights are:

• Simple API: Samza provides a very simple callback-based “process message” API as compared to
MapReduce

• Managed state: Samza manages snapshotting and restoration of stream processor’s state

• Fault tolerance: Samza works with YARN whenever a machine in the cluster fails in order to
transparently migrate your tasks to another machine

• Scalability: Samza is partitioned and distributed at all levels

4.3.6 Rx

Rx is a library that composes event-based and asynchronous programs. Use of data sequence is extensive in
the form of data streams from files, web services, system notification and user defined data. The major
characteristics of Rx are (Microsoft, 2018):

• Data push: data is retrieved from sources using various GET methods, having control over how data
is retrieved in the application

• Data pull: data push is similar to joining a book club and registering in particular book genres. The
same concept applies in data push model, where the program registers to a stream sequence and any
changes are managed at the source.

• .NET development: allows the programs to be developed in desktop applications. It can also be
released for Silverlight, Windows Phone 7 and JavaScript

4.3.7 StreamInsight

“Microsoft StreamInsight™ is a powerful platform that you can use to develop and deploy complex
event processing (CEP) applications. Its high-throughput stream processing architecture and the
Microsoft .NET Framework-based development platform enable you to quickly implement robust and
highly efficient event processing applications. Event stream sources typically include data from
manufacturing applications, financial trading applications, Web analytics, and operational analytics.”
(Microsoft, 2018). The major characteristics of StreamInsight are:

• Monitor your data from multiple sources for meaningful patterns, trends, exceptions, and opportunities.

• Analyse and correlate data incrementally while the data is in-flight -- that is, without first storing it--
yielding very low latency. Aggregate seemingly unrelated events from multiple sources and perform
highly complex analyses over time.

• Manage your business by performing low-latency analytics on the events and triggering response
actions that are defined on your business key performance indicators (KPIs).

• Respond quickly to areas of opportunity or threat by incorporating your KPI definitions into the logic of
the CEP application, thereby improving operational efficiency and your ability to respond quickly to
business opportunities.

• Mine events for new business KPIs.

• Move toward a predictive business model by mining historical data to continuously refine and improve
your KPI definitions.

Both Rx and StreamInsight technologies are closer to the data streaming process required for the
COMPOSITION DSS and they are deployed in it. Their techniques and characteristics help DSS, which is also
a .NET application, to be integrated with the rest of the COMPOSITION components.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 17 of 63 Submission date: 2019-02-26

5 Decision Support System – DSS

Based on the analysis and the DSS types discussed in chapter 4.2.1, it was decided that a combination of a
model-driven and data-driven DSS is developed for the COMPOSITION project. The Decision Support System
can handle incidents and transformed data coming from all the previous components to create KPIs and
visualise them. Furthermore, the most important functionality of the DSS is to use the incoming data to create
rules in the decision engine which will help decision-makers to decide during mainly maintenance procedures.

Decision Support System should be designed to accommodate the needs in a manufacturing environment.
DSS integrates Digital Factory Models with sensor data, and other information and knowledge about the
products, manufacturing, planning, simulation, communication and controls at all levels of planning and
manufacturing. Raw data form sensors on factories are acquired and transformed according to the Digital
Factory Model Schema. Processed data is accessed by the DSS through the DFM API. Accessing and
processing the transformed data is easier and DSS implementation can be applied without the complicated
need of transforming data in a suitable format.

Designing a DSS data and algorithm specification should be considered. Data specifications derive form DFM
API. The algorithms suitable to be applied on a DSS in a manufacturing environment are both data mining
algorithms to retrieve suitable data from a repository and decision-making algorithms for the decision-making
process. The most used data mining algorithms are classifications trees, generic algorithms, support vector
machine, Naïve Bayes. Various combinations and modifications of the above algorithms are considered to
designing the data mining part of the DSS. Additionally, Nondeterministic Finite-state Automata (NFA) could
be used in the decision-making process. The automata provide the possibility to be expanded during the
process. Originally, DSS can implement a rule engine based on Finite State Machines, where the rules applied
are defined based on the use cases. The initial rules can be used during a period to train data and then NFAs
and non-deterministic algorithms can be implemented for the decision-making process with the collaboration
of the Deep Learning Toolkit.The results of the analysis made by the Deep Learning Toolkit is fed to the
Learning Agent, which is responsible for adapting the results and then refeed the DLT with outcomes from
learning processes. The final output is given to the DSS, via the LA. Both the analysis of the Deep Learning
Toolkit and the Learning Agent are briefly described in chapters 6.3 and 6.4.

Figure 2: Decision Support System Architecture

DSS architecture relates to the use of common data for all systems. Most manufacturing shop floors use the
same sensors and they provide the same data. The differences are spotted to the levels of integration at the

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 18 of 63 Submission date: 2019-02-26

shop floors with the virtual factory models. Digital Factory Models create a virtual model of the factory, the DSS
can work with. The process of making the virtual models of the factories follows at the section below.

Briefly, the sub-components of decision support system are:

• HMI -This component is responsible for the interaction with the user.

• Decision Making (Rule Engine) - The rule engine of decision support system

• Stream processing - This component processes data of all external systems and extracts the
information necessary for the decision support system

• Data persistence - This sub-component handles the storage of information for decision support
internal use.

The main components from which DSS receives data are:

• Simulation and Forecasting toolkit

• Deep Learning Toolkit

• Learning Agent

Regardless the internal structure the decision support system, it should be deployed as one using a composed
docker image.

5.1 Modelling and Persistence

DSS needs a suitable model with persistent data and key in order suitable rules to be defined. DSS model
components are: the model itself, its description and its type. The DSS rules are based on these components
and persistence in a key factor in applying rules. Persistent data means the result of an action remains, even
if the cause of the result changes. Persistence is very important in maintenance procedures, because if a fault
occurs during operations, then the cause may not exist after a while (e.g. high voltage cause a burnt resistor),
but the result remains until it is fixed, following a maintenance procedure. Depending on maintenance
procedures, the most accurate description of the models and their types are shown in the table below:

Table 4: DSS Model Components

Model Description Type

Asset Models the assets on a shop floor
according to the DFM schema

Persistent

Failure Mode Indicates the failure that should be
detected by the DSS and it is
added on the DFM schema

Persistent

Time Frame Indicated the time period for which
the failure mode on a certain asset
has a specific value

Persistent

Value The actual value of the prediction
that the DSS can use in the rule
creation

Persistent

Task Models maintenance tasks on a
shop floor to the DFM schema

Persistent

Actor The actors are modelled based on
the DFM provided schema

Persistent

The DSS model are based on: Asset, Failure Mode, Time Frame, Value, Task and Actor based on the main
values needed for maintenance procedures. Assets represent the equipment on shop floors that are monitored
for faults and malfunctions, failure modes indicate the failures on specific assets during maintenance
processes, time frame shows the time period for which the prediction is valid, value shows the prediction of
failure that the DSS receives and uses in the rule engine, tasks are the maintenance tasks needed for repairing

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 19 of 63 Submission date: 2019-02-26

assets on shop floors and completing maintenance tasks. Finally, actors are the persons to complete the
maintenance tasks, such as supervisors, workers and managers on the shop floor.

All models are persistent type because they can cause a result and then return to their nominal operation
status. This is essential for the DSS, because the system knowns the cause and its effects and can produce
rules according to these distinctions.

DSS models are consistent with the DFM and its schema, because the communication between these two
components should provide all necessary information in a common format that can be used from both. All
information and data can be stored in the DFM database and can be retrieved by the DSS using the most
suitable API calls. As a result, DSS only processes data and does not store any of it internally. This fact leads
to a data independent solution, which can be used in many different applications with minor modifications that
could be applied to its models.

5.2 Data Stream and Processing

“Stream processing is a computer programming process that allows applications to easily exploit
limited parallel programming in real time. Stream processing simplifies parallel programming by
imposing restrictions to its use. Given a stream of data to process, a series of operations is applied to
each element of the stream. The operations are called kernel functions and are usually pipelined. They
allow Direct Memory Access (DMA) for data processing and expose data dependencies and
correlations. Stream processing is the processing of data in motion, or in other words, computing on
data directly as it is produced or received” (Artisans, 2018).

Most of data are born as continuous streams: sensor events, user activity on a website, financial trades, and
so on – all these data are created as a series of events over time. COMPOSITION UC-BSL-2 Predictive
Maintenance requires the control of machines on BSL shop floor implementing a sensor network for monitoring
and gathering data to be sent to other COMPOSITION components. Acoustic sensors are implemented on
Boston Scientific Ltd (BSL) shop floor, to measure the noise of RHYTMIA machines. Data continuously comes
from the acoustic sensors in the form of .wav files containing noise in the machine. Also, on the BSL shop
floor, BRADY oven machines are monitored and provide continuous data in COMPOSITION system. BRADY
oven machines use Wireless Sensor Network (WSN) to send data in the system and exploit the possibilities
provided by the DSS. WSN continuously sends data, conforming to an Open GeoSpacial Sensor Thing (OGC
ST) model. Finally, COMPOSITION UC–KLE-1 Maintenance Decision Support System, applied in KLEEMANN
shop floor, requires vibrometer sensors that measure the acceleration of the BOSSI polishing machine in order
to monitor the machine operation. Also, data streaming from the SFT providing the prediction of machine failure
for the next 24 hours is required by DSS. Both data sources are used for visualisation and rule creation in the
DSS and data streaming is necessary in both use cases. DSS uses RX/StreamInsight along with data at rest
and stream processing infrastructure in order to pull or push data from repositories.

Before stream processing, this data was often stored in a database, a file system, or other forms of mass
storage. Applications would query the data or compute over the data as needed. Data storage is necessary
for further exploitation of data. Knowledge extraction in the form of KPIs can provide decision-makers with new
and more effective solutions to problems previously encountered. Also, machine learning techniques require

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 20 of 63 Submission date: 2019-02-26

the existence of historical data to exploit it as training dataset.

Figure 3: Data at Rest architecture (Artisans, 2018)

Figure 3 represents an overview of a data at rest architecture, common before modern stream processing.
Data at rest usually refers to data store in persistent storage such as disk, database etc. and it is yet used for
queries and transaction, contrary to data in use which is data currently processed in a CPU or a RAM.

Stream Processing turns this paradigm around: The application logic, analytics, and queries exist
continuously, and data flows through them continuously. Upon receiving an event from the stream, a stream
processing application reacts to that event: it may trigger an action, update an aggregate or other statistic, or
“remember” that event for future reference. Streaming computations can also process multiple data streams
jointly, and each computation over the event data stream may produce other event data streams.

Figure 4: Stream Processing infrastructure (Artisans, 2018)

The systems that receive and send the data streams and execute the application or analytics logic are called
stream processors. The basic responsibilities of a stream processor are to ensure that data flows efficiently
and the computation scales and is fault tolerant. The stream processing paradigm naturally addresses many
challenges that developers of real-time data analytics and event-driven applications face today:

• Applications and analytics react to events instantly: There’s no lag time between “event happens”
-> “insight derived” -> “action is taken”. Actions and analytics are up-to-date, reflecting the data when
it is still fresh, meaningful, and valuable.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 21 of 63 Submission date: 2019-02-26

• Stream processing can handle data volumes that are much larger than other data processing
systems: The event streams are processed directly, and only a meaningful subset from the data is
persisted.

• Stream processing naturally and easily models the continuous and timely nature of most data:
This contrasts with scheduled (batch) queries and analytics on static/resting data. Incrementally
computing updates, rather than periodic re-computation of all data fits naturally with the stream
processing model.

• Stream processing decentralizes and decouples the infrastructure: The streaming paradigm
reduces the need for large and expensive shared databases. Instead, each stream processing
application maintains its own data and state, which is made simple by the stream processing
framework. In this way, a stream processing application fits naturally in a microservices architecture.

5.2.1 Stateful Stream Processing

Stateful stream processing is a subset of stream processing in which the computation maintains contextual
state. This state is used to store information derived from the previously-seen events. Virtually all non-trivial
stream processing applications require stateful stream processing:

• A fraud prevention application would keep the last transactions for each credit card in the state. Each
new transaction is compared to those in the state, labelled as valid or fraudulent, and the state is
updated with that transaction.

• An online recommender application would keep parameters that describe the user’s preferences. Each
product interaction generates an event that updates these parameters.

• A microservice that handles a song playlist or e-commerce shopping cart receives events for each
user interaction with songs or products. The state keeps the list of all added items.

Figure 5 shows a visualisation of a stateful stream processing.

Figure 5: Stateful Stream Processing (Artisans, 2018)

Conceptually, stateful stream processing brings together the database or key/value store tables and the event-
driven / reactive application or analytics logic into one tightly-integrated entity. The deep integration between
the state and execution of the application / analytics logic results in very high performance, scalability, data
consistency, and operational simplicity. Stateful stream processing requires a stream processor that supports
state management.

Stream Processing unifies Data Processing, Analytics, and Applications. Both real-time data processing /
analytics and event-driven applications are mentioned in previous paragraphs. The question to answer about
these two techniques are if they are two different domains with processing and analytics implemented via
frameworks like Hadoop or SQL warehouses and applications implemented via application frameworks and
databases.

Current approaches to data processing/analytics and event-driven applications have much in common. For
analytics to produce results in real-time or near real-time, a system must continuously compute and update
results with each record or event. Modern applications and microservices also operate in an event-driven or

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 22 of 63 Submission date: 2019-02-26

“reactive” fashion, meaning their logic and computation is triggered by events (where events are generated,
for example, by a user interacting with a website).

Figure 6: Stream Processing for Real-time data processing and Event - driven applications (Artisans, 2018)

DSS unifies stream processing and batch processing. Stream processing unifies applications and analytics.
This simplifies the overall infrastructure, because many systems can be built on a common architecture and
allows a developer to build applications that use analytical results to respond to insights in the data–to take
action–directly.

For the COMPOSITION project the list of streams:

Table 5: Stream Data Types

Stream Description Type

Acoustic data Data from acoustic sensors Sensorial data

WSN data Data from wireless sensors Sensorial data

Vibrometer data Acceleration data form vibrometer Sensorial data

BMS data Monitoring data from machines Sensorial data

SFT probabilities Probabilities of failure for the
Bossi machine, analysed in the
SFT component

Processed data

LA prediction Predictions of failure coming from
the Learning Agent, based on the
training of the data in the Deep
Learning Toolkit

Processed data

DFM monitoring data Binary data based on the
monitoring of real-time acoustic
data coming from DFM

Processed data

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 23 of 63 Submission date: 2019-02-26

DFM data concerning optimal
routes

Data coming from DFM and are
given to the DSS notification
mechanism to send the optimal
route for collecting bins on
KLEEMANN shop floor

Processed data

5.2.2 UC-BSL-2 Predictive Maintenance

Data streaming process is used in the COMPOSITION UC (use case). The first UC to apply data streaming
process is the BSL-2 Predictive Maintenance UC. In this UC, data is gathered form WSN and EHP (Energy
Harvesting) hardware. RHYTMIA oven machine fan parameters are monitored by the system. The measured
parameters of Rhytmia oven are: the temperature of the oven, the power in which the machine works in
percentage of the nominal power and the log files of the oven for the different events occurring during working
times. Afterwards, these parameters are compared to pre-set limits and three different COMPOSITION
components analyse the results. BDA (Big Data Analytics) aggregates, annotates, filters and publishes data
results for DLT.

DLT provides a prevision for the next possible breakdown with OGC ST and then propagates the possibility to
the LA, which applies machine learning techniques for training the system and accepting only the correct
predictions. The results are sent to the DSS which applies rules created in the Rule Engine to raise an alarm
according to predictions and data. Also, rule application lead to different alerts through the DSS Notification
Engine and according to those pre-set parameters, different notifications are sent to actors according to the
rules in the Rule Engine. Finally, the rule results and data visualisation are shown in the DSS HMI.

New noise recording sensors, developed by Tyndall, are also implemented for the use case. There are five
noise sensors attached to five of the fans of the Rhytmia oven. These sensors record noise samples every five
minutes for twenty seconds. The recorded data provides a large amount of .wav files and the noise are
monitored easily. In order, to achieve better understanding about the noise levels and their criticality, a
transformation is applied on the data. Based on Fourier Transformation the acoustic files are transformed to
dB levels. The data providing the noise levels in dBs is sent to the DSS where suitable rules are applied and
notification for the users are sent.

The dBs levels data is also sent to the SFT and a monitoring process is created. The monitoring process
detects the outliers of the dB and when four consecutive outliers are detected for each fan, it creates and event
and sends it to the DSS. The rules in the DSS try to operate with the best practice, so more advanced rules
combine the dB levels and the events from the outliers.

Figure 7 shows the Stream Process of the BSL-2 Predictive Maintenance UC. Data flows from the different
COMPOSITION components to create the above described format. Each component exploits the data for its
own purposes and they provide knowledge outputs. DSS applies rules in the incoming data and creates alarms
for different situations and problems occurred.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 24 of 63 Submission date: 2019-02-26

Figure 7: BSL-2 Predictive Maintenance Stream Processing

The component diagram for BSL-2 Predictive Maintenance UC is shown in Figure 8

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 25 of 63 Submission date: 2019-02-26

Figure 8: BSL-2 Predictive Maintenance UC Component Diagram

It is shown that all components communicate between them through a message broker. The broker receives
the data gathered on BSL shop floor through the BMS and distributes it through MQTT protocol to the rest of
the COMPOSITION components.

There are two ways to structure the MQTT topics. They are: system infrastructure and semantics/domain
model

• System infrastructure:

[component]/[Scope]

Composition/BMS/NXW_51/OGC/1_0/Datastreams/ds_5-1/Observations

• Semantics / domain model:

[O&M:Procedure]/[DFM:Asset][O&M:ObservedProperty(DFM:Event.Type)]

Composition/IntraFactory/Prediction/Task_0pf4jcq/Failure

MQTT topics are used for the intra-factory communication, while AMQP topics for the inter-factory
communication.

There is also security option in the UC. LinkSmart Service Catalog is used by Security Framework for PK (Port
Knocking) management in order to define which ports in the system will be public and available to all, through
opening them in the firewall. Also, ACL options for authentication and authorisation are applied to each
component. The list provides the authenticated system users and those who are allowed to participate in the
US, using its HMIs. SSO options have been discussed for the COMPOSITION project, in order a user to sign-
on only once for the different components.

Security is provided to both event and message broker, where each component uses its own credentials to
subscribe in the topics that accesses. If the components are able to subscribe with the given credentials, it has
all the resources to access the topics and receive the data from them. On the other hand, when a component
tries to subscribe to the message broker with faulty credentials, the broker recognises it and access is denied.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 26 of 63 Submission date: 2019-02-26

5.2.3 UC-KLE-1 Maintenance Decision Support

UC-KLE-1 Maintenance Decision Support follows a similar Stream Processing as UC-BSL-2 Predictive
Maintenance. Data is gathered from sensors, such as BOSSI polishing machine vibration sensor data. It is
sent to the BMS which distributes it to the BFM. BFM stores the data to be use in SFT and produce prediction
results. Also, BMS stores observations made from the incoming data. Finally, SFT propagates the data to DSS
for rule creation and knowledge extraction. KPIs will be created for UC-KLE-1 Maintenance Decision Support,
as well as data visualisation from the DSS.

There is also data coming from the visual analytics toolkit, which essentially is the transformation of the raw
vibration data. The vibration data is measured as acceleration over the three axes, x,y,z, and their
transformation is the eigenvalues of the accelerations. These eigenvalues show outliers in the data that may
be possible failures for the system, if there are continuously recurring.

Figure 9: UC-KLE-1 Maintenance Decision Support Stream Processing for both real-time and historical data

Figure 9 shows the Stream Processing for real-time and historical data of KLE-1 Maintenance Decision
Support UC. The difference between the two use cases is that a BMS is applied in the UC-KLE-1 for data
storage. The BMS is suitable to retrieve the created data and use it as historical data. The historical data can
be propagated to all other components to be used a machine learning dataset.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 27 of 63 Submission date: 2019-02-26

Figure 10: KLE-1 Maintenance Decision Support UC Component Diagram

Figure 10 shows the component diagram of the UC-KLE-1 Maintenance Decision Support. As it shown the
data is gathered from the sensor network and is stored in the BMS. Through OGC ST, data is propagated to
all other COMPOSITION components. MQTT and AMQP topics are also used in the distribution of information
and delivery of data to the components. Information and data are delivered the same way as in UC–BSL-2
Predictive Maintenance for BSL. DSS uses rule engine for decision making process and the extraction of
knowledge. KPIs are used for knowledge measurement and data visualisation is another objective of the DSS.

5.3 Decision Making – Rule Engine

The decision making or rule engine sub–component is the core of DSS COMPOSITION component. All
information coming to DSS from other components is exploited by the rule engine. The models, established in
the Stream Processing sub–component, are used in the rule engine to create the rules. Rules are used to
provide accurate suggestions decision–makers. They are graphically represented in the HMI sub–component
of DSS in order users to have an easier and more appealing experience while using the COMPOSITION DSS.

The first edition of the rule engine is based on the Finite State Machine (FSM) theory, because an action or an
event leads a machine from one state to the other, depending on a transaction based on the action. This
preliminary model applies to well-known applications, where there are pre–defined states and transactions. It
is also implied that the provided data has been thoroughly examined and studied and its attributes are known.

Each rule engine consists of many Finite State Machines. Each machine corresponds to a rule. To apply a
whole rule engine in a shop floor, we create many different state machines to describe all operations. Due to
highly complicated environments on shop floors, the state machines can retrieve the same data sources and
use them with as different parameters in states for different purposes.

While the amount of data is expanded, the data cannot always be studied well, and the rule engine moves
from FSM to Non–Deterministic Finite Automata (NDFA), which cover more options than FSM. The rules are
created based on the new data and include possibilities of failure and repetition, as well as unreachable or

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 28 of 63 Submission date: 2019-02-26

forbidden states. To understand operation of the DSS rule engine, the mathematical and algorithmic
background is firstly explained and the standard operation of the COMPOSITION DSS rule engine is
examined.

DSS is designed, programmed and deployed from the beginning based on finite state machines. It is preferable
to create an application from the beginning, without dependencies with previous technologies in the rule
engine. It is a .NET application and it is written in C# programming language.

5.3.1 Finite State Machine

“A finite state machine (sometimes called a finite state automaton) is a computation model that can be
implemented with hardware or software and can be used to simulate sequential logic and some
computer programs. Finite state automata generate regular languages. Finite state machines can be
used to model problems in many fields including mathematics, artificial intelligence, games, and
linguistics”. (Anderson, 2006; Anon., 2018)

Figure 11: State Diagram for a Turnstile

A system where particular inputs cause changes in state can be represented using finite state machines. This
example describes the various states of a turnstile. Inserting a coin into a turnstile will unlock it, and after the
turnstile has been pushed, it locks again. Inserting a coin into an unlocked turnstile or pushing against a locked
turnstile will not change its state.

There are two types of finite state machines (FSMs): deterministic finite state machines, often called
deterministic finite automata, and nondeterministic finite state machines, often called nondeterministic finite
automata. There are slight variations in ways that state machines are represented visually, but the ideas behind
them stem from the same computational ideas. By definition, deterministic finite automata recognize, or accept,
regular languages, and a language is regular if a deterministic finite automaton accepts it. FSMs are usually
taught using languages made up of binary strings that follow a pattern. Both regular and non-regular languages
can be made of binary strings. An example of a binary string language is: the language of all strings that have
a 0 as the first character. In this language, 001, 010, 0, and 01111 are valid strings (along with many others),
but strings like 111, 10000, 1, and 11001100 (along with many others) are not in this language.

5.3.2 Formal Definition of Finite State Machines and Non-Deterministic Finite Automaton

A deterministic finite automaton (DFA) 𝐷 is a tuple (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹)where (Almeida, et al., 2007):

• 𝑄 :is a finite set of states

• 𝛴 :is the input alphabet (any non-empty set of symbols),

• 𝛿 ∶ 𝑄 × Σ ⟶ 𝑄 :is the transition function

• 𝑞0: is the initial state and

• 𝐹 ⊆ 𝑄: is the set of final states.

When the transition function is total, the automaton 𝐷 is said to be complete. Any finite sequence of alphabet

symbols 𝑎 ∈ Σ is a word. Let Σ∗ denote the set of all words over the alphabet Σ and 𝜖 denote the empty word.

We define the extended transition function �̂�: 𝑄 × Σ∗ ⟶ 𝑄in the following way:�̂�(𝑞, 𝜖) = 𝑞; �̂�(𝑞, 𝑥𝑎) =

𝛿(�̂�(𝑞, 𝑥), 𝑎) . A state 𝑞 ∈ 𝑄of a DFA 𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) is called accessible if �̂�(𝑞0, 𝑤) = 𝑞 for some 𝑤 ∈ Σ∗e.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 29 of 63 Submission date: 2019-02-26

If all states in 𝑄 are accessible, a complete DFA 𝐷 is called (complete) initially-connected (ICDFA). The

language accepted by 𝐷, 𝐿(𝐷), is the set of all words 𝑤 ∈ Σ∗ such that �̂�(𝑞0, 𝑤 ∈ 𝐹). Two DFAs 𝐷 and 𝐷′ are

equivalent if and only if 𝐿(𝐷) = 𝐿(𝐷′). A DFA is called minimal if there is no other equivalent DFA with fewer
states. Given a DFA 𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), two states 𝑞1, 𝑞2 ∈ 𝑄 are said to be equivalent, denoted 𝑞1 ≈ 𝑞2, if for

every 𝑤 ∈ Σ∗,�̂�(𝑞1, 𝑤) ∈ 𝐹 ⇔ �̂�(𝑞2, 𝑤) ∈ 𝐹. Two states that are not equivalent are called distinguishable. The

equivalent minimal automaton 𝐷/≈ is called the quotient automaton, and its states correspond to the
equivalence classes of ≈. It is proved to be unique up to isomorphism.

Figure 12: Deterministic Finite Automaton – DFA

A DFA is represented by digraphs called state diagram (Anon., 2018).

• The vertices represent the states.

• The arcs labelled with an input alphabet show the transitions.

• The initial state is denoted by an empty single incoming arc.

• The final state is indicated by double circles.

Figure 12 shows an example of a DFA where:

• 𝑄 = {𝑎, 𝑏, 𝑐}

• Σ = {0, 1}

• 𝑞0 = {𝑎}

• 𝐹 = {𝑐}, and

Transition function 𝛿 as shown by the following Table 6

Table 6: Transition δ table

Present State Next State for Input 0 Next State for Input 1

a a b

b c a

c b c

A non-deterministic finite automaton (NDFA) is also a tuple (𝑄, Σ, Δ, 𝐼, 𝐹) where 𝐼 is a set of initial states

and the transition function is defined as Δ ∶ 𝑄 × Σ ⟶ 2𝑄 . Just like with DFAs, we can define the extended

transition function Δ̂ ∶ 2𝑄 × Σ∗ ⟶ 2𝑄 in the following way: Δ̂(𝑆, 𝜖) = 𝑆; Δ̂(𝑆, 𝑥𝑎) =∪𝑞∈Δ̂(𝑆,𝑥) 𝛿(𝑞, 𝑎). The

language accepted by 𝑁is the set of all words 𝑤 ∈ Σ∗ such that Δ̂(𝐼, 𝑤) ∩ 𝐹 ≠ 0. Every language accepted by
some NFA can also be described by a DFA. The subset construction method takes a NFA 𝐴 as input and

computes a DFA 𝐷 such that 𝐿(𝐴) = 𝐿(𝐷). This process is also referred to as determinization and has a

worst-case running time complexity of 𝑂(2|𝑄|).

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 30 of 63 Submission date: 2019-02-26

Figure 13: Non - Deterministic Finite Automaton

An NDFA is represented by digraphs called state diagram (Anon., 2018).

• The vertices represent the states.

• The arcs labelled with an input alphabet show the transitions.

• The initial state is denoted by an empty single incoming arc.

• The final state is indicated by double circles.

Figure 13 shows and example of an NDFA where:

• 𝑄 = {𝑎, 𝑏, 𝑐}

• Σ = {0, 1}

• 𝑞0 = {𝑎}

• 𝐹 = {𝑐}, and

The transition function 𝛿 as shown in the Table 7 below:

Table 7: Non - deterministic Finite Automaton Transition δ

Present State Next State for Input 0 Next State for Input 1

a a, b b

b c a, c

c b, c c

Among the DFAs and NDFAs there are conceptual differences. Those differences are summarised in the table
below:

Table 8: Differences between DFAs and NDFAs

DFA NDFA

The transition from a state is to a single next
state for each input symbol. Hence it is called
deterministic.

The transition from a state can be to multiple next
states for each input symbol. Hence it is called non-
deterministic.

Empty string transitions are not seen in DFA. NDFA permits empty string transitions.

Backtracking is allowed in DFA In NDFA, backtracking is not always possible.

Requires more space. Requires less space.

A string is accepted by a DFA, if it transits to a
final state.

A string is accepted by a NDFA, if at least one of all
possible transitions ends in a final state.

The transition density of an automaton 𝐴 = (𝑄, Σ, Δ, 𝐼, 𝐹) as the ratio
𝑡

|𝑄|2|Σ|
 , where 𝑡 is the number of

transitions in 𝐴 . We also define deterministic density as the ratio of the number of transitions t to the number

of transitions of a complete DFA with the same number of states and symbols, i.e.:
𝑡

|𝑄||Σ|
.

The reversal of a word 𝑤 = 𝑎0𝑎1 … 𝑎𝑛, written 𝑤𝑅, is 𝑎𝑛 … 𝑎1𝑎0. The reversal of a language 𝐿 ⊆ Σ∗ is 𝐿𝑅 =
{𝑤𝑅|𝑤 ∈ 𝐿}.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 31 of 63 Submission date: 2019-02-26

A string is accepted by a DFA/NDFA if the DFA/NDFA starting at the initial state ends in an accepting state
(any of the final states) after reading the string wholly.

• A string 𝑆 is accepted by a DFA/NDFA (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), if 𝛿 ∗ (𝑞0, 𝑆) ∈ 𝐹

• The language 𝐿 accepted by DFA/NDFA is {𝑆|𝑆 ∈ Σ∗𝑎𝑛𝑑 𝛿 ∗ (𝑞0, 𝑆) ∈ 𝐹}

• A string 𝑆′ is not accepted by a DFA/NDFA (𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), if 𝛿 ∗ (𝑞0, 𝑆) ∉ 𝐹

• The language 𝐿′ not accepted by DFA/NDFA (Complement of accepted language L) is {𝑆|𝑆 ∈
Σ∗𝑎𝑛𝑑 𝛿 ∗ (𝑞0, 𝑆) ∉ 𝐹}

5.3.3 COMPOSITION DSS Rule Engine

COMPOSITION’s DSS Rule Engine is based on the theory described in 5.3.1 and 5.3.2. Furthermore, the
language, states and transition function are modified to accommodate the creation of the rules. States are
defined based on the already existing states of the system. Alphabet is the conditions for each state. Each
condition can be mathematical expressions, which when they change the state should change also, regular
alphanumeric expressions and strings or a combination between all of them. The transitions are defined from
the alphabet and they are a subset of it. The transition function for each transition is evaluated as true or false
and when the transition is evaluated true, the system moves from the transition’s initial state to the transitions
final state.

Algorithm steps of rule creation following the principals of FSM are presented in the Table 9 below:

Table 9: FSM Algorithm for DSS Rule Engine

FSM Algorithm for DSS Rule Engine

1. Define the states for the rule engine

2. Define the transitions for the rule engine

3. Define the conditions for each state

4. Define the action should be taken for each state

5. Describe a certain rule for a specific situation

6. Analyse the rule, discovering the states and transitions needed for the rule

7. Define the set of transition which will be used for the rule

8. Set the values of the conditions

9. Set the limits on the conditions, which lead to preference for one of the transitions

10. Apply the rule on sample data to test its application

11. Apply the rule on real data for real result

12. Use the DSS suggestion on shop floor problems

13. Improve rule with constant feeding it with new data

14. Revise rule when the conditions does not apply to the problem any more

A state diagram is created for each rule. State diagrams graphically represent the FSM, and contain initial and
final states, transitions for different conditions and each transition’s condition. The more complicated the rule,
the more complicated the state diagram also is. The initial rules contain a few states and transitions, even
though the transitions are more than the states, because there are different ways from transitioning from one
state to the other, back and forth. Figure 14 shows an initial state diagram for a rule in the rule engine.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 32 of 63 Submission date: 2019-02-26

Figure 14: State Diagram for FSM Rule in the Rule Engine

5.3.4 Application of the DSS Rule Engine

The DSS Rule Engine is a web–based application. Usually, decision–makers or higher–level managers on
shop floors have access to the application. Its UI is very simplified containing only the necessary graphical
elements, but it applies all the logic needed for the rule creation, application and testing.

Decision–makers can create new rules, following the algorithm described above, modify the already existing
ones and delete them, whenever the rules do not apply to the data any more. In order a decision–maker to
complete a rule, the system allows them to choose conditions and states from drop–down menus, combo
boxes, which allow strings and other types of variables. They also can add all necessary states and transitions,
defining for each one all the parameters. Figure 15 shows the first screen for the DSS rule engine, where the
state diagram of the state machine is created.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 33 of 63 Submission date: 2019-02-26

Figure 15: DSS Rule Engine Screen where the state diagram is shown

As shown in Figure 15 above, the rule engine allows to create new rules with the “Add” button, which exists
on the upper right corner of the screen. Pressing the “Add” button the dedicated area of a new rule opens.
There is a tab menu, in which the user can declare all possible elements of the state machine.

Figure 16 shows the tab menu that created to replace the previous boxes and tables in the DSS UI. The UI
was designed and implemented with React components, and it will be discussed in next paragraphs. The first
tab is called “States” and in there the states themselves are declared. The second tab is called “Bindings”
where the user can define the bindings which apply for each state. The third tab is called “Parameters” and
they are the measured or monitored parameters that affect the rule and how it is applied. The forth tab is called
“Transitions” and there the rule’s transitions are defined

All the boxes will be further analysed below, and all their functionalities will be thoroughly explained. To save
the rule, a decision-maker must press the “Save” button located on the upper left corner of the screen, below
the COMPOSITION logo.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 34 of 63 Submission date: 2019-02-26

Figure 16: States of DSS Rule Engine

Figure 16 shows how the States are defined in the rule engine. In the displayed rule there are three states
called: Alert, Alarm and Breakdown State. Using the “Add” button a decision-maker can add new states for
this state machine. Each state has its own “Remove” button and the user can delete the state. The states can
be moved up or down, in a way that is convenient for the user, using the “Up” and “Down”. The user can edit
each of the states in the textboxes.

Bindings are the maintenance assets defined for each state. They play a significant role in the rule create and
implementation because it is their status that changes and changes the status of the state. As it is shown there
is already a binding in the rule, called: Bossi. During the rule formation, the decision-maker chooses a second
one from the menu, the same way as described for the States. Figure 17 shows the Bindings tab of the Rules
screen in the DSS.

Figure 17: Binding of DSS Rule Engine

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 35 of 63 Submission date: 2019-02-26

Figure 18: DSS Rule Engine Parameters definition

Figure 18 shows the basic information for the parameter. The field with “Parameter Name” is the name of the
parameter defined by the user. there are five choices which can be defined in the parameter. The parameter
type can be chosen from a drop-down menu with the following options: Numeric, Alphanumeric, Vector or
MessageAcquired. Numeric values are numbers derived from the incoming data, Alphanumeric values are in
string format, Vectors are multi-dimensional, while MessageAcquired type is file format, e.g. XML, JSON.

In the Transformation box, an expression can be set to evaluate rule parameters. Usually, the expression is
written in C, C# or other high-level programming language. When the evaluated expression is true, the
parameter is considered by the rule.

The last element defined in the rule’s parameter settings is the cached data and how long it remains cached
in RAM. Decision-makers can set the number of seconds the data can stay in RAM, to extract KPI from it and
produce accurate suggestion for the system. The number of seconds is usually large, because it improves the
performance of the system. The more information that remains cached, the more accurate the suggestion of
the rule.

The menu in the right shows the buttons for “Up”, “Remove”,” Collapse”, “Details”, and “Filters”. The view in
Figure 18 is the detailed view. When the user collapses the view, only the name of the parameters is shown.
Also, the user has the ability to move the parameters up and down, in suitable way and delete each of them
using the “Remove” button.

Figure 19: DSS Parameters - Filters view

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 36 of 63 Submission date: 2019-02-26

The filters view is shown in Figure 19. There are five options in the tab menu for the filters. These options are
called: Event Types, Measurement Locations, Asset Types, Agents and Asset Re (regular expressions). All of
these can be filled by clicking on the respective tab and adding values in the textboxes there.

The Asset Regular Expression is a string value completed by the user and can be applied to anything in
correspondence with the rule. Asset Type is usually filed with the assets on the shop floor involved in the rule,
Measurement Location is filled with the definition of a measurement point, which is taken into consideration in
the rule definition. Event Type defines from what events should the rule be triggered, such as: alerts, alarms,
incident etc. Finally, Agent is filled with information contained who is the actor involved with this parameter.

Figure 20: Transitions – Details view

Figure 20 shows a transition called “Alert -> Normal again”. The transition dialogue box contains a box for the
name to be filled, three drop-down menus for the starting state, end state of the transition and the parameter
used. There is also a box, in which decision-makers fill the second after which the transition is expired, i.e. this
transition can only be live and accurate for 20 seconds.

Figure 21: DSS Transitions - Condition View

The Condition view of the DSS rule engine is shown in Figure 21. There are several textboxes, which are
optional for the user. In Figure 21, the user has filled the box with a value less than for “Inequality” fields. The
rest of the fields can be filled too or be left empty. They refer to time conditions, spatial conditions: such as
distances or circles etc. There are also, tow boxes where the user can regularise the condition’s values or
uses them as a predicate with mathematical expressions.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 37 of 63 Submission date: 2019-02-26

Figure 22: DSS Transition - Actions view

The actions view for each transition can be shown in Figure 22. The users may add actions or remove them.
Actions can be: notifications, maintenance tasks, alerts, logs, suggestions or forwards to external systems.
The user defines the type of notification, the category, the message and the method of the notification. The
method is usually an email or a push notification to a mobile application.

The rule’s output is a notification sent to the respective actors in the system containing information and
suggestion about the cause that triggered the rule. Notifications can either be push notification, through a
Google Services application or emails, SMS. Also, suggestions are shown on the DSS HMI along with graphs
for the extracted KPIs and the values that caused the trigger. A log file, in JSON format is also an output of the
DSS rule engine. The log file is helpful for data to be stored in a persistent way and be available for further
exploitation. An example of a JSON log file, coming from a DSS rule is given below:

{

 "stms": [

 {

 "Asset": "CIRCUIT - 0 ROW - 0 REGION - A",

 "State": "INITIAL",

 "LastSTMRun": "2018-04-18T23:29:01.7061936+03:00",

 "Time_In_This_State": 6.2593736

 },

 {

 "Asset": "CIRCUIT - 5 ROW - 2 REGION - B",

 "State": "INITIAL",

 "LastSTMRun": "2018-04-18T23:29:01.938202+03:00",

 "Time_In_This_State": 6.0253714

 },

 {

 "Asset": "CIRCUIT - 5 ROW - 2 REGION - C",

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 38 of 63 Submission date: 2019-02-26

 "State": "INITIAL",

 "LastSTMRun": "2018-04-18T23:29:01.940202+03:00",

 "Time_In_This_State": 6.0233713999999994

 },

],

 "actions_perfomed": []

}

5.4 HMI – Human Machine Interaction

HMI basically integrates the operation of a machine or a process with the feedback to or from the operator.

One aspect is the quality of the graphic user interface and in connection to this, the usability. Another important
aspect is the openness of the HMI solution. Is it easy or difficult to exchange essential information with different
systems or controllers? Is the application code locked for customization of functions or objects? Will runtime
software be able to operate on different hardware platforms? Are design engineers able to use standard .Net
objects in their projects? These are issues frequently more discussed in the dialogue between customers and
vendors.

The open platform architecture of tomorrow´s HMI solutions will offer a wide range of opportunities for OEMs
to enhance the look, the functionality and the connectivity of applications in order to catalyse unique products
with substantial integrity. HMI solutions will be less proprietary and offer increased freedom in choice of runtime
platform; from compact operator panels to industrial PCs from different manufacturers.

It will be possible to create a scalable master project, which can be applied to different controller brands and
panel resolutions with the advantage of only having to maintain one project. Engineers will demand
opportunities to use scripting tools, e.g. C# script, to customize the look or functionality of objects. The design
tool will offer the possibility to import third party objects and .net controls. Freedom in connectivity and
communication is the hallmark of a truly open HMI solution and will include a variety of options ranging from
simple real-time exchange of data between controllers up to data storage and OPC communication with other
equipment and IT systems

The software in this layer is a set of adapters that convert data from the format most convenient for the use
cases and entities, to the format most convenient for some external agency such as the Database or the Web.
It is this layer, for example, that will wholly contain the MVC architecture of a GUI. The Presenters, Views, and
Controllers all belong in here. The models are likely just data structures that are passed from the controllers
to the use cases, and then back from the use cases to the presenters and views.

Similarly, data is converted, in this layer, from the form most convenient for entities and use cases, into the
form most convenient for whatever persistence framework is being used. i.e. The Database. No code inward
of this circle should know anything at all about the database. If the database is a SQL database, then all the
SQL should be restricted to this layer, and in particular to the parts of this layer that have to do with the
database.

Also, in this layer is any other adapter necessary to convert data from some external form, such as an external
service, to the internal form used by the use cases and entities.

Apps are user experiences that have the reach of the web, and are:

• Reliable - Load instantly and never show the dinosaur, even in uncertain network conditions.

• Fast - Respond quickly to user interactions with silky smooth animations and no janky scrolling.

• Engaging - Feel like a natural app on the device, with an immersive user experience.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 39 of 63 Submission date: 2019-02-26

Also, we should extend beyond screen and inform the users using notifications and other HMI means. The
main screen is the shop floor view shown in Figure 23 below has the two main characteristics:

• Summarise the status on the shop flor

• Display the current condition

As it is show for the KLEEMANN shop-floor there are for cards on the screen that show the prediction coming
from SFT for the possibilities of normal operation, mechanical failure, electrical failure and hydraulic failure.
The predictions are based on historical data from KLEEMANN. SFT gathers the data till the previous day,
analyses it and gives a prediction probability for the next 24 hours.

Figure 23: DSS Main Screen for Shop Floor

Figure 24 shows the personnel management screen. The contacts are the personnel on a shop floor.
administrators can add a new worker in the system, modify the information concerning the worker or delete a
person from the list. Worker’s name, email, phone number and position can be set in the system

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 40 of 63 Submission date: 2019-02-26

Figure 24: Personnel management screen

Figure 25 shows the DSS task management screen. When a task is inserted in the steps for completed the
task can be shown, the title, start date and end data. The aim is to show task in a condensed way in the DSS
HMI, for informational purposes, but to not replace the CMSS of the shop floor.

Figure 25: DSS Task Management Screen

During M20 to M30 there was a change in the template used for the HMIs. The new template was decided by
all members of the project and it should be implemented for all HMIs. Since HMI integration is a project
requirement, all HMIs have all now similar views. The next step if the fully integrated HMIs for the
COMPOSITION project. This task will be completed using web components. Web Components are a set of
features that provide a standard component model for the Web allowing for encapsulation and interoperability
of individual HTML elements. A custom web component will be developed, which will include all menus and

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 41 of 63 Submission date: 2019-02-26

sub–menus of all COMPOSITION HMIs. Then the component will be implemented to all HMIs and the
COMPOSITION user will be able to see the unified HMI for all use cases and shop floors.

5.4.1 React Components

In the months between the two deliverables for the Manufacturing Decision Support System, a new UI was
developed for the Rule Engine. The rule engine machine can be view as completely independent product and
for that reason, a completely different approach was used for its UI development.

The UI development is based on React.js and React components. The reason to use React is that the
components are easily reusable in the project and the can be written in form very similar to HTML. Each
component is independent and the combination of all components on the layout gives us the final views.

The Model-View-Controllers (MVC) architecture is enhanced using react components for the views. It allows
the programmers to develop less complicated and more independent code. React (also known as React.js or
ReactJS) is a JavaScript library for building user interfaces. It is maintained by Facebook and a community of
individual developers and companies. React can be used as a base in the development of single-page or
mobile applications. Complex React applications usually require the use of additional libraries for state
management, routing, and interaction with an API.

React components implement a render() method that takes input data and returns what to display. Usually

React.je uses an XML-like syntax called JSX. Input data that is passed into the component can be accessed
by render() via this.props. In addition to taking input data (accessed via this.props), a component

can maintain internal state data (accessed via this.state). When a component’s state data changes, the

rendered mark-up will be updated by re-invoking render(). Using props and state, we can put together a

small Todo application. This example uses state to track the current list of items as well as the text that the

user has entered. Although event handlers appear to be rendered inline, they will be collected and
implemented using event delegation.

For the Rule engine UI, an example of the React components used is given below. The example is the Actions
React.js components

export var Action = ({row, changer,deleter})=>

 {

 var input_in_cell_style= {verticalAlign:"top"};

 return (

 <div style={{marginBottom:60,paddingBottom:20}}>

 <FormControl_Basic

legend={<div class="label1" ></div>}

 control={

<div style={{display:"flex"}}>

<div style={{flexGrow:1}}></div>

<div>

<button className={"btn btn-outline-danger"}

onClick={deleter}> <span aria-

hidden="true">× </button>

</div>

 </div>}/>

<FormControl_Basic

legend={<div class="label1" > Type </div>}

 control={

 <div>

<select className="form-control" value={row.Type}

name="Type" onChange={changer}>

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 42 of 63 Submission date: 2019-02-26

 <option value="Notification">Notification</option>

 <option value="Create_Task">Task </option>

 <option value="Alert">Alert</option>

 <option value="Suggest">Suggest</option>

 <option value="Log">Log</option>

 </select>

 </div>}/>

<FormControl_Basic

legend={<div class="label1" > Category </div>}

 control={

<input className="form-control" type="text"

name="Message_Category" onChange={changer}

value={row.Message_Category} /}/>

<FormControl_Basic

legend={<div class="label1" > Message </div>}

 control={

<textarea className="form-control"

rows={5}className="form-control" type="text"

name="Message_Desc" onChange={changer}

value={row.Message_Desc} /}/>

<FormControl_Basic

legend={<div class="label1" > Method </div>}

 control={

 <input className="form-control" name="method" />}/>

 </div>

);

}

5.5 Data Persistence

DSS Data Persistence sub–component is applied to the system, in order to secure that both incoming and
outcoming data is persistent.

Data must comply to a schema that is applied from DFM and DLT and Data Persistence sub-component must
be able to handle it as it is. After, using and exploiting the data, the Data Persistence sub-component preserves
it format and the applied by the schema rules.

Data Persistence sub-component provides the internal mechanism, in the DSS that allows it to access the
data without changing it. It is written in C# as the whole DSS background application. DSS output data is also
based on the Data Persistence sub-component and it uses the pre-defined schemas for output data on the
COMPOSITION project

5.6 KPIs

KPIs are used to measure performance in manufacturing processes. One of the major roles in creating KPIs
for those processes is using data coming from sensors on the shop floor to measure pre-defined values,
suitable for manufacturing KPIs. Also, the data can be used as input to DSS and the outputs can provide
measurements and statics that create KPIs concerning the decision-making process on the shop floor. Both
roles rely heavily on data existence and the relation that might exist between it.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 43 of 63 Submission date: 2019-02-26

There are different ways to choose a set of KPIs for certain processes. Decision-makers or managers should
choose from:

• a fully certified KPI set such as: BREEAM, Open House, Super Building etc

• Select KPIs from existing sets

• Add new KPIs when existing and certified sets do not satisfy the needs for a specific case

Decision-making process is highly iterative and many results may appear in later iterations. New KPIs should
cover these iterations. Another fact that should be taken into consideration is the combined knowledge that
KPIs provide and how this abstract notion should be reform to KPIs.

The context and content of data on different shop floor lead to the implementation of different KPIs, both as
visualisation and decision-making tools. One example is two different factories, use the same machine and
the same monitoring sensors. The first one uses the machine in a very stable environment and the slightest
changes in its operations lead to problematic situations and the need for maintenance processes or changes
in the manufacturing process in order to prevent faults. The second machine is located in a heavy working
environment, which implies heavy and unstable use of the machine. Small changes in data do not affect the
manufacturing procedure. In both cases, the produced data is the same, but the purpose of the machine is
different in the two shop floors and the resulting KPIs for the machine operation should be different.

There are different models applied on shop floors for different procedures. There are models about
manufacturing processes, maintenance processes, security and safety processes that should be considered
when creating KPIs in a DSS. While there may be some actors, assets and tasks that are the same on all shop
floor processes, there are some that exclusively belong to different processes. Applying a set of KPIs, those
factors should be implemented.

Finally, creating a set of KPIs should consider the people that will see the KPIs and learn something from it.
Different information is considered useful for workers, technicians, safety actors, decision-makers or
managers. The suitability of the provided information to different actors should be one of the main aspects to
consider while creating or setting KPIs.

COMPOSITION DSS functionality is to create rules in the rule engine in order to help the decision-making
process, while there is the possibility of visualisation. Live data is available that can be used for the KPIs. Use
case and model analysis should lead to the KPIS which will be used by COMPOSITION DSS and provide
knowledge for the shop floor and maintenance procedures. For each use case, the KPIs should provide
information to all different actors, or be extracted and become further knowledge for the DSS.

In both UC-BSL- 2 Preventive Maintenance and UC-KLE-1 Maintenance Decision Support a sensor network
has been deployed on the shop floors. Sensors send live data to other relevant components and then it is
propagated to the DSS, through these components. It is possible the data to be propagated formatted from
the previous components or unformatted. In both cases, DSS should exploit the data to create KPIs for all
actors on the shop floors and visualise some of the KPIs. The transformed data usually is probabilities of
failures on the machines and the raw data shows values straight from the sensors.

The received data is transformed in the DSS rule engine and according to certain conditions, as it is already
explained in chapter 5.3.3, extracted KPIs are created. Each actor receives the most suitable KPIs with the
needed information in order to complete their tasks.

The most common KPIs defined for the COMPOSITION DSS, in their general form, are given below:

• Number of failures. The number of failures is measured and creates a KPI that shows how many
times the machine failed due to a cause detected on the machines. This number can be translated as
wrong operational procedure of the machine, non-existing safety procedures for the machine and other
factors, better known to managers

• Number of maintenance tasks. The KPI gives the number of times the machine needed maintenance
for problems caused and detected by the machines.

• Probability of failures: this KPI is a data transformation, that indicates how possible it is for a machine
to fail due to the data that is detected from the sensors.

• Number of alerts: DSS can create alerts, while implementing a rule, when the detected data is above
or below certain pre-defined thresholds.

• Number of alarms: DSS also sends the number of alarms created while implementing a rule, when
the detected data is above or below a certain pre-defined thresholds. The difference between alerts

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 44 of 63 Submission date: 2019-02-26

and alarms is that alert is a notification which in not critical, and only warns the actors on shop floors
that something has caused a malfunction, breakdown etc. On the other hand, alarms are critical
notifications that are sent when the criticality of the breakdown is severe and can cause problems to
workers and machines alike.

• Data values. Usually the sensor data values are defined as KPIs concerning the machines

KPI visualisation is indicative for shop floors actors, because they receive necessary information at a glance.
DSS can visualise all of the above KPIs in a pleasant and easy way to be available to actors. Further study of
the use cases and collaboration with the end users can enhance the available KPIs. New KPIs can be added,
which will address the specific needs of the end users. There is also the possibility for applying advanced KPIs,
which will be the combination of different KPIs.

5.6.1 Maintenance KPIs

For both KLEEMANN and Boston Scientific there are maintenance KPIs developed for the maintenance
procedures on the shop floors. The first KPIs to be developed were the MTTR and MTBF (Mean Time To
Repair and Mean Time Between Failures).

The KPIs were based on the historical data provided by KLEEMANN for the BOSSI machine. They can be
computed for a certain time period in the past and show the health status for each KPI. Following maintenance
procedures and standards, it was defined that the machines are aligned to assets, failures to failure modes
and the time periods to timeframes. The given values are the possibilities provided by the prediction from SFT
and DLT/LA COMPOSITION components.

Figure 26: MTTR KPI

Figure 26 shows the MTTR KPI for the KLEEMANN shop floor for the time period between 20/01/2012 and
20/02/2019. The user has chosen to see the KPI for the Electrical and Mechanical failure modes. The user
can also change the time period for the concerning data, as well as the related KPI. There are five KPIs
provided. MTTR, MTBF, Response Time, Downtime and Count. These KPIs are maintenance related KPIs.
The plot is now provided as a time series, but there are future possibilities for showing it as bar or pie charts.
Users plot the KPI graph with all the fields completed for the period they need to see.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 45 of 63 Submission date: 2019-02-26

Figure 27: Fan Noise for BSL

Figure 27 shows the comparison of noise for a certain time period on the Boston Scientific shop floor. Users
can choose the date and time for which they are interested in observing the noise on the fans. They can also
choose which fans they need to see on the diagram. Maintenance KPIs are not provided on the Boston
Scientific shop floor, because maintenance procedures are pre-defined and arranged in a way that they can
be performed without the interruption of the work process, even if there is a breakdown on a machine. There
are always spares machines in the production line. On the other hand, the health status, as indicated by the
noise level is useful in monitoring the machine and preventing breakdowns.

During the final stage of COMPOSITION project new KPIs will be added, concerning the notifications that
arrive to the users. A feedback application will be given to the users and a counter will be applied to the
notification’s mechanism. The counter will count each notification the users get on the shop floors and what
feedback they send back. A rating system of the feedback will be implemented too, which will provide a new
KPI about the satisfaction of the user concerning the notifications they get.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 46 of 63 Submission date: 2019-02-26

6 COMPOSITION Components Collaboration with DSS

COMPOSITION project provides collaboration with different components, for different use cases. The
components need for the Manufacturing Decision Support System to work together are: Simulation and
Forecasting Toolkit, Digital Factory Model and Deep Learning Toolkit. A brief representation of these different
toolkits and their basic functionalities is given in this chapter.

6.1 Simulation and Forecasting – SFT

6.1.1 Enhance Decision Making in Production

The Simulation and forecasting tool (SFT) component is part of the high-level platform of COMPOSITION, the
Integrated Information Management System (IIMS). Simulation and forecasting tool’s main purpose is to
simulate process models and provide forecasts of events whose actuals outcomes have not yet been
observed. The Simulation and forecasting tool will enhance the decision support in both production line and
logistics. In order to be able to provide predictions, the Simulation and forecasting tool uses both static and
dynamic data.

More precisely, the Simulation and forecasting tool offers to the DSS predictions related to predictive
maintenance for both KLEEMANN and BSL production lines. A probability of future faults (hydraulic,
mechanical and electrical) based on KLEEMANN BOSSI polishing machine’s historical data are available from
SFT to DSS. Furthermore, a Machine Vibration Diagnosis Profile methodology that detects abnormal
behaviour of vibrations supported from SFT is connected to DSS for both visualization and events notifications.
Moreover, SFT provides to DSS predictions for BSL production line based on acoustic sensors’ data and
methodologies such as Density-based spatial clustering of applications with noise (DBSCAN) a Local Outlier
Factor methodology and Support Vector Machines (SVMs) classification. By collecting output from this SFT
methods, the DSS can inform the end-user for outliers on the fans’ operation from BSL ovens in real-time.

6.1.2 Enhance Decision Making over the Supply Chain

Besides the production line, the Simulation and forecasting tool enhances the decision support over the supply
chain. A Tonnage-Route Genetic Algorithm or T-RGA is developed and applied for UC-ELDIA 1. A generative
algorithm encounters a function of routes and tonnage and calculates a pair of values that minimizes the
function through an optimization process. The Genetic Algorithm finds the optimum pair (number of routes,
tonnage) to minimize the proportion: min (routes/weight)

Figure 28: Optimal Routes Calculator for Decision Support in Logistics

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 47 of 63 Submission date: 2019-02-26

Furthermore, algorithms and methodologies from SFT such as Time Series Forecasting and Markov chain
supports the decision-making and planning over the supply-chain and waste management scenario from
ELDIA. Both methods provide to end-user with estimations of the tonnage that will be transferred in the next
months. More precisely the trend analysis informs the user for the trend of the transferred tonnage and the
Markov methodology provides to the user the probability to have increased or decreased transferred tonnage
in next months based on current trend.

Figure 29: SFT Output for Tonnage Forecasting

Figure 30: SFT Output for Markov Chain Prediction

Besides the solutions were based on historical data about tonnages, SFT enhance the decision-making about
the selection of the time that bins should be empty. A Trend Analysis methodology has been applied for this
case.

Figure 31: SFT Output for Fill Level Trend Analysis

The available algorithms and methodologies from SFT have been detailly described in D3.5 and D3.7 reports.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 48 of 63 Submission date: 2019-02-26

6.2 Digital Factory Model – DFM

The Digital Factory Model is a core component of the COMPOSITION system. The DFM enables the
digitalization of industrial aspects. Data which are provided from different system’s parts in a heterogeneous
format finally are described in a common format using DFM schema. This means that all the data are modelled
and provided with the same format to all related components. The Digital Factory Model can describe all the
information related to a factory such as buildings, assets, actors, processes and live events.

Every factory can be represented by a DFM instance. IIMS components can build DFM instances or read data
from these instances by using the DFM API services which is based on RESTful services and HTTP protocol.

The DSS is strongly connected with the DFM. By using the DFM API services the DSS can get all the static
information related to a factory. The data exchange format is based on DFM schema which is built upon well-
known standards. Information about actors, assets and equipment are described using B2MML standard.

Moreover, the BPMN diagrams from Task 3.1 are available to the DSS via the DFM API. The DSS can get the
corresponding to a factory instance, BPMN diagrams by calling the appropriate service for Business
Processes. The Business Process List element of the DFM was covered by OMG’s BPMN XML package. This
package provides schemas which offer all the necessary means for the representation of a BPMN diagram in
a DFM instance.

Furthermore, SFT output become available to DSS through DFM. The SFT predictions are posted to DFM as
OGC Observation and they are collected from DSS for visualization or notification purposes.

BMSWSN

Sensor data sent in a
DFM format to BMS

SFT

Data propagated from BMS to SFT

DSS

Data is used by SFT to
 predict probability of failure.

The SFT output is stored
 as an DFM event

Use of Data in DSS for rules and KPIs

DFM

Data from DFM is
 retrievedby DSS in
 order to be used

Figure 32: Sequence Diagram for the data route in with DFM and SFT COMPOSITION Components

Figure 32 is the sequence diagram which provides the route the data has to follow in order to reach DSS from
SFT and DFM components. The basic logic behind the sequence diagram is that the data is gathered from
WSN and is sent to DFM. If data follows the DFM model, it can be processed from all the rest COMPOSITION
components. This data is propagated to SFT, where they are transformed from sensorial data to meaningful
data (e.g. probability of failure of the BOSSI polishing machine on KLEEMANN shop floor). The transformed

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 49 of 63 Submission date: 2019-02-26

data is sent to DSS through the exchange protocols, previously discussed. DSS uses and transforms the data
in the rule engine, according to internal processes and creates rules and KPIs based on it.

6.3 LinkSmart® IoT Learning Agent _LA

The LinkSmart® IoT Learning Agent is the component in charge of collecting, propagating and pre- and post-
processing the data to be able to predict and learn in real-time.

The LA provide a processing pipeline infrastructure for real-time, runtime, and on-the-fly data processing.
Additionally, the LA provide a CEML framework which allows the real-time data and model management for
effectively continuous training and evaluating the models. The model’s implementation is provided by the DLT
(see6.4)

The data sent by the BMS, it is parsed, collected and aggregated following the deployment pre-processing
rules for the realization of BSL-2 use case. The process is described in detail in deliverable D5.2. Afterwards,
the data is sent to the DLT for forecasting. The result is the serialized and propagate in JSON or JWS format.

Figure 33: Sequence diagram BMS to DSS for BSL-2 use case

6.4 Deep Learning Toolkit – DLT

Deep Learning Toolkit is developed by ISMB in order to provide a provision on the next possible breakdowns,
based on live data analysis. The analysis is based on a trained artificial neural network. The training data set
is usually a historical data set (COMPOSITION, 2017).

DLT provides the output data to the DSS in order to create rules in the rule engine to face and solve shop floor
breakdowns. Specifically, UC-BSL-2 Predictive Maintenance requires the communication between DLT and
DSS.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 50 of 63 Submission date: 2019-02-26

DLT input data comes straight from the sensor network on the shop floor. BSL Rhythmia ovens are
continuously monitored and provide live data to the Intra-Factory Management System. The Big Data Analytics
module, now deployed as Learning Agent is responsible for the operational procedures involving the
aggregation of the sensor data, in order to create a suitable mapping for the Deep Learning Toolkit. The Deep
Learning Toolkit returns previsions to the agent in reaction to incoming live samples.

The Learning Agent module is therefore in charge to dispatching the data to the DSS.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 51 of 63 Submission date: 2019-02-26

7 Components Integration with DSS

Components integration is ongoing for all COMPOSITION components. The protocols needed for integration
are HTTP protocol with REST/SOAP queries and MQTT with direct messaging through topics. Also, a major
requirement for the COMPOSITION project is the dockerisation of each component and the Portainer used for
them. A central docker server is provided by ISMB, where the components are dockerised and component
integration should take into consideration this process.

7.1 Keycloak Integration

DSS embodies a series of technologies, processes and practices designed to protect networks, computers,
programs and data from attack, damage or unauthorized access. In a computing context, security includes
both cybersecurity and physical security. Ensuring cybersecurity requires coordinated efforts throughout an
information system. Elements of cybersecurity include:

• Application security

• Information security

• Network security

• Disaster recovery / business continuity planning

• Operational security

• End-user education

One of the most problematic elements of cybersecurity is the quickly and constantly evolving nature of security
risks. The traditional approach has been to focus most resources on the most crucial system components and
protect against the biggest known threats, which necessitated leaving some less important system components
undefended and some less dangerous risks not protected against. Key cloak backed with blockchain is the
hard of application security.

Key cloak is an open source identity and access management solution which is commercially supported by
JBoss. I was running Key cloak using the JBoss Key cloak official Docker image
(https://hub.docker.com/r/jboss/keycloak/). By default, there is no SSL enabled so I needed to run it behind
HAProxy with SSL offload enabled. You can run it without SSL but some .NET classes refused to work without
https prefix (but not sure if it’s required for this exact scenario). If you run Key cloak behind a proxy you will
need to enable the proxy forwarding as described in the docker page to make it work properly. In addition, you
need to supply the admin username and password as variables to the docker container to be able to login.

The goal is to have protected pages in the WebApp which require the user to sign-in with OpenID through Key
cloak server. In the WebApp we should be able to use the claims/roles given by the Keycloak and should be
able to call the WebAPI with a bearer token. WebAPI should be able to know the identity of the calling user
and not only the calling service in secure way.

Figure 34: Keycloak Flow Diagram

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 52 of 63 Submission date: 2019-02-26

When using Keycloak as an identity broker, users are not forced to provide their credentials in order to
authenticate in a specific realm. Instead, they are presented with a list of identity providers from which they
can authenticate. You can also configure a default broker. In this case the user will not be given a choice, but
instead be redirected directly to the parent broker.

The following diagram in Figure 35 demonstrates the steps involved when using Key cloak to broker an external
identity provider:

Figure 35: Identity Broker Flow diagram

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 53 of 63 Submission date: 2019-02-26

Table 10: Identity Broker Flow

Identity Broker Flow

1. User is not authenticated and requests a protected resource in a client application.

2. The client applications redirect the user to Key cloak to authenticate.

3. At this point the user is presented with the login page where there is a list of identity providers
supported by a realm.

4. User selects one of the identity providers by clicking on its respective button or link.

5. Key cloak issues an authentication request to the target identity provider asking for authentication
and the user is redirected to the login page of the identity provider. The connection properties and
other configuration options for the identity provider were previously set by the administrator in the
Admin Console.

6. User provides his credentials or consent in order to authenticate in the identity provider

7. Upon a successful authentication by the identity provider, the user is redirected back to Key cloak
with an authentication response. Usually this response contains a security token that will be used
by Key cloak to trust the authentication performed by the identity provider and retrieve information
about the user.

8. Now Key cloak is going to check if the response from the identity provider is valid. If valid, it will
import and create a new user or just skip that if the user already exists. If it is a new user, Key cloak
may ask the identity provider for information about the user if that info doesn’t already exist in the
token. This is what we call identity federation. If the user already exists Key cloak may ask him to
link the identity returned from the identity provider with his existing account. We call this process
account linking. What exactly is done is configurable and can be specified by setup of First Login
Flow. At the end of this step, Key cloak authenticates the user and issues its own token in order to
access the requested resource in the service provider.

9. Once the user is locally authenticated, Key cloak redirects the user to the service provider by
sending the token previously issued during the local authentication.

10. The service provider receives the token from Key cloak and allows access to the protected resource.

There are some variations of this flow that we will talk about later. For instance, instead of presenting a list of
identity providers, the client application can request a specific one. Or you can tell Key cloak to force the user
to provide additional information before federating his identity. As you may notice, at the end of the
authentication process Key cloak will always issue its own token to client applications. What this means is that
client applications are completely decoupled from external identity providers. They don’t need to know which
protocol (e.g.: SAML, OpenID Connect, OAuth, etc) was used or how the user’s identity was validated. They
only need to know about Key cloak.

The policies concerning the DSS and the HMIs are already applied on the Keycloak mechanism. When a user
tries to access on of the HMIs is redirected to the Keycloak sing in page. They provide their credentials and if
the credentials are correct the are redirected to the HMI page, along with the token of authentication and
authorisation. The token is passed through the different HMIs and the user does not need to sign in again for
each new HMI they access.

If an unauthorised user tries to access any of the HMIs with already implemented policies, they are denied
access. This results only to authenticated users to be able to use the COMPOSITION HMIs and be validated
by the Keycloak mechanism. Finally, the above process agrees with the project requirements of single sign-
on and safety and security on the COMPOSITION application.

7.1.1 First Log–in Flow

When a user logs in through identity brokering some aspects of the user are imported and linked within the
realm’s local database. When Key cloak successfully authenticates users through an external identity provider
there can be two situations:

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 54 of 63 Submission date: 2019-02-26

• There is already a Key cloak user account imported and linked with the authenticated identity provider
account. In this case, Key cloak will just authenticate as the existing user and redirect back to
application.

• There is not yet an existing Key cloak user account imported and linked for this external user. Usually
you just want to register and import the new account into Key cloak database, but what if there is an
existing Key cloak account with the same email? Automatically linking the existing local account to the
external identity provider is a potential security hole as you can’t always trust the information you get
from the external identity provider.

Different organizations have different requirements when dealing with some of the conflicts and situations
listed above. For this, there is a First Login Flow option in the IDP settings which allows you to choose a
workflow that will be used after a user logs in from an external IDP the first time. By default, it points to first
broker login flow, but you can configure and use your own flow and use different flows for different identity
providers. The flow itself is configured in admin console under Authentication tab. When you choose First
Broker Login flow, you will see what authenticators are used by default. You can re-configure the existing flow.
(For example, you can disable some authenticators, mark some of them as required, configure some
authenticators, etc).

7.1.2 Default First Log–in flow

Let’s describe the default behaviour provided by First Broker Login flow.

• Review Profile This authenticator might display the profile info page, where the user can review his
profile retrieved from an identity provider. The authenticator is configurable. You can set the Update
Profile on First Login option. When On, users will be always presented with the profile page asking for
additional information in order to federate their identities. When missing, users will be presented with
the profile page only if some mandatory information (email, first name, last name) is not provided by
the identity provider. If Off, the profile page won’t be displayed, unless user clicks in later phase on
Review profile info link (page displayed in later phase by Confirm Link Existing Account authenticator)

• Create User If Unique This authenticator checks if there is already an existing Key cloak account with
same email or username like the account from the identity provider. If it’s not, then the authenticator
just creates a new local Key cloak account and links it with the identity provider and the whole flow is
finished. Otherwise it goes to the next Handle Existing Account sub flow. If you always want to ensure
that there is no duplicated account, you can mark this authenticator as REQUIRED. In this case, the
user will see the error page if there is existing Key cloak account and the user will need to link his
identity provider account through Account management.

• Confirm Link Existing Account On the info page, the user will see that there is an existing Key cloak
account with same email. He can review his profile again and use different email or username (flow is
restarted and goes back to Review Profile authenticator). Or he can confirm that he wants to link the
identity provider account with his existing Key cloak account. Disable this authenticator if you don’t
want users to see this confirmation page but go straight to linking identity provider account by email
verification or re-authentication.

• Verify Existing Account by Email This authenticator is ALTERNATIVE by default, so it’s used only
if the realm has SMTP setup configured. It will send mail to the user, where he can confirm that he
wants to link the identity provider with his Key cloak account. Disable this if you don’t want to confirm
linking by email, but instead you always want users to reauthenticate with their password (and
alternatively OTP).

• Verify Existing Account by Re-authentication This authenticator is used if email authenticator is
disabled or non-available (SMTP not configured for realm). It will display a login screen where the user
needs to authenticate with his password to link his Key cloak account with the Identity provider. User
can also re-authenticate with some different identity provider, which is already linked to his Key cloak
account. You can also force users to use OTP. Otherwise it’s optional and used only if OTP is already
set for the user account.

• Securing the API

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 55 of 63 Submission date: 2019-02-26

Table 11: Client Configuration for the WebAPI

Client Configuration for the WebAPI

Client Protocol = openid-connect

Access Type = confidential (again a trusted client)

Standard Flow Enabled = off (the API is only called with a bearer token)

Implicit Flow Enabled = off (the API is only called with a bearer token)

Service Accounts Enabled = on (the API might want to call other services)

Authorization = on

Credentials / Client Authenticator = Client id and Secret

Configure the proper Root URL

We also need a new user to Keycloak but that is easy to create through the admin console. Just remember to
set the user active. In the WebAPI we only configure the JSON Web Token support as the bearer token (=
access token generated by Keycloak) should be the only way to call the service. Here we have an issue that I
have been unable to solve (assuming it can be solved in a better way) since the Audience validation must be
disabled. In this case the audience in the access token is actually the WebApp for which the token was
originally generated for. However, that might not be a show stopper as we are able to check the validity of the
token for this service in a different way explained later on.

7.2 Simulation and Forecasting Toolkit – SFT

Simulation and Forecasting Toolkit communicates directly with DSS, using an API created by SFT. The
communication is achieved through HTTP protocol. The communication between DSS and SFT is based on
DFM schema. The predictions of SFT are described as DFM events. The DSS is able to read these events in
real time using the DFM API services. The output file, as well as the communication endpoint is shown below
in

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 56 of 63 Submission date: 2019-02-26

Figure 36: JSON output for the SFT

SFT output is available to DSS through DFM for the UC-BSL-2 Predictive Maintenance, UC-KLE-1
Maintenance Decision Support and UC-KLE-3 Scrap Metal and Recyclable Waste Transportation. All the
predictions’ output is presented as OGC Observations in JSON format.

7.3 Digital Factory Model – DFM

Both static and dynamic information of a factory can be available from DFM to DSS. The DSS is able to
get/read data from DFM factory instances by using a wide catalogue of web services provided by DFM API.
All the transactions are based on HTTP and RESTful web services. The end-points are secured by using basic-
auth.

The next figure presents the complete list of web services from DFM API that the DSS can use:

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 57 of 63 Submission date: 2019-02-26

Figure 37: DFM supported interfaces

7.4 LinkSmart® IoT Learning Agent

The LA communicates with the DSS through MQTT protocol. Data and information traverse through LA to
other COMPOSITION components using MQTT, uses OGC Sensor Things standard. An example of a data
outbound schema is given below, in JSON format:

{

 "parameters": [{

 "evaluations": [{

 "@id": 1,

 "method": "More",

 "normalizedResult": 0.0,

 "

 ready": false,

 "result": 0.0,

 "controlMetric": false,

 "name": "MatthewsCorrelationCoefficient",

 "target": 0.5,

 "currentValue": 0.0

 }, {

 "@id": 2,

 "method": "More",

 "controlMetric": true,

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 58 of 63 Submission date: 2019-02-26

 "ready": true,

 "result": 155.0,

 "normalizedResult": 1.0,

 "name": "SlideAfter",

 "target": 100.0,

 "currentValue": 155.0

 }

]

 }, {

 "input": [<values omitted>]

 }, {

 "evaluations": [1, 2]

 }

],

 "datastream": {

 "@iot.id": "5c82aae2-2957-4b94-8c10-a5afa4783a6c"

 },

 "phenomenonTime": "2019-01-28T16:21:37.292Z",

 "result": [1.0, 0.9704771041870117, 160.0]

}

The data are received from the DSS through MQTT topics and web sockets and are shown as a probability
percentage on the HMIs. In order to detect the failure in the RYTHMIA machines over the next two and half
hours, when a value different from 0 is detected in retained in the systems memory, until a larger value arrives.

When the values changes, according to pre-defined thresholds, they trigger a rule from the rule engine. For
example, when the probability values are below 40% the system is in its nominal operation and no rule is
triggered. Values between 40% to 80% trigger warnings from the rules in the rule engine. When the detected
value in over 80%, the probability of breakdown is really high and alerts, warnings and maintenance tasks are
created by the rule engine, in order to avoid total breakdown and more maintenance time.

7.5 Deep Learning Toolkit – DLT

DLT communicates with other COMPOSITION components through MQTT protocols. It is also fully dockerised
and contained in a portainer instance.

Data and information traverse through DLT to other COMPOSITION components. To eliminate
miscommunication and lost packages caused by unformatted data, DLT follows a data schema agreed for all
COMPOSITION components. An example of a data outbound schema is given below, in JSON format:

{
 "$schema": "http://json-schema.org/draft-06/schema#",
 "title": "Composition DLT prediction",
 "type": "object",
 "properties": {
 "phenomenonTime": {
 "type": "string"
 },
 "resultTime": {
 "type": "string"
 },
 "result": {
 "type": "number",

http://json-schema.org/draft-06/schema

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 59 of 63 Submission date: 2019-02-26

 "minimum": 0,
 "maximum": 1
 }
 },
 "required": [
 "phenomenonTime": "2012-02-16T08:06:09+00:00",
 "resultTime": "2018-02-21T15:32:31.380800+00:00",
 "result": 0
]
}

The data are received from the DSS through MQTT topics and web sockets and are shown as a probability
percentage on the HMIs. In order to detect the failure in the RYTHMIA machines over the next two and half
hours, when a value different from 0 is detected in retained in the systems memory, until a larger value arrives.

When the values changes, according to pre-defined thresholds, they trigger a rule from the rule engine. For
example, when the probability values are below 40% the system is in its nominal operation and no rule is
triggered. Values between 40% to 80% trigger warnings from the rules in the rule engine. When the detected
value in over 80%, the probability of breakdown is really high and alerts, warnings and maintenance tasks are
created by the rule engine, in order to avoid total breakdown and more maintenance time.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 60 of 63 Submission date: 2019-02-26

8 Conclusions

The work that has been made in task T3.4 – Decision Support System for Optimising Manufacturing Process
is examined in this deliverable.

The deliverable describes the new and state of the art technologies, which were used in the Decision Support
System and its integration with other COMPOSITION components. The steps that followed during
development of DSS is thoroughly described and analysed. Each DSS sub-component has its own
technologies that are taken into consideration. Data streaming processes, Finite State Machines and HMI
techniques are analysed and the work done on these sub-components is described. Also, the integration
techniques are briefly described in the deliverable. The specific technologies used for the DSS are: a finite
state machine ontology for the rule engine, which was created from the beginning, Rx/StreamInsight
technologies along with data at rest and streaming process techniques for the Stream Processing sub-
component, Angular5, HTML and CSS in a MVC structure for the HMI and finally HTTP and MQTT protocols
for the connections and interactions with the rest of the components. Data persistence is ensured following
good data base design and techniques and the pre-defined data schemas.

During M20 to M30 of T3.4 – Decision Support System for Optimising Manufacturing Process the objectives
that were described in D3.8 – Manufacturing Decision Support System were met with new approaches. These
objectives can be described with the following actions:

• Improvement of streaming processes and data ingestion. Real-time data is now available to the
system and the described techniques can be evaluated and used for much more and real-time data.
The WSN is in place and provides a lot of data for different shop floors and the DSS is able to ingest
it without missing important information and values.

• Extension of rule engine. The DSS has been extend for new, more complicated rules. Also, data-
driven rules are applied, when the WSN provides the necessary data.

• KPIs extraction and knowledge management. There are several KPIs developed and applied in the
system. They cover both maintenance and user satisfaction areas. Further development of the KPI
mechanism will be achieved in the final phase of the project.

• HMI improvement. New HMIs are implemented based on React and Web components and they will
be fully integrated in the final phase of the project.

• Data persistence. Data should continue to follow the schemas provided for the COMPOSITION
project and remain persistent through its run. Even if, in the next phase of the project there are a lot
more data provided, it should be formatted the same way as the test data is formatted until now.

• Components Integration. The components integration has started with the HMI integration and
continues in the project for all components.

Finally, this deliverable is the result of an ongoing process, including technical challenges and solutions. Task
T3.4 – Decision Support System for Optimising Manufacturing Process continues throughout the project
remaining time and this deliverable D3.9 – Manufacturing Decision Support System II reflects. the collaborative
effort put to complete the task requirements.

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 61 of 63 Submission date: 2019-02-26

9 List of Figures and Tables

9.1 Figures

Figure 1: Simon's Decision - Making Process ... 11
Figure 2: Decision Support System Architecture ... 17
Figure 3: Data at Rest architecture (Artisans, 2018) ... 20
Figure 4: Stream Processing infrastructure (Artisans, 2018) .. 20
Figure 5: Stateful Stream Processing (Artisans, 2018) ... 21
Figure 6: Stream Processing for Real-time data processing and Event - driven applications (Artisans, 2018)
 ... 22
Figure 7: BSL-2 Predictive Maintenance Stream Processing ... 24
Figure 8: BSL-2 Predictive Maintenance UC Component Diagram .. 25
Figure 9: UC-KLE-1 Maintenance Decision Support Stream Processing for both real-time and historical data
 ... 26
Figure 10: KLE-1 Maintenance Decision Support UC Component Diagram ... 27
Figure 11: State Diagram for a Turnstile ... 28
Figure 12: Deterministic Finite Automaton – DFA ... 29
Figure 13: Non - Deterministic Finite Automaton .. 30
Figure 14: State Diagram for FSM Rule in the Rule Engine .. 32
Figure 15: DSS Rule Engine Screen where the state diagram is shown .. 33
Figure 16: States of DSS Rule Engine .. 34
Figure 17: Binding of DSS Rule Engine .. 34
Figure 18: DSS Rule Engine Parameters definition .. 35
Figure 19: DSS Parameters - Filters view ... 35
Figure 20: Transitions – Details view ... 36
Figure 21: DSS Transitions - Condition View .. 36
Figure 22: DSS Transition - Actions view .. 37
Figure 23: DSS Main Screen for Shop Floor ... 39
Figure 24: Personnel management screen ... 40
Figure 25: DSS Task Management Screen ... 40
Figure 26: MTTR KPI ... 44
Figure 27: Fan Noise for BSL .. 45
Figure 28: Optimal Routes Calculator for Decision Support in Logistics ... 46
Figure 29: SFT Output for Tonnage Forecasting .. 47
Figure 30: SFT Output for Markov Chain Prediction ... 47
Figure 31: SFT Output for Fill Level Trend Analysis ... 47
Figure 32: Sequence Diagram for the data route in with DFM and SFT COMPOSITION Components 48
Figure 33: Sequence diagram BMS to DSS for BSL-2 use case .. 49
Figure 34: Keycloak Flow Diagram .. 51
Figure 35: Identity Broker Flow diagram .. 52
Figure 36: JSON output for the SFT .. 56
Figure 37: DFM supported interfaces .. 57

9.2 Tables

Table 1: Abbreviation and Acronym Table .. 6
Table 2: DSS Types ... 11
Table 3: DSS Research Areas .. 13
Table 4: DSS Model Components ... 18
Table 5: Stream Data Types .. 22
Table 6: Transition δ table ... 29
Table 7: Non - deterministic Finite Automaton Transition δ .. 30
Table 8: Differences between DFAs and NDFAs .. 30
Table 9: FSM Algorithm for DSS Rule Engine .. 31
Table 10: Identity Broker Flow ... 53
Table 11: Client Configuration for the WebAPI ... 55

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 62 of 63 Submission date: 2019-02-26

10 References

(Almeida, et al.,
2007)

Almeida, M., Moreira, N. & Reis, R., 2007. On the performance of automata
minimization algorithms. Technical Report Series: DCC - 2007 - 03.

(Anderson, 2006) Anderson, J. A., 2006. Automata Theory with Modern Applications. 1st ed.
Cambirdge: Cambridge Univesity Press.

(Anon., 2018) Finite State Machines. [Online] Available at: https://brilliant.org/wiki/finite-state-
machines/

(Anon., 2018) Deterministic Finite Automaton, 2018,
https://www.tutorialspoint.com/automata_theory/deterministic_finite_automaton.htm

(Anon., 2018) Non Deterministic Finite Automaton, 2018,
https://www.tutorialspoint.com/automata_theory/non_deterministic_finite_automaton
.htm

(Artisans, 2018) Artisans, Data, data – artisans, 2018, https://data-artisans.com/what-is-stream-
processing

(COMPOSITION,
2017)

D5.3 – Continuous deep learning toolkit for real time adaptation

(COMPOSITION,
2016)

GRANT AGREEMENT NUMBER — 723145 — COMPOSITION

(Felsberger, et al.,
2016)

Felsberger, A., Oberegger, B. & Reiner, G., 2016. A Review of Decision Support
Systems for Manufacturing Systems. SamI40 workshop at i-KNOW.

(Figueira, et al.,
2015)

Figueira, G., Amorim, P., Guimaraes, L. & Almada - Lobo, B., 2015. A decision
support system for the operational production planning and schedulign of an
integrated pulp and papaer mill. Computers and Chemical Engineering.

(Fraser, 1997) Fraser, B., 1997. Site Security Handbook. s.l.:SEI/CMU.

(Haykin, 2009) Haykin, S., 2009. Neural Networks and Learning Machines. 3rd ed. Hamilton,
Ontario: Pearson - Prentice Hall.

(Jain, 2018) Jain, R., Algoworks, 2018, http://www.algoworks.com/blog/real-time-data-streaming-
tools-and-technologies/

(Josang, 2017) Josang, A., 2017. A Consistent Definition of Authorization. Oslo: 13th International
Workshop on Security and Trust Management.

(Kasie, et al., 2017) Kasie, F. M., Bright, G. & Walker, A., 2017. Decision support systems in
manufacturing: a survey and future trends. Journal of Modelling in Management,
12(3), pp. 432-454.

(Miah, 2012) Miah, S. J., n.d. An Emerging Decision Support Systems Technology for Disastrous
Actions Management. s.l.:s.n.

(Microsoft, 2018) Microsoft, 2018. Microsoft Developer Network. [Online]
Available at: https://msdn.microsoft.com/en-us/library/hh242985(v=vs.103).aspx
[Accessed 26 April 2018].

(Microsoft, 2018) Microsoft, 2018. Microsoft Developer Network. [Online]
Available at: https://msdn.microsoft.com/en-us/library/ee362541(v=sql.111).aspx
[Accessed 26 April 2018].

(Pirog - Mazur, 2004) Pirog - Mazur, M., 2004. The Model of Decision Support System for a Manufacturing
Company. pp. 46-53.

(SATISFACTORY,
2014)

GRANT AGREEMENT - NUMBER - 636302 - SATISFACTORY, Brussels

(SatisFactory, 2015) SatisFactory, 2015. SatisFactory. [Online] Available at: http://www.satisfactory-
project.eu/satisfactory/
[Accessed 25 February 2019].

(Shim, et al., 2002) Shim, J. P. et al., 2002. Past, present, and future of decision support technology.
Decision Support Systems, 33(2), pp. 111-126.

https://brilliant.org/wiki/finite-state-machines/
https://brilliant.org/wiki/finite-state-machines/
https://www.tutorialspoint.com/automata_theory/deterministic_finite_automaton.htm
https://www.tutorialspoint.com/automata_theory/non_deterministic_finite_automaton.htm
https://www.tutorialspoint.com/automata_theory/non_deterministic_finite_automaton.htm
https://data-artisans.com/what-is-stream-processing
https://data-artisans.com/what-is-stream-processing
http://www.algoworks.com/blog/real-time-data-streaming-tools-and-technologies/
http://www.algoworks.com/blog/real-time-data-streaming-tools-and-technologies/

COMPOSITION D3.9 - Manufacturing Decision Support System II

Document version: 1.0 Page 63 of 63 Submission date: 2019-02-26

(Simon, 1959) Simon, H. A., 1959. Theories of Decision - Making in Economics and Behavioral
Science. The American Economic Review, 49(3), pp. 253-283.

(Turner, 2016) Turner, D. M., 2016. Cryptomathic - Digital Authentication -- the basics. [Online]

Available at: https://www.cryptomathic.com/news-events/blog/digital-authentication-
the-basics ,[Accessed 19 April 2018].

(Zaharia, et al.,
2010)

Zaharia, M. et al., 2010. Spark: Cluster Computing with Working Sets. Berkeley:
Proceedings of the 2nd USENIX conference on Hot topics in cloud computing.

https://www.cryptomathic.com/news-events/blog/digital-authentication-the-basics
https://www.cryptomathic.com/news-events/blog/digital-authentication-the-basics

