

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D6.2 Real-time event broker II

Date: 2018-11-16

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 2 of 46 Submission date: 2018-11-16

Document control page

Document file: D6.2 Real-time event broker II_v1.0.docx
Document version: 1.0
Document owner: CNET

Work package: WP6 - COMPOSITION Collaborative Ecosystem
Task: T6.1 - Real-time event brokering for factory interoperability

Deliverable type: OTHER

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Mathias Axling (CNET) 2018-10-01 TOC, initial content

0.11 Mathias Axling (CNET) 2018-10-15 Minor edits, CNET contributions

0.2 Alexandros Nizamis (CERTH) 2018-10-21 CERTH contributions

0.3 Paolo Vergori, Giuseppe Pacelli 2018-10-24 ISMB contributions

0.4 Mathias Axling (CNET) 2018-10-26 Merged content, editing

0.5 Mathias Axling (CNET) 2018-10-28 Additional CNET contributions

0.6 Ignacio Gonzalez Fernandez 2018-10-29 ATOS contribution

0.7 Peter Rosengren (CNET) 2018-11-06 Additional CNET contributions

0.9 Mathias Axling (CNET) 2018-11-13 Ready for peer review

1.0 Peter Rosengren, Mathias Axling
(CNET)

2018-11-16 Ready for submission to EC

Internal review history:

Reviewed by Date Summary of comments

Alexandros Nizamis, Vagia Rousopoulou
(CERTH)

2018-11-14 The quality of the document is high and it can
be submitted after small corrections in both
content and syntax

Luis Martins (BSL) 2018-11-14 Minor formatting corrections/suggestions.
Reviewed and approved for submission.

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 3 of 46 Submission date: 2018-11-16

Index:
1 Executive Summary ... 5

2 Terminology .. 6

3 Introduction .. 8
3.1 Purpose, context and scope of this deliverable ... 8
3.2 Content and structure of this deliverable ... 8

4 Background .. 9
4.1 Message broker ... 9
4.2 RAMI4.0 Communication Layer ... 9
4.3 Protocols ..10

4.3.1 MQTT ...10
4.3.2 AMQP...10
4.3.3 OPC-UA ...10

5 Design Concerns ..11

6 Design of the Message Broker..12
6.1 Overview ..12
6.2 Core Message Broker Implementation ..12

6.2.1 RabbitMQ ...12
6.2.2 Composition Message Broker ..13

6.3 Intra-factory Event Broker ..14
6.4 Inter-factory Market Event Broker ..16
6.5 COMPOSITION Extensions to RabbitMQ ...16

6.5.1 RAAS ...16
6.5.2 Blockchain Adapter ..16
6.5.3 Marketplace Data Sharing ...17
6.5.4 REST Adapter ..19
6.5.5 Future work ..20

7 Information View ..22
7.1 Inter-factory Market Event Broker ..22

7.1.1 AMQP Message Routing ...22
7.2 Intra-factory Real-time Event Broker ...23

7.2.1 MQTT Topic structure ..23
7.3 Resource Catalogue ..24

8 Deployment view ..26

9 Scalability Perspective ..28
9.1 Scalability Overview ...28
9.2 RabbitMQ ...28

9.2.1 RabbitMQ Scalability ..29
9.3 Scalability Design ..30

9.3.1 Intra-factory ..30
9.3.2 Inter-factory ..31

10 Security Perspective ..34
10.1 Inter-factory Market Event Broker ..35
10.2 Intra-factory Real-time Event Broker ...36

11 Summary and conclusions ...37

12 Appendix 1: Candidate message broker implementations ..38
12.1.1 Mosquitto ..38

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 4 of 46 Submission date: 2018-11-16

12.1.2 Kafka ..38
12.1.3 ZeroMQ ..38
12.1.4 ActiveMQ ..38

13 Appendix 2: RabbitMQ ...39

14 List of Figures and Tables ...45
14.1 Figures ...45
14.2 Tables ..45

15 References ..46

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 5 of 46 Submission date: 2018-11-16

1 Executive Summary

This deliverable presents the current state of the design of the real-time event broker infrastructure of the
COMPOSITION system at month 26 in the project. During the first year of the project, work was focused on
evaluation of alternative implementation mechanisms, choice of protocols and the design of the real-time
event broker integration with other components. During the second year of the project, implementation and
deployment in test and pilot environments and scalability design have been performed, the information
models have been refined, and extensions to the broker has been developed.

The real-time event broker (referred to in this document and other COMPOSITION documentation as the
Message Broker) is a principal component in realizing both of COMPOSITION’s main goals. The first goal is
to integrate data along the value chain inside a factory into one integrated information management system
(IIMS) combining physical world, simulation, planning and forecasting data. The goal of the IIMS is to
enhance re-configurability, scalability and optimisation of resources and processes inside the factory and
optimise manufacturing and logistics processes. Here the broker creates a secure, loosely coupled and
scalable way to distribute data in the system at near real-time speeds. The second goal is to create a (semi-
)automatic ecosystem, which extends the local IIMS concept to a holistic and collaborative system
incorporating and interlinking both the supply and the value chains. This should be able to dynamically adapt
to changing market requirements. Here, the broker provides the communication between the actors in this
marketplace. These two brokers are separate instances of the same component.

RabbitMQ1 is the core of this component. It is a widely used, open, standards-based product previously used
in FITMAN (EU FP7 2013-2015)2. It provides support for multiple protocols and horizontal scalability.
COMPOSTION significantly contributes to this open and scalable design. Through adapters developed in
COMPOSITION, we extend RabbitMQ with an integrated security framework and using blockchain-based log
functionality on multiple levels.

The Message Broker has been deployed as a set of Docker images at the COMPOSITION intra-factory test
server and intra- and inter-factory sites.

1 http://www.rabbitmq.com/
2 http://catalogue.fitman.atosresearch.eu/catalogue.fitman.atosresearch.eu/enablers/secure-event-management.html

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 6 of 46 Submission date: 2018-11-16

2 Terminology

Table 1: Acronyms and terminology used in this report.

Term Definition

Agent Container An agent container is a set of intelligent agents
interacting through the same, shared transport
protocol and referring to shared platform services
such as the Directory Facilitator, DF and the Agent
Management Service, AMS.

AMQP Advanced Message Queuing Protocol, an open
standard application layer protocol for message-
oriented middleware (ISO/IEC 19464).

Closed Marketplace
COMPOSITION Marketplace owned by one
stakeholder and typically offered to a trusted subset
of other COMPOSITION stakeholders.

The Closed Marketplace can be public or private.

A public, closed market will accept join requests by
agents living in the Open Marketplace

A private, closed marketplace will accept agents
only by invitation.

A Closed Marketplace is structurally equivalent to
the open marketplace
A Closed Marketplace is physically separated to the
Open Marketplace and has typically a separate
infrastructure of shared platform services including
the broker, AMS, DF, etc.

COMPOSITION Ecosystem The supply chain part of a COMPOSITION system,
implemented by a COMPOSITION Marketplace
and involving suppliers, producers and logistics
services.

COMPOSITION Marketplace A COMPOSITION Marketplace is an agent
container.

Integrated Information Management System (IIMS) The Integrated Information Management System is
a digital automation framework that optimizes the
manufacturing processes by exploiting existing
data, knowledge and tools to increase productivity
and dynamically adapt to changing market
requirements.

IoT Internet Of Things

JSON JavaScript Object Notation is an open-standard
human-readable data format.

JSON-LD JavaScript Object Notation for Linked Data I a
standard for embedding metadata in JSON
documents, linking them to an RDF model.

Message broker A message broker is an architectural pattern for
message validation, transformation and routing. A
message broker can receive messages from
multiple destinations, determine the correct
destination and route the message to the correct
channel. Used interchangeably with “Real-time
event broker” in this report.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 7 of 46 Submission date: 2018-11-16

MQTT MQ Telemetry Transport or Message Queue
Telemetry Transport. A binary, lightweight
messaging protocol for small sensors and mobile
devices (ISO/IEC PRF 20922).

OPC-UA OPC Unified Architecture, IEC 62541, is an open,
SOA-based, platform-independent machine to
machine communication protocol for industrial
automation.

RDF-A Resource Description Framework in Attributes is a
W3C Recommendation for embedding metadata in
HTML and XML documents types, linking them to
an RDF model.

RPC Remote Procedure Call (Request-response
communication)

SSL Secure Sockets Layer is a standard technology for
securing internet connections.

TLS Transport Layer Security is the successor to
version 3 of the SSL protocol,

Virtual Marketplace A Virtual Marketplace, or group is a "multicast"
group of agents interacting with each other in the
context of a negotiation.
The group can be:

• persistent over negotiations or

• just be defined for a single negotiation
exchange.

A Virtual Marketplace lives in, and exploits the
infrastructure of the Open Marketplace.

XML Extensible Markup Language is an open-standard
human-readable data format.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 8 of 46 Submission date: 2018-11-16

3 Introduction

3.1 Purpose, context and scope of this deliverable

This deliverable presents the actions performed, results and planned future work on the design of the real-time
event broker infrastructure of the COMPOSITION system. The work has been carried out mainly in Work
Package 6 (WP6), “COMPOSITION Collaborative Ecosystem”, and to some extent also in Work Package 2
(WP2), “Use Case Driven Requirements Engineering and Architecture”, in the COMPOSITION work package
structure defined by the project specification (COMPOSITION, 2016). The main tasks involved are:

• Task 6.1 “Real-time event brokering for factory interoperability”

• Task 6.2 “Cloud Infrastructures for Inter-Factory Data Exchange”

• Task 6.5 “Brokering and Matchmaking for Efficient Management of Manufacturing Processes”

This report follows up D6.1 “Real-time event broker I”, which provided the status at month 14 in the project.
Sections that are still relevant will be only slightly updated.

Information related to this deliverable has been reported in D2.3 “The COMPOSITION Architecture
Specification I“, D2.4 “The COMPOSITION Architecture Specification II“ and D6.3 “COMPOSITION
Marketplace I”. The elaboration of the broker component has been performed using input from D2.1 “Industrial
use cases for an Integrated Information Management System” and D2.2 “Initial requirements specification” as
well as the design of other components. The communication design is tightly integrated with the Security
Framework, reported in D4.1 “Design of the Security Framework I”, D4.2 “Design of the Security Framework
II” and D4.4 “Prototype of the Security Framework I”. This report will include an overview of this integration.
Previously used material has been re-used where appropriate.

3.2 Content and structure of this deliverable

The structure of this deliverable is aligned with that of the architecture description deliverable D2.4 “The
COMPOSITION Architecture Specification II“. In some cases, information in the architecture description
deliverable has been repeated in this one for clarity and readability. In other cases, we have referred to the
architecture deliverable. The intent of this structure is to provide a more in-depth view of the Real-time Event
Broker, while maintaining the context of the overall system architecture.

Sections present in D6.1 necessary for context will be included in this report. In-depth sections have been
moved to appendixes.

The remainder of the document is structured as follows:

Section 4 – Provides an overview of the real-time event broker, or message broker, domain.

Section 5 – Summarises the architectural design concerns relevant to the design of the real-time event broker.

Section 6 – Describes the design decisions taken for the real-time event broker and the functional view.

Section 7 – Describes the work on information models relevant to the real-time event broker; the information
view.

Section 8 – Provides an overview of the deployment view.

Section 9 – Addresses the scalability perspective.

Section 10 - Addresses the security perspective.

Section 11 - Presents a summary of the current state of development with conclusions.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 9 of 46 Submission date: 2018-11-16

4 Background

The architecture inception phase reported in the COMPOSITION project specification (COMPOSITION, 2016)
identifies real-time event brokering as a principal component in the IIMS and marketplace design. The role of
the component was to support interoperability, message brokering, message translation and annotation,
integration with support for hererogenous protcols and formats. It is the primary communication mechanism
and provides the communication and integration infrastructure of the COMPOSITION system. The term
message broker is used interchangeably with real-time event broker throughout this report.

4.1 Message broker

A message broker is an architectural pattern that decouples the destination of a message from the sender.
Messages can be received from multiple destinations and routed to the correct destination while implementing
a multitude of messaging patterns (Hohpe & Woolf, 2003). The message broker maintains central control over
the flow of messages and provides the means to define interactions between the decoupled components.
Typical actions on messages performed by the message broker includes validation, transformation to other
formats and representations, and routing of messages to any number of recipients based on topic, headers or
content.

This is a common pattern for distributed and asynchronous systems and has been implemented in previous
IoT projects (e.g. Hydra3 (LinkSmart), EBBITS4, ALMANAC5) and commercial platforms (e.g. Microsoft Azure
IoT Hub6, Amazon AWS IoT Message Broker7). However, this document will describe some significant
additions and integrations that has been performed in COMPOSITION that contribute to added value from the
component.

4.2 RAMI4.0 Communication Layer

Figure 1: Message Broker in RAMI 4.0 Functional Layers

In the RAMI4.0 context, the message broker belongs in the Communication Layer, which performs
transmission of data and files (COMPOSITION D2.3, 2017), see Figure 1. It standardizes the communication

3 http://cordis.europa.eu/project/rcn/79422_en.html
4 http://cordis.europa.eu/project/rcn/96598_en.html
5 http://cordis.europa.eu/project/rcn/109709_en.html
6 https://azure.microsoft.com/en-us/services/iot-hub/
7 https://docs.aws.amazon.com/iot/latest/developerguide/iot-message-broker.html

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 10 of 46 Submission date: 2018-11-16

from the Integration Layer, providing uniform data formats, protocols and interfaces in the direction of the
Information Layer. It also provisions the services for controlling the Integration Layer. The administrative shell
is the virtual representation of an asset describing the data and functions of the asset. Protocols which currently
have example mapping to the RAMI4.0 Administrative shell, describing how to realize the shell functionality,
are MQTT and UPC-UA (MQTT and AMQP are a part of the OPC UA specification as part of the
publish/subscribe extension). In composition, the lightweight MQTT protocol will be used for sensor-machine
communication in the intra-factory IIMS. The cloud-based Marketplace will use AMQP, suitable for server
communication.

4.3 Protocols

The selected implementation of the communication mechanism supports a number of communication
protocols by configuration. We list here the ones that are relevant to the pilot deployments and early
exploitation of COMPOSITION.

4.3.1 MQTT

MQ Telemetry Transport or Message Queue Telemetry Transport (MQTT), ISO/IEC 20922, is a simple,
lightweight protocol running on TCP/IP using a publish-subscribe model. It is designed to minimise network
bandwidth and device resource requirements, making it very suitable for collecting data from edge network
devices like sensors. Implementations of MQTT brokers and clients are available on multiple platforms.

MQTT is also available to web browser clients over web sockets8 for display of real-time data streams in user
interfaces. This will be supported in COMPOSITION.

4.3.2 AMQP

The Advanced Message Queuing Protocol (AMQP), ISO/IEC 19464:2014, is an open standard application
layer protocol for message-oriented middleware. While not a light-weight protocol like MQTT, AMQP allows
for a variety of message queuing and routing patterns (including publish-and-subscribe) while stressing
reliability and security. AMQP declares a model, protocol methods, format (application payload is opaque to
the broker, however) and type system that broker and client implementations must conform to for different
implementations to be interoperable. Both versions 0-9-1 and 1.0 are supported by a number of software
vendors.

4.3.3 OPC-UA

OPC Unified Architecture (OPC UA), IEC 62541, is an open, SOA-based, platform-independent machine to
machine communication protocol for industrial automation. RAMI4.0 has OPC-UA confirmed as an
appropriate design mechanism for the Communication Layer. It is a multi-part specification defining e.g. an
Information Model, Services and Security Model. MQTT and AMQP are a part of the OPC UA PubSub
specification9. There is both a binary and HTTP protocol specified for communication. A connector to OPC-
DA and OPC-UA has been developed by COMPOSITION10 to meet exploitation concerns.

8 https://www.eclipse.org/paho/clients/js/
9 https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-14-pubsub
10 The development stakeholder is a member of the OPC-UA Foundation, which allows use of OPC Foundation source code in
commercial products and Distribution of OPC Foundation source code.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 11 of 46 Submission date: 2018-11-16

5 Design Concerns

The COMPOSITION system has three main stakeholder groups with concerns for the system stakeholders.
These groups are the acquirers, the developers/maintainers and the users (D2.3 The COMPOSITION
Architecture Specification). The goals and concerns of the acquirers of the COMPOSITION system are stated
in the strategic and technical objectives in the project specification (COMPOSITION, 2016). The message
broker is instrumental in meeting the following goals:

o Technical Objective 1.1: Innovate and extend the FI-WARE and FITMAN catalogues of Generic Enablers with an
innovative CPS-aware library of open, standard connectors specialised for real-time architectures for interoperability
in manufacturing to ease the integration and coupling of data, information and knowledge from existing,
heterogeneous, sources in the factory.

o Technical Objective 2.1: Design and implement a Log Oriented Architecture, based on blockchain technology,
ensuring the trusted, secure and automated exchange of supply chain data among all authorized stakeholders, to
connect factories and support interoperability and product traceability along the supply chain.

o Technical Objective 2.2: Provide end-to-end security from factory floor to cloud services encompassing major
mechanisms in a seamless and fully integrated manner including authentication and access control, transport
security, as well as system security, while maintaining suitable levels of IPR and knowledge protection.

This puts emphasis on use of open standards, extensibility, and ease of integration of the chosen
implementation of the message broker. Multiple protocols and formats should be supported.

The developer/maintainer stakeholders, i.e. the technical partners, have concerns regarding extensibility and
compatibility. In so far as possible, compatibility with the existing products is desired, and stakeholders should
be able to supply components and services complementing and extending the system on the COMPOSITION
aftermarket. The loose coupling between components is desirable if new third-party products are to be
integrated in the platform after the end of the project, as part of the COMPOSITION ecosystem. The broker
should use open standards, especially consider ones already compatible with the supplied components, and
provide support for integration on multiple software platforms. Security should be seamlessly integrated in the
entire system and allow for integration of components from external sources into the COMPOSITION platform.
The use of open standards is thus a requirement from the security perspective as well.

The user stakeholder group are the pilot partners and future users of the system, whose concerns are mainly
expressed in the scenarios, use cases (D2.1 “Industrial Use Cases for an Integrated Information Management
System”) and requirements (D2.2 “Initial requirements specification”). These deliverables capture the needs
of the manufacturing industry and the priorities of the pilot partners. Security, scalability, extensibility and ease
of integration with existing systems are concerns expressed in these requirements11.

Licensing must allow for commercial usage of individual components or the entire system. Incorporating or
applying open source licensing affecting the possibility of commercial exploitation, such as GPL, is explicitly
forbidden (COMPOSITION, 2016).

11 JIRA requirements COM-35 to COM-43in particular relate to the Message Broker.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 12 of 46 Submission date: 2018-11-16

6 Design of the Message Broker

This section describes the design decisions and internal structure of the Message Broker, interfaces,
interactions dependencies, and dependent components. I.e., it provides the functional view of the architecture
of the Message Broker.

6.1 Overview

For COMPOSITION purposes it is a required to support the most common IoT Messaging Protocols to
integrate data from multiple sources in the intra factory and support flexible component integration. There is
also the need to be able to secure the messaging using the services provided by the COMPOSITION
security framework. Furthermore, as an intermediary, decoupling system components, the Message Broker
also provides the means to manage scalability in a consistent manner. Thus, the general communication
mechanism for the system will be data-centric and messaging-based. Factory data is published and
subscribing components (performing e.g. processing, analytical or supervisory functions) consume this data
without direct addressing between components. This is built using standard message broker components
with extensions for security, multi-protocol and multi-format support.

In the COMPOSITION Marketplace, the agents exchange supply-chain formation and execution data, inter-
factory data shared with selected stakeholders and reputation data. All communication takes the form of CXL
messages. The ability to correctly exchange such messages is the only requirement on a marketplace agent,
which allows the actual agent implementation to use any language or platform.

The AMQP protocol will be used for component communication and message routing. It is a very flexible
protocol with high-level configurability for different message routing schemes and emulation of other
protocols. As MQTT may be transparently used by clients on top of an AMQP broker architecture, this
protocol will be used for the data and components in the intra-factory IIMS, most of which already implement
MQTT support.

The COMPOSITION Message Broker will be the communication mechanism in both in the intra factory and
in the COMPOSITION Marketplace. Note that these will be two completely different instances, but they will
provide the same function. They are configured individually, i.e. the components will be the same, but they
will be used differently and deployed on different nodes and in different networks.

6.2 Core Message Broker Implementation

RabbitMQ was put forward as the core message broker implementation in the architecture inception phase
(COMPOSITION, 2016), and COMPOSITION selected this implementation after evaluation other candidate
implementations. The alternative implementations are described in section 12, “Appendix 1: Candidate
message broker implementations”.

6.2.1 RabbitMQ

RabbitMQ12 is the implementation mechanism for the core of the message broker. It is a widely used open
source message broker 13 supplied under the Mozilla Public License with an extensible architecture. It
implements the AMQP 0-9-1 protocol14 and can through extension mechanisms, plugins, support the most
common messaging protocols, e.g. MQTT, STOMP and XMPP. Extensions and adapters can be written to
support other messaging patterns, protocols and security management solutions.

RabbitMQ implements AMQP 0-9-1 and the AMQP concepts of messages, producers, exchanges, queues
and consumers, see Figure 2. Each of these exists within an administrative unit called a virtual host. A
broker may contain several virtual hosts, and users defined in RabbitMQ can be assigned read, write and
administrative rights per host.

12 https://www.rabbitmq.com/
13 At the time of writing 35.000 production deployments , https://www.rabbitmq.com/
14 http://www.amqp.org/sites/amqp.org/files/amqp0-9-1.zip

https://www.rabbitmq.com/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 13 of 46 Submission date: 2018-11-16

Figure 2: Example of exchanges bindings and queues

A publisher – an application that produces messages - sends a message to an exchange, where it is routed
to queues. The message is then pushed to (or pulled by) a consumer – an application that processes
messages - for processing. The producer, consumers and the broker may all reside on different brokers.
The configuration of exchanges and bindings may be done at setup or dynamically. It also offers a number of
scalability mechanisms, described in section 9. A detailed description of these concepts of AMQP 0.9.1, and
details of RabbitMQ was included in D6.1 and can be found in section 13, “Appendix 2: RabbitMQ”.

The SEM15 (Secure Event Messaging) Specific Enabler (SE) developed in FITMAN (EU FP7 2013-2015) is
built on top of RabbitMQ. As stated in (COMPOSITION, 2016), COMPOSITION will extend and build on the
RabbitMQ multi queuing approach as developed in FIWARE and FITMAN. COMPOSTITION extends
RabbitMQ with blockchain technology and Keycloak 16identity and access management. COMPOSITION will
also provide micro services for real-time message and protocol translation under high loads, where
necessary.

6.2.2 Composition Message Broker

As was explained above the COMPOSITION Message Broker will be the communication mechanism in both
in the intra factory and in the COMPOSITION market place. Note that these will be two completely different
instances, but they will provide the same function. They are configured individually, i.e. the components will
be the same, but they will be used differently and deployed on different nodes and in different networks. In
this section we describe the core functionality and design of the Message Broker.

To increase the scalability of the Composition Message Broker solution we will implement a set of
microservices which each has a dedicated task to perform. This will make it more efficient to process the
different message queues and to scale out queue processing if necessary. Furthermore, we will implement a
Fog/Edge Computing Architecture where processing can take place both at the edge level (i.e. the gateways)
and in the cloud back end, see Figure 3.

15 http://www.fiware4industry.com/?portfolio=secure-event-management-sem
16 http://www.keycloak.org/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 14 of 46 Submission date: 2018-11-16

Edge
Access
Control

Manager

Message
Receiver

Receive

RabbitMQ
Message Broker

DSS

Micro Service Catalogue

Queue2

Queue1

Queue3

Queue4

IoT Data Storage
(GOST)

Domain Data
Storage

(Digital Factory
Mode)

Meta Data Storage
(Digital Factory

Model)

PLC
1

PLC
2

PLC
3

Gateway
1

Gateway
2

Vibr

Tem
p

Watt

Edge/BMS

Composition
Realtime Event Broker

Annotate

Route

Translate

Map

Micro
Service 6

Micro
Service 7

Micro
Service 8

Edge Message Input
Processing

Learning
Agent

Blockchain
Adaptor

Micro
Service 4

Cloud Message Execution

Exchange

Exchange

Exchange

Exchange

Gateway
3

dB

Tem
p

Watt

Composition DBMS Data API

Edge Endpoint
Microservices

Message Brokering

Cloud Backend
Microservices

Figure 3: Schematic microservice architecture

6.3 Intra-factory Event Broker

Figure 4 depicts the components connected in the intra-factory scenario and the role the Message Broker
plays.

Figure 4: Intra-factory components

In task 6.1 the broker-based system has been characterized based on the design concerns described in
section 5. In a first iteration it has also been tested and deployed in its first draft of the Docker container that
later has been ported to the deployment environment, embedding the components in its final form. The

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 15 of 46 Submission date: 2018-11-16

brokering system will be the main distribution point for the intra-factory scenario. In this way, there are few
entry points to secure, whereas the reliability is demanded to the chosen encapsulation. In fact, even though
the majority of the event brokers themselves do not implement recovery mechanisms, the Docker containers
in which COMPOSITION components are deployed, allow for restart on crash functionalities to be available.
This compromise provides enough reliability for the links, even without implementing either an actual recovery
or a retransmission mechanism, for a scenario where scalability is the number one demand. Nevertheless,
being also a single point of reference, makes it also a single point of failure for which work package 4 has
proceeded by securing it by design, in order to minimize denial of service attacks.

In the following a simplified version of the information flow is depicted in Figure 4, in order to make clear the
centrality of this component:

1. The information is produced from legacy sensors, aggregated by existing machineries and from
newly deployed sensors at the shop floor level.

2. The information is buffered before being inputted to the Building Management System component
that acts as a gateway for the intra-factory COMPOSITION ecosystem.

3. The information is transformed in actual data by the Building Management System that translates
sensor levels based on each of their references into usable data with a corresponding
measurement unit and proceeds by normalizing them.

4. The Building Management System is registered and authenticated against Keycloak with a token
based access that allows an open authentication thanks to the mediation of the COMPOSITION
security framework. It is, therefore, allowed to access topics that have registered on the LinkSmart
catalogue at any time.

5. The Building Management System publishes each aggregated and consolidated sensor value to
the corresponding topic through the broker-based system.

6. The broker based system will dispatch in real time the published data to each of the subscribers
that are allowed to subscribe to the corresponding topic. By design, retained messaged are
available, even if for sensor data it is function that is not usually required.

7. At runtime and in the final deployment every message that passes through the event broker should
be signed by the sender and it is demanded to the receiver to verify it against the public key of
each component. Ideally it will be store in one of the LinkSmart available catalogues, but at the
time this deliverable is published the catalogue with the public keys has not been populated, yet.

8. Data is received through the event broker and almost consumed in real time by the designated
subscribers.

Every component that needs to exchange information within the COMPOSITION intra-factory communication
layer will be virtually demanded to use the event broker, registering a scope-based topic. COMPOSITION intra-
factory components will leverage on this interconnection scalability, capability and most important without the
burdensome of securing yet another communication channel that would not benefit from the enhancements of
the security framework that mediates access token renewals and credentials retaining.

The COMPOSITION ecosystem uses two implementations of the same broker-based software, in order to
distribute messages in both the intra and inter factory environment. As specified above, the former leverages
on MQTT for implementing messages retaining and also demanding performance enhancements, the latter
uses AMQP, sacrificing strictly related bandwidth performance over reliability and link recovery options.

Exceptions exists, as long as they maintain an equal or greater level of security. For instance, the Deep
Learning Toolkit acts in this scenario as a hidden container that is not reachable though the broker. Its container
is reachable only by the Learning Agent that is in charge of initializing, instantiating and triggering its functions
though a remote procedure calls like system. Therefore, the two components are connected with Pyro and
mapped on private logical link. Multiple instances of the Deep Learning Toolkit are instantiated at the same
time and handled by the Learning Agents that is also in charge of gathering and filtering the results and
propagating them to subscribers via the broker.

The Building Management System, as shown in Figure 4, is in charge of interconnecting two different words:
the shop floor layer and the COMPOSITION intra-factory layer. The former is the layer in which the information
is generated from both legacy and novel sensors, the latter is the broker-based interconnection system where
all COMPOSITION components are built on the top of and on which their communications rely on.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 16 of 46 Submission date: 2018-11-16

The Digital Factory Model (DFM), from task 3.2 Integrated Digital Factory Models, contains a representation
of the intra-factory real components (e.g. production lines, products, sensors, etc.); this information will be
used both to propagate the input coming from the physical devices to the other components and to build the
topics in the Message Broker to be subscribed for live data.

6.4 Inter-factory Market Event Broker

Figure 5: Marketplace components

The message broker instance used in the COMPOSITION collaborative marketplace, see Figure 5, is a
separate instance (could be a cluster or federation for scalability purposes) that does not process intra-factory
data. However, it uses most of the same COMPOSITION extensions. The Market Event Broker uses AMQP
as primary communication protocol.

Agents use the Real-time event broker as a main hub for communication among them I.e. to send or receive
any message. Agents in a Closed Marketplace use a separate broker while agents in a Virtual Marketplace
communicate via the broker in the Open Marketplace.

The Real-time event broker is in general transparent to message content, as it only provides message
dispatching, and mechanism for security protections are addressed as described in section 10.

In the first implementation, only the open marketplace is taken into account. It is therefore possible to exchange
messages based on topics, using the Contract-NET interaction protocol. Virtual and closed marketplaces will
be further implemented as a direct evolution of the open one.

6.5 COMPOSITION Extensions to RabbitMQ

6.5.1 RAAS

The RabbitMQ Authentication and Authorization Service (RAAS) provides the possibility to override the in-built
authentication and authorization of RabbitMQ with an external mechanism. In COMPOSITION, integration with
Keycloak has been implemented for authorization and the authorization service EPICA is to follow. This allows
for integrated security in all parts of the system, and specifically a way to have a common security mechanism
when deploying RabbitMQ federations – which is not otherwise possible.

6.5.2 Blockchain Adapter

The blockchain adapter, or Blockchain Audit Log, allows publishers and subscribers of messages to the
Message Broker to log and verify the information by using the COMPOSITION blockchain, which cannot
be tampered with. The adapter will be integrated with the Message Broker. The primary uses are:

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 17 of 46 Submission date: 2018-11-16

• PKI infrastructure

o Publish public keys to the blockchain

• Asset tracking blockchain

o Asset tracking values from positioning system can be collected in a blockchain in the UC-

BSL-3 use case. A demonstrator of this concept has been built, however, the decision on

whether to implement this is still pending.

• Agent CXL message log

o Hashes of the messages published to the Message Broker can be stored in the blockchain

so that message authenticity can be verified.

• Marketplace Reputation Model

o The reputation values assigned to other agents after business interactions can be stored in

the blockchain.

The work on the COMPOSITION blockchain will be described in detail in deliverable D4.3 The
COMPOSITION Blockchain.

6.5.3 Marketplace Data Sharing

As described in the COMPOSITION description of action, the system will provide mechanisms to share data
from the intra-factory IIMS with chosen stakeholders in the marketplace. A factory may elect to share certain
data with partners across the supply chain on a permanent basis or a single interaction, e.g., inventory data or
scrap container fill levels. The data owner agent will route required information to the right recipient agents,
through dedicated CXL messages. A sequence diagram illustrating the negotiation between agents using CXL
to set up the data exchange can be seen in Figure 6.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 18 of 46 Submission date: 2018-11-16

Figure 6: Data routing information flow

This data sharing mechanism is realized through the Message Broker (Figure 7). Integrated access control
provided by the Security Framework makes it possible to set up an exclusive message queue for a business
partner at the Marketplace Broker. Only the approved actors in the marketplace may publish and/or read data
from the queue. The messages sent can also be secured by the possibility to store a hash of each message
in the distributed blockchain ledger. As with all CXL messages, the agreement to share data itself may also be
stored in the ledger to keep a non-repudiable audit trail of agreements.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 19 of 46 Submission date: 2018-11-16

Figure 7: Simplified model of the marketplace data exchange design

6.5.4 REST Adapter

When the broker is used for inter-component communication, logical addressing of components can be used
– a component identifier instead of a network address and port – decoupling components and providing a
consistent way to address and find them for other components. Authentication and authorization can also be
managed in a uniform manner via the broker. As extensibility is a concern for the developer stakeholders, it
is desirable to use the broker for component communication. COMPOSITION components use either
messaging (using MQTT or AMQP) or REST APIs. Routing the REST calls through the broker would make
the most use of the integrated identity management and blockchain integration in COMPOSITION as well as
introduce a level of decoupling of components, logical addressing of services and centralized management.

We have developed a transparent adapter for the request-response communication for HTTP REST services
in COMPOSITION, corresponding to the SOAP tunnelling in (Milagro et al, 2008). This provides decoupling
of services, logical addressing of services, discovery and an integrated security solution for HTTP, MQTT
and AMQP communication. RabbitMQ already provides the mechanisms for RPC (Remote Procedure Call)
style request-response messaging, including facilities for sending responses directly to the client channel
without a client queue17.

Drawbacks are that the load and dependency on the broker increases. Also, for this specific purpose, there
may be better messaging solutions to build on, but these would not bring the benefits of the COMPOSITON
extensions and centralized management.

When the broker is used for inter-component communication, logical addressing of components can be used
– a component identifier instead of a network address and port – decoupling components and providing a
consistent way to address and find them for other components. As mentioned above, authentication and
authorization can also be managed in a uniform manner via the broker. As extensibility is a concern for the
developer stakeholders, it is desirable to use the broker for all component communication. De-coupled,
message-based communication suits the data-centric nature of the COMPOSITION system well, where
several components independently subscribe to the same information. However, some exchanges are more
suited for request-response interaction, e.g. REST APIs used for querying or administration. An adapter for
RabbitMQ has been developed provide transparent request-response messaging (tentatively named
“RabbitHole”). A bit simplified, this routes HTTP requests through an HTTP Proxy, resolves the base URL to
a queue where the HTTP request is put. Clients (the REST services) may subscribe to the requests directed
at them and return the response without exposing any public HTTP ports. The RPC Executer handles the
request-response transparently to the service, see Figure 8. This implements request and response
buffering, work queues, load balancing, logical addressing and the RAAS provides integrated security for all
calls. Further work (outside the scope of COMPOSITION) will extend this to a general purpose microservice
execution framework.

17 https://www.rabbitmq.com/direct-reply-to.html

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 20 of 46 Submission date: 2018-11-16

Message Broker

HTTP
Proxy

RPC Executer

RPC Executer

RPC Executer

...

RAAS

Call Queue

Call Queue

Call Queue

Service Catalogue

...

Figure 8: RPC over AMQP

6.5.5 Future work

The REST Adapter can be seen as a special case of an infrastructure and framework for activating
microservices using the Message Broker for activation choreography. On publisher side, there is the activation
microservices, where the REST accepts an HTTP call and sends this to a configured exchange to be put on a
work queue. This message contains all the information from the HTTP call. However, this type of message
could also be activated from e.g. a timer, file system trigger or email, by activation (or choreography)
microservices. On the subscriber side, the REST Executer is but one type of microservice that could be
configured to process messages from a queue and return the results.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 21 of 46 Submission date: 2018-11-16

Figure 9: Microservice Framework

If the messages are standardized and the Message Broker communication details are
hidden/virtualized/abstracted in a framework, the microservices may be written, managed and orchestrated
using a simple web IDE, very similar to e.g. Azure Functions18 or AWS Lambda19. However, the framework
would not be tied to any specific cloud infrastructure. Kubernetes or Docker Swarm can be used to handle to
handle the infrastructure for microservice container lifecycles, load balancing and scaling.

It is our belief that a lightweight, standardized microservice framework (see Figure 3 and Figure 9) that can be
deployed on any cloud platform or physical servers would be a significant addition to the platform and an
exploitable asset in the area of I4.0.

18 https://azure.microsoft.com/en-us/services/functions/
19 https://aws.amazon.com/lambda/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 22 of 46 Submission date: 2018-11-16

7 Information View

The format of the messages relayed by the message broker is opaque to the broker (these are described in
(COMPOSITION D2.3, 2017)). However, for the components to declare the semantics and syntax of the
content, schemas for message broker topics and headers have been defined. These schemas are closely
related to the information models of COMPOSITION projects, such as the Digital Factory Model and the
Collaborative Manufacturing Services Ontology.

7.1 Inter-factory Market Event Broker

As previously stated in deliverable (COMPOSITION D2.3, 2017 and updated in COMPOSITION D6.3, 2018),
agents only communicate through CXL, which has been designed in order to be compliant with FIPA-ACL.
Messages not compliant with CXL language should never be exchanged and they will not be processed.

A CXL message is composed of parameters identifying the message purpose, sender and language, and a
variable payload whose content depends on the message type, encoded according to an explicitly pre-
defined ontology specified by the ontology parameter. The payload depends on both the communication
protocol adopted by the agents and on the reference ontology specified.

The CXL messaged are represented in JSON, with ontology expressions encoded in JSON-LD. The JSOM
schema for CXL has been provided in D6.3 “The COMPOSITION Marketplace I”. A well-defined set of data-
formats for communication is available in (COMPOSITION D2.3, 2017), section 5.4.1.4. The predefined
schema for message validation shall be in general available to any agent and the pre-defined schemas for
messages should be accepted by all agents. This is part of the specification of a COMPOSITION Marketplace
compliant agent.

7.1.1 AMQP Message Routing

The agent communication in the marketplace uses AMQP, which is a “programmable” protocol, offering
dynamic control over routing topology (exchanges, bindings and queues) to the consumers and publishers
(the agents). The agents use fanout and direct exchanges and thus have no need for a pre-defined set of
topics or headers for these exchange types.

Two main modes of operation are supported and used by the agents:

• Dispatch of a message to all the agents:

Figure 10: Fanout exchange

In Figure 10 it is shown as the agent willing to send a broadcast message publishes the message on an
exchange of type ‘fanout’, which will take care of dispatching it to the proper queues. These are named after
the agent identifier (unique within the marketplace) in order to be dynamically created and destroyed at need.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 23 of 46 Submission date: 2018-11-16

• Dispatch of a message to a single agent:

Figure 11: Direct exchange

In Figure 11 it is shown as the agent willing to send a direct message publishes it on an exchange of type
‘direct’, which will take care of dispatching it to the proper queue. Such queue, as for the previous example,
is named after the identifier of the agent which the message is intended for.
The Real-time event broker supporting the marketplace does not need any special configuration, except for
the configurations included within its runtime environment, i.e. the Portainer UI made available within the local
Docker installation hosting the various components. The agents configure the necessary exchanges, queues
and bindings.

7.2 Intra-factory Real-time Event Broker

In the intra-factory deployment of the message broker, MQTT is used for the distribution of sensor data and
processed information. This protocol is suited for sensor data and it is also supported by the core
components. In the pilot installations the metadata is provided out-of-band, by the DFM. There is no
metadata annotation of the data. However, should this be a requirement for a particular installation or
additional component, all this data can be made available in-band using e.g. JSON-LD format.

Sensor and analysis data exchanged in the intra-factory system is structured according to the OGC
SensorThings Data Model and represented in JSON format, also some data from Digital Facgtory Model is
managed in XML format..

7.2.1 MQTT Topic structure

In the intra-factory scenario there is the need to create a hierarchy that defines the topics structure for the
event broker. As the JSON representation of OGC SensorThings Data Model [REF] is used for the internal
data, the topic structure described in this standard is used with minor adaptations.

COMPOSITION topics use a common structure for all components publishing data:

• a topic root that will use the “Composition” tag as identifier;

• the discriminative dichotomy identifier of the intra or inter factory component (<SW-CODE>);

• the component instance id that is in charge of generating the data (<SW-ID>);

• the standard used for the data produced (<STD-CODE>), which will be “OGC”;

• The version of the standard used (<VER-NO>), which will be “1.0”

In the following manner: <SYSTEM>/<SW-CODE>/<SW-ID>/<STD-CODE>/<VER-NO>

The OGC SensorThings Topic is constructed as

 /<RESOURCE-PATH>/<COLLECTION-NAME>

E.g. Composition/BMS/NXW_51/OGC/1.0/Datastreams(ds_1)/Observations, to subscribe to all new
observations published for Datastream ds_1.

COMPOSITION has put the resource id in a separate topic level. Also, MQTT uses slashes ("/") for topic
segment separators while the AMQP 0.9.1 topic separator is the dot “.”. The dot should not be used in topics
when using RabbitMQ. Thus, topic structure used is as follows:

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 24 of 46 Submission date: 2018-11-16

<SYSTEM>/<SW-CODE>/<SW-ID>/<STD-CODE>/<VER-NO>/<RESOURCE-PATH>/<COLLECTION-
NAME>

E.g. Composition/BMS/NXW_51/OGC/1_0/Datastreams/ds_1/Observations

Concerning the formal representation, an upper camel case notation has been used and it is strongly
recommended to be adopted by all components, in order to provide consistency among publishing and
subscribing topics.

7.3 Resource Catalogue

The topic structure based on the OGC SensorThings Data Model only describes the data from a sensor
perspective. The components that subscribe to the data streams need to know which factory asset,
represented in the DFM, the data stream is associated with. This is provided by a mapping in the DFM to the
OGC SensorThings model.

The COMPOSITION Digital Factory Model’s Assets List is used as a Resource Catalogue for the project’s
needs. Other COMPOSITION components such as Learning Agent, DSS, UIs etc. that needs information
about datastreams are connected in a factory asset can get the information from this Resource Catalogue and
DFM APIs RESTful services. This catalogue will provide to these components the IDs of the MQTT topics in
BMS in order to receive the requested data coming from assets’ sensors.

For the implementation of Asset List, the B2MML package related to the assets has been updated for the
COMPOSITION purposes. Every factory asset, for example a machine has installed built-in sensors or newly
deployed sensors in order to cover the project use cases’ requirements. A sensors list has been created and
added on the assets as the modelling of sensors is mandatory. Sensors related to the pilots such as vibration
sensors installed in machines, light barriers, built in sensors in machines and bin’s fill level monitoring sensors
are modelled. As soon as a sensor deployed in COMPOSITION (before or after the system is put in use),
information on how to identify data (OGC ST Observations) coming from this sensor are added to the DFM
and distributed to other parts of the system.

The BMS will connect to a sensor. The BMS assigns a datastream id to the data from the sensor and publishes
this to COMPOSITION as an OGC ST observation. Other components can query the DFM to find out which
datastream id is used for the information they are interested in and subscribe to live data or query for historical
data. These ids will be the sensors id coming from Sensors List that belongs to a factory asset (machine or a
bin etc.).

Furthermore, the described assets schema that contains the above described sensors list can be easily used
by project components which are familiar with OGC SensorThings.

Figure 12: DFM Assets and OGC SensorThings Mapping

A DFM’s Asset class is equivalent with the Thing class of OGC SensorThings. A Sensor class of DFM is
mapped to a SensorThings Datastream. For example, a machine in the production line of a factory is
considered as an asset/thing. For this machine are available some sensors/datastream. A component such as
the Learning Agent of COMPOSITION which uses SensorThings is able to find available datastreams in a

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 25 of 46 Submission date: 2018-11-16

machine of digital factory instance of COMPOSITION by using the aforementioned mapping between the two
data models. The automatic mapping is enabled by DFM API services.

If a component sent a request to a DFM instance for a machine’s datastream coming from the installed sensors
in this machine for a specific use case (e.g. an Oven) and the DFM API will inform the component for the
datastreams IDs that the component can use in order to read sensors data from BMS. A simplified example of
the DFM API service’s response in JSON format is presented below in Figure 13:

Figure 13: Simplified response from DFM

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 26 of 46 Submission date: 2018-11-16

8 Deployment view

The COMPOSITION Ecosystem uses Amazon Web Services (AWS)20 as the infrastructure for cloud
components of the system. All selected computing, storage, and networking AWS resources operate in
Frankfurt (eu-central-1) region, providing low latency across Europe. AWS guarantees data privacy21 and is
compliant to European Union’s General Data Protection Regulation (GDPR)22. Detailed specifications have
been presented in D2.4 “The COMPOSITION Architecture Specification II”.

Figure 14: Current COMPOSITION production servers: all components are deployed as Docker containers,
external traffic is secured by TLS

The unit of deployment in COMPOSITION for all cloud software components is a Docker container, which
provides portability and isolation. The Inter-Factory server hosts docker containers for instances of the Docker
management tool Portainer and Nginx, which proxies requests to internal components. Nginx also secures all

20 https://aws.amazon.com/
21 https://aws.amazon.com/compliance/data-privacy-faq/
22 https://aws.amazon.com/compliance/gdpr-center/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 27 of 46 Submission date: 2018-11-16

external traffic by TLS (using a Let’s Encrypt certificate), including AMQP and MQTT traffic to and from the
Message Broker, see Figure 14. (The BMS publishes sensor data to the Message Broker by MQTT.)

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 28 of 46 Submission date: 2018-11-16

9 Scalability Perspective

The message broker is a principal component in both the intra- and inter-factory parts of the COMPOSITION
system. It must be responsive and fault-tolerant and be able to handle a large workload with many
communicating components and large amounts of data. The exact workload will depend on the specific
deployment scenario. The message broker cannot be a bottleneck or a single point of failure. The scalability
of the message broker has been studied in WP6 and results have been previously reported in D6.3
COMPOSITION Marketplace I and D2.4 The COMPOSITION architecture specification II. This section
describes the scalability concerns for the message broker and design decisions and mechanisms that can be
employed to address these concerns.

9.1 Scalability Overview

Scalability is discussed in D2.4 The COMPOSITION architecture specification II, which has a more thorough
section on this subject. For clarity, we provide a summary here.

We define the performance of a component as the capability to handle a specific workload given a specific set
of resources, e.g. CPU cycles, memory and disk space. An instance of the message broker can increase the
maximum workload it can handle by expanding its quantity of consumed resources. The ability to do this is
called scalability (Lehrig, Eikerling, & Becker, 2015). The resources can be increased in two ways, called
scaling up and scaling out. To scale up, or scale vertically, is to increase overall application capacity by
increasing the resources within existing nodes, e.g. increase memory or CPU of the existing node. To scale
out, or scale horizontally, is to increase overall application capacity by adding nodes, e.g. adding an additional
message broker that shares the workload.

In D2.4, we have identified the following attributes that may affect the workload of the message broker and
thus the need for increased resources (scaling):

• Factory IIMS

o The number of concurrently reporting sensors/field devices

o The frequency of the reporting from sensors

o The number of concurrently reporting internally generated data streams from e.g. Learning
Agent, DSS and DLT

o The frequency of the reporting from internally generated data streams

• Marketplace

o The number of marketplaces

o The number of stakeholders in a marketplace

o The number of concurrent agent negotiations

o The number of participants in each negotiation

o The number of data sharing agreements between marketplace stakeholders

Like all other COMPOSITION components, the message broker unit of deployment is a Docker image that
may be deployed as one or more containers on a host running in-premises or in the cloud. Docker supports
control of both horizontal and vertical scaling of the services offered by a component.

9.2 RabbitMQ

Based on prior experience (ALMANAC project, PICASO project, FITMAN SEM) and published performance
figures2324 (Fernandes, 2013) (Maciej, Krzysztof, & Aleksander, 2014) it is currently estimated that a single
RabbitMQ instance, scaled vertically to adequate performance, will likely suffice in the pilot scenarios.
However, the broker component will need to scale to large real-world scenarios.

23 https://www.rabbitmq.com/blog/tag/performance/
24 http://underthehood.meltwater.com/blog/2016/09/01/rabbitmq-performance/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 29 of 46 Submission date: 2018-11-16

The broker will have to provide support for a high number of sensors and near real-time updates of processed
data in the intra-factory system, and very large number of interacting agents in the Open Marketplace.

As mentioned in (COMPOSITION D2.4, 2018), the centralized message broker architectural pattern of
communication can introduce a possible bottleneck or a single point of failure in the system. To distribute the
message broker – scale out - by adding nodes is a well-tried configuration to deal with scalability of the broker.
Depending on the communication patterns, this will also be applicable in COMPOSITION. RabbitMQ is also
available as highly scalable cloud services25.

If a node in the scaled-out message broker fails, the choice of technique will favour one of two properties of
the distributed component, availability or consistency. Availability ensures that every request is delivered and
receives a non-error response, but it may not contain the most recent message. Consistency is to be prioritized
if it is required that every client will receive the most recent message in a stream (or an error).

9.2.1 RabbitMQ Scalability

This section will describe the techniques available to implement horizontal scaling of RabbitMQ by distributing
the message broker: clustering, federation and “the shovel”. These approaches to message broker distribution
may be combined, e.g. using clusters connected with federation or ”the shovel”. Thus, a desirable degree of
throughput and resilience to failure, with preserved consistency where needed, may be achieved.

9.2.1.1 Clustering

A RabbitMQ cluster connects multiple distributed nodes together, to form a single logical broker. The nodes
must run the same version of RabbitMQ. All nodes in the cluster are connected to all other nodes. Cluster
nodes communicate via Erlang message-passing and should be located on single low latency network (LAN)
with reliable communication.

Exchanges26 and bindings are shared and automatically mirrored across all nodes in a cluster. Queues may
be mirrored but are located on a single node by default. Creating a queue for a client will only create a new
process in one broker in the cluster. A client connecting to any node can see queues on any node in the cluster.
Published messages are replicated on all mirrored queues and consumed messages are removed from all
nodes, so replicating a queue also replicates the queue work load on all nodes.

RabbitMQ clusters are used to increase the throughput of a broker, prioritizing consistency. Clustering solves
the bottleneck problem, but since all nodes are in a single location, the single point of failure remains.

9.2.1.2 Federation

With federation, an exchange or queue on one broker can be set up to receive messages published to an
exchange or queue on another, logically separate, broker. (Note that a single logical broker in this case may
be a cluster, as described in the previous section.) These are typically located on different networks and
communicate over the internet via AMQP (with SSL encryption). Using AMQP connections requires users and
permissions to be set up on both servers. Unlike a cluster, brokers in a federation can be connected in any
topology, with links between brokers going in one direction, or both. Federated and local exchanges and
queues may co-exist in the same broker.

Federated exchange links are one-to-one, in one direction. Messages will be forwarded over this link only if a
binding to a queue on the federated exchange exists. A client connecting to any broker can only see queues
in that broker, and messages will be sent between federated queues to where the consumers are connected.

Federations are typically used to link brokers across the internet to maximize availability for publish-subscribe
messaging and work queueing. The integrated security provided by COMPOSITION Security Framework will
facilitate the set-up of federated message brokers with shared user management
In the Open marketplace, federations between brokers belonging to different stakeholders is a viable way to
scale out the system.

25 https://www.cloudamqp.com/
26 And other entities, e.g. virtual hosts, users, permissions, runtime parameters, et c.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 30 of 46 Submission date: 2018-11-16

9.2.1.3 “The Shovel”

“The shovel” is similar to federation. However, while federation distributes exchanges and queues across
brokers, ”the shovel” simply specifies how messages should be moved. “The shovel” works at low level,
consuming messages from a queue and re-publishing them at an exchange, usually at another, logically
separate, broker. Shovels may be configured statically at startup or dynamically, at runtime, depending on the
level of control desired. Communication is through AMQP (with TLS), in a local network or across the internet,
with high tolerance for network failures.

“The shovel” is an alternative to federation with a more fine-grained control and lower level of abstraction and
may also be used as an alternative to a specific client application to implement a desired communication
pattern.

9.2.1.4 Central Authentication and Authorization

The COMPOSITION integration with Keycloak by RAAS, described in section 10, overrides the built in
RabbitMQ user management. This creates a unified authentication and authorization system for all brokers in
a COMPOSITION system deployment. This simplifies the implementation of the scaling techniques described
in this document, as we can manage users for all brokers from one Keycloak system, whether in a federation
or connected with ”the shovel”.

9.3 Scalability Design

The Message Broker is the central communication hub in both the intra- and inter-factory scenarios and must
scale well in a number of scenarios. This section builds on the scalability design reported in D6.3 “The
COMPOSITION Marketplace I”. Choosing a scalability design for the message broker requires analysis of the
usage pattern and how messages are distributed in the specific scenario and utilizes on the design of the
AMQP protocol. The message broker consists of one or several brokers distributed on one or more nodes. In
a broker, exchanges receive and route messages to queues based on bindings with different filters. There is
no fixed limit to the number of exchanges and queues in a broker. We have identified are two types of
configuration which can be used to address scalability for the broker, which are referred to as routing topology
and broker topology.

Broker topology deals with the distribution of logical brokers on nodes, by the built-in support for clustering
(one logical broker on separate nodes) or federation (different logical brokers on separate nodes).

Routing topology deals with the connections of exchanges and queues by bindings and the distribution of
these on brokers. This topology can be set up dynamically on existing brokers by the AMQP protocol (and
RabbitMQ extensions). The clients (consumers and producers of messages) can control the routing topology
at run-time.

RabbitMQ allows exchange-to-exchange bindings, routing messages from one exchange directly to a
secondary exchange. Clients would then only bind to the secondary exchange, and the number of client
queues and number of connects and disconnects at the secondary exchange would not affect the primary
exchange. This is a viable way to scale out the system for a large number of agents in the marketplace. (A
closed marketplace could require that stakeholders provide the resources for running a broker node.)

Routing topology design could e.g. favour many fanout exchanges or fewer exchanges and more use of
routing. Fanout exchanges are slightly faster than the other types of exchanges for multiple recipients, e.g.
topic and header exchanges. However, the difference is not a deciding factor in the choice of topology.

9.3.1 Intra-factory

The intra-factory message broker has to handle data streams from shop-floor sensors and analytical
components within COMPOSITION. As MQTT is used, only publish-subscribe routing of messages is available
and the run-time configuration of routing topology in AMQP is not available via MQTT.

Neither the number of publishers nor the number of consumers is expected to be very large in the intra-factory
setting. However, the frequency may be high causing the amount of data to be large. To handle this, a broker
topology with a cluster setup is most suitable to manage high loads. Queues for consumers will only be created
on the cluster node that the consumer is connected to.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 31 of 46 Submission date: 2018-11-16

9.3.2 Inter-factory

This section will discuss examples of possible scaling strategies for the marketplace, where the Message
Broker manages the agent CXL communication. Also in this case, the design of broker topology is the primary
way to ensure scalability for the marketplace. However, the agents of different stakeholders may set up the
routing topology to suit their specific requirements and communication patterns.

Growth in the number of marketplaces is typically handled by adding nodes to the broker topology. A Closed
Marketplace typically has a separate infrastructure from the Open Marketplace, whereas a Virtual Marketplace
shares the infrastructure of the Open Marketplace. Marketplaces are logically separated; no messages are
exchanged between marketplaces. Virtual marketplaces are set up by actors already in the Open Marketplace.
Each Closed marketplace will be handled by a separate Message Broker. Open Marketplace and Virtual
Marketplaces will use clustering.

In the cluster, load-balancing techniques may be used to distribute agents among the nodes so that the (non-
mirrored) queues created by the agents is evenly distributed on the nodes,

Growth in the number of stakeholders in a marketplace may be handled by a routing topology which creates a
secondary exchange for each specific stakeholder (Figure 15). The secondary exchange has an exchange
binding to the primary exchange, which can be a fanout exchange. The consumers and producers (Agents)
connected to the secondary exchange only create bindings and queues on one broker in the cluster when they
connect. The secondary exchange may be a topic or header exchange.

The secondary stakeholder exchange will always exist, whether the stakeholder agents connect or
disconnects. It will receive messages from all exchanges that the stakeholder has an interest in. Whenever a
consumer (agent) connects, it simply has to declare its queue and bind that queue to the stakeholder exchange
using the desired topic filter.

A similar topology may be created by using either the shovel or federation with an upstream broker (primary)
and a federated broker (secondary). These may be two separate broker nodes using different infrastructure.
The messages to a queue declared in the federated broker are buffered in a queue created in broker the
upstream exchange. If each connected stakeholder provides the infrastructure for the broker where the
secondary exchange resides, the system can scale very well.

Figure 15: Primary and secondary exchange routing topology

The number of concurrent agent negotiations taking place will increase the number of messages being sent.
In the above topology, the queues will be at the secondary exchanges and messages published to the
exchange will be propagated to the primary and to all secondary exchanges. The primary/secondary broker
topology deployed in a RabbitMQ cluster will handle a very large number of concurrent negotiations. Should

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 32 of 46 Submission date: 2018-11-16

the message flow require even more resources, a broker topology using a federation in a connected graph
(each one a cluster), where an exchange for the negotiation will exist on one broker node in the federation only
for the duration of the negotiation (Figure 16). The number of participants in each negotiation will likely not be
a limiting factor for the described topology.

Figure 16: Federated exchanges broker topology

An exchange that only the involved parties can access can be set up for each data sharing agreement (Figure
17). At most this will result in a number of exchanges on the scale of O(n2) to the number of stakeholders. If
one exchange is created for a stakeholder to publish to, and exchange to exchange bindings (or shovels) are
defined for each recipient of data to the secondary exchanges described above (Figure 18), the number of
exchanges will relate to the number of data sharing agreements by O(n). The sender will control the exchange
to exchange bindings or shovels. The data sharing may need to use a separate logical broker (cluster) in the
marketplace depending on the load.

Figure 17: Data sharing using one exchange per data sharing agreement

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 33 of 46 Submission date: 2018-11-16

Figure 18: Data sharing using sender and recipient exchanges

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 34 of 46 Submission date: 2018-11-16

10 Security Perspective

To provide an integrated security solution for COMPOSITION, an adapter allowing the authentication and
authorization mechanisms of RabbitMQ to be managed by Keycloak and Authorization Service (EPICA) is
being developed. With the use of rabbitmq-auth-backend-http27 community plugin RabbitMQ built-in
authentication and authorization can be overridden and managed from outside by referring the requests to
other components.

The adapter in development, RabbitMQ Authentication and Authorization Service (RAAS), is a web-service
developed in Node.js and exposes the following endpoints, required by the plugin:

• https://server:port/raas/auth/user: Used to authenticate a user providing username and password.

• https://server:port/raas/auth/vhost: Used to authorize access to a virtual host.

• https://server:port/raas/auth/resource: Used to authorize access to a resource.

• https://server:port/raas/auth/topic: Used to authorize access to a topic.

The adapter returns always HTTP 200 OK and one of the following:

• allow

• deny

• allow [list of tags] (only for https://server:port/auth/user)

All communication between RabbitMQ and the adapter is encrypted using TLS cryptographic protocol,
provided by Nginx Reverse Proxy.

The adapter will manage everything related with the access tokens obtained from Keycloak when a user login
RabbitMQ.

The same security system can thus be used for intra-factory business user identity, marketplace partners and
system components.

RabbitMQ configured protocols use SSL/TLS cryptographic protocols for communication with publishers and
subscribers. The default non-secured communication ports will be disabled to ensure all communication is
encrypted.

All messages flowing between publishers and subscribers will be signed using JSON Web Signature28 (JWS)
standard.

An adapter for the blockchain distributed trust mechanism allows the integrity and non-repudiation of broker
messages, publishers will store the digital fingerprint of the data transmitted and the subscribers will have the
possibility to check the digital fingerprint of the data received.

The achievement of the integrated security solution for COMPOSITION has been performed by the
configuration, installation and deployment of the different components (described in D4.2 Design of Security
Framework II and D4.4 Prototype of the Security Framework I) which provide the securization mechanisms for
assuring a complete authorization and authentication protection.

Regarding the deployment, the message broker has been deployed at the production server in the pilot
environments:

• Inter-factory

o Docker container: rabbitmq-inter

• Intra-factory

o Docker container: rabbitmq-intra

Both of them use AMQP with authorization based on vhosts and operations on resources as temporary solution
until the EPICA component is integrated for authorization purposes, and MQTT plugin is installed for its

27 https://github.com/rabbitmq/rabbitmq-auth-backend-http
28 https://tools.ietf.org/html/rfc7515

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 35 of 46 Submission date: 2018-11-16

support. Once integrated, EPICA will be able to handle authorization issues, extracting all the needed
information directly from Keycloak tokens, for finally performing the matching with internally stored
authorization policies. For more information about EPICA, the reader is advised to consult (COMPOSITION
D4.4, 2018), more precisely Section 3.1.

The following sections, 10.1 and 10.2, will present the differences between Inter-factory and Intra-factory event
brokers’ configuration and related security components.
RabbitMQ will only support default AMPQ29 protocol over TLS in Inter-factory deployment.

10.1 Inter-factory Market Event Broker

A blockchain adapter will be developed to store and retrieve the public keys needed by the subscribers to
verify the signature of the message received. Each participant in COMPOSITION will need to deploy a
blockchain node to get access to the public key and thus be able to verify the signature of messages. The
blockchain used will be the same as the one used to allow the integrity and non-repudiation of broker messages
and mentioned in the previous section.

Figure 19 depicts the architecture and the relation between the message broker and the security components.

Figure 19: Inter-factory Market Event Broker security architecture

29 https://www.amqp.org/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 36 of 46 Submission date: 2018-11-16

10.2 Intra-factory Real-time Event Broker

In this case, RabbitMQ will support two different messaging protocols; default AMPQ protocol and MQTT30
protocol, both over TLS.

In order to make available the public keys needed by the subscribers to validate the message signatures,
LinkSmart will be used for such task.

Figure 20 gives an overview of the architecture and the relation between the message broker and the security
components.

Figure 20: Intra-factory Real-time Event Broker security architecture

30 http://mqtt.org/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 37 of 46 Submission date: 2018-11-16

11 Summary and conclusions

The real-time event broker is a principal component in the COMPOSITION architecture. It integrates the
heterogenous components using standard protocols, allowing for future extensibility through low coupling. The
multi-protocol support allows the inter- and intra-factory COMPOSITION systems to use the most appropriate
protocol for the task and a multitude of communication patterns. During design, MQTT was selected for factory
sensor and real-time analysis data and AMQP was selected for internet communication between heterogenous
systems in the COMPOSITION Marketplace.

In the first year, the project evaluated different broker implementations. This resulted in the candidate from the
architecture inception phase, RabbitMQ, being confirmed as the communication mechanism implementation.
While RabbitMQ is not the fastest message broker available, it is standards-based, easy to configure and
maintain, well tested in production, robust, scalable and highly extensible. The general-purpose applicability,
plugin architecture and extension mechanisms allow for built-in multiprotocol support and tight integration with
the important COMPOSITION goals of end-to-end security and blockchain-based log-oriented architecture.

The investigation into scalability techniques for RabbitMQ has found design solutions to the concerns for
bottlenecks and a centralized point of failure. However, these findings have to be evaluated against a set if
concrete scalability scenarios in each case. The design to choose will depend on the concrete scenario at
hand. For the pilot deployments, the configuration described in this report will be used.

Message brokers with security framework integration has been deployed at the COMPOSITION pilot servers.
The design of topic schemas for the intra- and inter-factory message brokers has been finalized.

Significant extensions and application to RabbitMQ undertaken in COMPOSITION are

• RAAS integration of Security Framework replacing RabbitMQ proprietary authentication and
authorization,

• blockchain audit log,

• use of AMQP together with the Security Framework for marketplace data sharing,

• use of AMQP for platform-independent agent ACL interchanges,

• REST-tunnelling over AMQP,

• proposal for AMQP-based microservice orchestration extending the REST-tunnelling concept

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 38 of 46 Submission date: 2018-11-16

12 Appendix 1: Candidate message broker implementations

This section provides a brief overview of alternative message broker implementations that were considered as
evaluated as complements or substitutes for the intra- and inter-factory Message Broker.

12.1.1 Mosquitto

Eclipse Mosquitto is an open source, Eclipse licensed (EDL/EPL31) message broker that implements versions
3.1 and 3.1.1 of the MQTT protocol. While lightweight and fast, it did not provide the extensibility, reliability
(durable queues) or configurability required.

12.1.2 Kafka

Kafka is built to process real-time streams of data in a horizontally scalable, fault-tolerant and very fast
manner. It does not implement a standard protocol; integration with Kafka is made through proprietary

producer, consumer, stream processor and connector APIs. Kafka is distributed under Apache License32 and
widely deployed in large production environments. Kafka could be a complement for the sensor platform in
deployments that handle a very large number of sensors (e.g. large scale fully automated production with a
large number of robots reporting movement and power consumption from every motor).

12.1.3 ZeroMQ

ZeroMQ 33(a.k.a. ØMQ, 0MQ, or zmq) is a fast concurrency framework providing transport sockets for in-
process, inter-process, TCP, and multicast communication. Multiple patterns are possible, e.g. fan-out,
pub-sub, task distribution, and request-reply, but require programming. It is provided as APIs (not a
standardized protocol) for multiple platforms. It was considered for agent communication but is LGPLv3
licensed.

12.1.4 ActiveMQ

Apache ActiveMQ34 is a message broker - the one most similar to RabbitMQ of the considered alternative
implementations. Released under Apache 2.0 License, and written in Java with JMS35, REST and WebSocket
interfaces, it also supports protocols AMQP and MQTT. RabbitMQ was favoured for known ease-of-use and
configurability, once use AMQP (instead of JMS for agents) and MQTT had been decided.

31 https://www.eclipse.org/org/documents/epl-v10.php
32 http://www.apache.org/licenses/LICENSE-2.0
33 http://zeromq.org/
34 http://activemq.apache.org/
35 https://en.wikipedia.org/wiki/Java_Message_Service

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 39 of 46 Submission date: 2018-11-16

13 Appendix 2: RabbitMQ

13.1.1.1 Producers

A producer is an application that sends messages to an exchange. The producer may be any application
written in any programming language, using an AMQP client API. The producer sets the attributes and
contents of the message, including routing information, and sends the message to an exchange on a broker
host. The producer specifies whether messages should be persisted or transient, and what should happen
with messages that cannot be routed to a queue.

13.1.1.2 Messages

An AMQP message consists of a header with attributes and application data. Attributes consist of key-value
pairs. The properties consist of optional applications-specific properties and a set of standard message
delivery annotations defined by the AMQP specification, e.g. message id, correlation id, time to live, delivery
mode, priority, routing key and header dictionary.

The routing key or header dictionary are “addressing” attributes set by the producer to specify which
queue(s) a message should be distributed to by the exchange. The delivery mode attribute of a message
can be declared persistent by the publisher – it is transient by default. The message must then be persisted
between server restarts.

The application data is the actual content of the message, a byte array which is not inspected by the broker.
It is entirely application-specific and could be e.g. UTF-8 encoded text, XML, JSON, or Protocol Buffer byte
format. AMQP defines an optional type system for specifying content and encoding type of the application
data.

13.1.1.3 Exchanges

Messages are sent from a producer to an exchange. Exchanges are defined per message broker host and
are responsible for routing the messages to queues. The way the messages are routed depends on the
routing keys or headers set by the producer, the queue binding and the type of exchange.

Exchanges can be configured as durable, temporary or auto delete when created. Durable exchanges will
survive server restarts and will remain in the broker until explicitly deleted. Temporary exchanges exist until
RabbitMQ is shutdown. Auto deleted exchanges are deleted when the last producer or binding are removed
from the exchange.

The dead letter exchange is an AMQP extension provided by RabbitMQ. The default behavior of any
exchange is to drop messages for which there is no binding providing a matching queue. The dead letter
exchange will capture messages that cannot be delivered, which will be an important part of operational
management of the system.

13.1.1.3.1 Direct exchange

QueueOne

Producer Exchange

QueueTwo

binding: QueueOne

binding: QueueTwo

Figure 21: Direct exchange

A direct exchange delivers messages to queues based on the message routing key, see Figure 21. A
message is routed to the queues whose binding key is an exact match to the routing key of the message,

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 40 of 46 Submission date: 2018-11-16

e.g. a message with the routing key “log” would be delivered to all queues with the binding key “log”. A
common practice is to use the queue name as routing key. If there is no matching binding, the message is
discarded. AMQP specifies that an unnamed default exchange must be implemented and that this must be a
direct exchange. All queues must be bound to the unnamed exchange using the queue name as routing key.

13.1.1.3.2 Fanout exchange

QueueOne

Producer Exchange

QueueThree

QueueTwo

Figure 22: Fanout exchange

In a fanout exchange, messages are routed to all queues that are bound to the exchange. Any routing keys
or headers are ignored. This is a useful pattern when broadcasting to several consumers that may process
the message in different ways, e.g. logging, notification and aggregation.

13.1.1.3.3 Topic exchange

Figure 23: Topic exchange

The topic exchange, see Figure 23, uses the routing key to distribute messages to queues. A topic routing
key consists of zero or more words separated by dots “.”, e.g. “Composition.KLE.SensorData”. The binding
defines a routing pattern by the same rule, where “*” is used as a wildcard for a single word and “#” is used a
wildcard for zero or more words. If the binding for one or several queues matches the routing key, the
message is distributed to these queues. This is very similar to the topic hierarchy and matching in MQTT
(exchanging “/” for “.”). A typical use for topic exchanges is to implement a publish-subscribe messaging
pattern.

QueueOne

Producer Exchange

QueueThree

QueueTwo

 Composition.SensorData.#

 Composition.#

 Composition.SensorData.Temperature.*

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 41 of 46 Submission date: 2018-11-16

13.1.1.3.4 Headers exchange

QueueOne

Producer Exchange

QueueThree

QueueTwo

Process=soldering;
PhysicalAssetClass=casing;
x-match=all

Process=drying;
PhysicalAssetClass=oven;
x-match=any

Type=alarm;
x-match=any

Figure 24: Headers exchange

The headers exchange, see Figure 24, allows for slightly more flexible routing than topic exchanges. The
routing key is not used in header exchanges, instead the message headers attribute, containing keys-value
pairs, is used. The queue binding specifies the header keys to be matched and (optionally) the values that
these should have. If the binding does not specify a value for the header key, it is sufficient for the key to be
present in the message header for the binding key to match the message key. If the binding specifies a value
for a key, the message header key must match this value. The binding attribute “x-match” specifies whether
the logical “AND” or “OR” should be used when combining the matches of header binding keys. If “x-
match=all” is specified, all key-value pairs in the binding must match the header for the message to be
routed to that queue. The value “x-match=any” indicates that if any of the key-value pairs in the binding
matches one or more in the message header, the message will be routed to that queue.

13.1.1.4 Consumers

Any application that receives messages from a queue is a consumer and is identified by the broker by a
consumer tag string. The messages can be delivered to the consumer by the AMQP push API or fetched by
the consumer using the AMQP pull API. It is possible to register more than one consumer per queue or
declare one consumer as the exclusive consumer for the queue. The consumer can send acknowledgement
messages back to the host to indicate whether the message has been received or rejected.

13.1.1.5 Queues

Queues are named first-in-first-out buffers in a message broker host that store messages in memory or on
disk. The messages are kept in the queue until a consumer connects. The messages are then delivered (in
sequence) to the receiving application. The queues can be shared or private to a consumer. When a queue
is shared, the name is usually defined by the client, whereas when it is private to the consumer, the server
will provide the name. An exclusive queue is associated with a current connection and will be deleted when
the consumer disconnects. If the queue is defined as durable, the queue will persist between server restarts.
Non-persistent messages may be lost, however.

13.1.1.6 Bindings

A binding is the relation between a queue and an exchange that defines how messages should be routed
from the exchange to the queue. Bindings are created or destroyed by applications over time to shape the
message flow to queues. When a message arrives at the exchange the message attributes - routing key or
header dictionary – set by the producer are evaluated to see if the binding has a match. If the binding
matches, the message is copied to the queue. How the matching is done depends on the type of exchange.

13.1.1.7 Messaging Scenarios

AMQP is developed to be a programmable protocol where multiple communication patterns can be set up by
the producers and consumers without direct configuration of the server. The main messaging scenarios that
the Message Broker will support are the following:

Simple queueing: Where messages are queued between producer and consumer, see fig below, acting as
a buffer.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 42 of 46 Submission date: 2018-11-16

Queue

Producer Consumer

Figure 25: Simple queuing.

Publish/Subscribe: A common pattern for message based architectures in the case of a producer publishes
messages typically with a topic pattern and the consumers subscribe to different patterns.

Queue1

Producer

Consumer1

Exchange

Queue2

Consumer2

Figure 26: Publish-subscribe

RPC (Remote Procedure Calls): In this case the message broker is used as an exchange and queue for
procedure calls. This is useful both for ensuring security as well providing mechanism to manage scalability.

RPC
Queue

Client
Server

Figure 27: Remote Procedure Call

Competing consumers: Multiple concurrent consumers process messages received on the same message
queue. Multiple messages can be processed concurrently to balance the workload and optimize throughput,
thereby improving scalability and availability.

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 43 of 46 Submission date: 2018-11-16

Producer1 Consumer1

Exchange

Work Queue

Consumer2Producer2

Figure 28: Competing consumers

13.1.1.8 Extensibility

RabbitMQ allows its extension through a variety of plugins that are included with the product or through the
implementation of custom ones.

• Available plugins: Some of the plugins bundled with RabbitMQ are described in Table 2, while the
complete list can be found at the RabbitMQ web site36.

Table 2: RabbitMQ bundled plugins

Name Description

rabbitmq_auth_backend_ldap Authentication / authorisation plugin using an external LDAP
server

rabbitmq_management A management / monitoring API over HTTP, along with a
browser-based UI.

rabbitmq_mqtt An adapter implementing the MQTT37 3.1 protocol.

rabbitmq_stomp Provides STOMP38 protocol support in RabbitMQ.

In addition to the mentioned bundled plugins there are available for downloading a set of plugins
developed by the RabbitMQ community, these plugins can be found at the RabbitMQ web site39.

• Custom plugins: As mentioned previously, RabbitMQ allows also the custom implementation of
plugins. For the implementation of a plugin knowledge is necessary in Erlang/OTP40 system and
design principles.

o Erlang: General-purpose, concurrent, functional programming language used to build
scalable real-time systems with requirements on high availability.

o OTP: Set of Erlang libraries and design principles providing middle-ware to develop these
systems

13.1.1.9 Platforms

RabbitMQ is available for several platforms, including Windows, MacOS, Linux, BSD and UNIX. It is also
available as a Docker image and as Software-as-a-Service cloud offerings.

36 https://www.rabbitmq.com/plugins.html
37 http://mqtt.org/
38 https://stomp.github.io/
39 https://www.rabbitmq.com/community-plugins.html
40 https://www.erlang.org/

https://www.rabbitmq.com/plugins.html
https://www.rabbitmq.com/community-plugins.html

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 44 of 46 Submission date: 2018-11-16

13.1.1.10 Performance

Performance depends on messaging patterns, message size, persistence and other factors. However,
RabbitMQ performs well and is highly scalable. Performance figures ranges from approximately 25000
messages per second on a typical single node deployment (Azure B1 virtual machine), to reports of 106
messages per second using a 30-node cluster41.

13.1.1.11 Licensing

RabbitMQ is distributed under the Mozilla Public License (MPL)42, a free and open source software license
that permits free use, modification, distribution, and exploitation. It entails no limitations to exploitability for
the COMPOSITION platform.

41 https://content.pivotal.io/blog/rabbitmq-hits-one-million-messages-per-second-on-google-compute-engine
42 https://www.mozilla.org/en-US/MPL/

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 45 of 46 Submission date: 2018-11-16

14 List of Figures and Tables

14.1 Figures

Figure 1: Message Broker in RAMI 4.0 Functional Layers .. 9
Figure 2: Example of exchanges bindings and queues ... 13
Figure 3: Schematic microservice architecture ... 14
Figure 4: Intra-factory components .. 14
Figure 5: Marketplace components ... 16
Figure 6: Data routing information flow .. 18
Figure 7: Simplified model of the marketplace data exchange design .. 19
Figure 8: RPC over AMQP .. 20
Figure 9: Microservice Framework .. 21
Figure 10: Fanout exchange .. 22
Figure 11: Direct exchange ... 23
Figure 12: DFM Assets and OGC SensorThings Mapping ... 24
Figure 13: Simplified response from DFM ... 25
Figure 14: Current COMPOSITION production servers: all components are deployed as Docker containers,
external traffic is secured by TLS .. 26
Figure 15: Primary and secondary exchange routing topology ... 31
Figure 16: Federated exchanges broker topology ... 32
Figure 17: Data sharing using one exchange per data sharing agreement .. 32
Figure 18: Data sharing using sender and recipient exchanges ... 33
Figure 19: Inter-factory Market Event Broker security architecture ... 35
Figure 20: Intra-factory Real-time Event Broker security architecture .. 36
Figure 21: Direct exchange ... 39
Figure 22: Fanout exchange .. 40
Figure 23: Topic exchange .. 40
Figure 24: Headers exchange ... 41
Figure 25: Simple queuing. .. 42
Figure 26: Publish-subscribe ... 42
Figure 27: Remote Procedure Call .. 42
Figure 28: Competing consumers ... 43

14.2 Tables

Table 1: Acronyms and terminology used in this report. ... 6
Table 2: RabbitMQ bundled plugins .. 43

COMPOSITION D6.2 Real-time event broker II

Document version: 1.0 Page 46 of 46 Submission date: 2018-11-16

15 References

Bondi, A. (2000). Characteristics of scalability and their impact on performance. Proceedings
of the second international workshop on Software and performance - WOSP
'00.

COMPOSITION. (2016). GRANT AGREEMENT 723145 — COMPOSITION: Annex 1 Research and
innovation action.

COMPOSITION. (2017). D2.3 The COMPOSITION Architecture Specification I“. COMPOSITION
Consortium.

consortium, C. (2017). D2.3 “The COMPOSITION Architecture Specification I“. COMPOSITION.

Fernandes, J. L. (2013). Performance evaluation of RESTful web services and AMQP protocol.
Ubiquitous and Future Networks (ICUFN), 2013 Fifth International
Conference on. IEEE.

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison Wesley.

Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns. Addison-Wesley Professional.

Homer, A., Sharp, J., Brader, L. N., & Swanson, T. (2014). Cloud
Design Patterns. Microsoft patterns & practices.

IEC. (2013). IEC 62890: IEC Project: Life Cycle Management for Systems and Products
used in Industrial-Process Measurement, Control, and Automation. IEC.

IEC62264. (2013). IEC 62264-1: Enterprise-control system integration Part 1: Models and
Terminology. IEC.

IEEE. (2000). IEEE 1471 Recommended Practice for Architectural Description for
Software Intensive Systems. IEEE.

ISO/IEC/IEEE42010. (2011). ISO/IEC 42010: Systems Engineering – Architecture description.
ISO/IEC/IEEE.

ISO19156. (2011). Geographic information -- Observations and measurements. ISO.

Kruchten, P. (2004). The Rational Unified Process: An Introduction. Addison-Wesley
Professional.

Lehrig, S., et al (2015). Scalability, Elasticity, and Efficiency in Cloud Computing: a Systematic
Literature Review of Definitions and Metrics. Proceedings of the 11th
International ACM SIGSOFT Conference on Quality of Software
Architectures (QoSA '15), Montreal, QC, Canada, May 4–7.

Maciej, R., et al (2014). Evaluation of highly available and fault-tolerant middleware clustered
architectures using RabbitMQ. Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. IEEE.

Milagro, F. A. (2008). SOAP tunnel through a P2P network of physical devices. Internet of Things
Workshop. Sophia Antopolis: Internet of Things Workshop, Sophia
Antopolis.

Rozanski, N., Woods, E. (2012). Software Systems Architecture,: working with stakeholders using
 viewpoints and perspectives. Addison-Wesley.

(Zwei 2015). Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0).
Düsseldorf: VDI e.V.

Wilder, B. (2012). Cloud Architecture Patterns. O'Reilly.

Y.2060, I.-T. (2012). ITU-T Y.2060 : Overview of the Internet of things. ITU.

