

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D2.4 The COMPOSITION architecture specification II

Date: 2018-09-18

Version 1.1

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 2 of 134 Submission date: 2018-09-18

Document control page

Document file: D2.4 The COMPOSITION architecture specification II_v1.1.docx
Document version: 1.1
Document owner: CNET

Work package: WP2 Use Case Driven Requirements Engineering and Architecture
Task: Task 2.3 COMPOSITION Architecture
Deliverable type: R

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Mathias Axling 2018-06-17 Initial version

0.2 Vasiliki Charisi 2018-07-17 ATL contributions

0.21 Matteo Pardi 2018-07-18 NXW contributions

0.22 Giuseppe Pacelli 2018-07-23 ISMB contributions

0.23 Paolo Vergori 2018-07-27 ISMB contributions

0.24 Alexandros Nizamis, Thanasis
Vafeiadis, Vagia Rousopoulou,
Dimosthenis Ioannidis

2018-07-27 CERTH contributions. Input related to
Matchmaker, SFT, Ontology, DFM and the
overall scalability perspective

0.25 Farshid Tavakolizadeh, Jose
Angel Carvahal Soto

2018-08-08 FIT contributions

0.3 Mathias Axling 2018-08-20 Integrated contributions

0.4 Mathias Axling 2018-08-27 CNET contributions, editing

0.5 Vivian Esquivias 2018-08-28 HMI framework

0.6 Mathias Axling 2018-08-29 Editing

0.61 Mathias Axling, Peeter Kool 2018-08-30 CNET contributions

0.7 Mathias Axling 2018-09-05 Restructuring, editing, additional content

0.71 Nacho González 2018-09-12 ATOS contributions

0.8 Mathias Axling, Matts Ahlsen 2018-09-12 Ready for peer review

0.9 Helene Udsen, Mathias Axling 2018-09-14 Peer Review comments incorporated

1.0 Mathias Axling 2018-09-18 Final version

1.1 Mathias Axling 2018-10-08 CERTH authors missing in document history

Internal review history:

Reviewed by Date Summary of comments

ELDIA 2018-09-14 Approved without comments

FIT-WI 2018-09-14 Approved with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 3 of 134 Submission date: 2018-09-18

Index:
1 Executive Summary ... 5

1.1 Content and structure of this deliverable ... 5

2 Terminology .. 6

3 Introduction .. 9
3.1 Purpose, context and scope of this deliverable ... 9
3.2 Architectural Design and Documentation Approach .. 9

3.2.1 Methodology .. 9
3.2.2 Reference Architecture Model Industrie 4.0 ..10

4 Stakeholders, Concerns and Architecture Decisions ..12
4.1 Stakeholders ..12
4.2 Requirements...12
4.3 Scenarios and Use Cases ...12
4.4 Concerns and Architectural Decisions ...14

4.4.1 Concerns ..14
4.4.2 Architectural decisions ...15

5 Architectural views ..19
5.1 Overview ..19
5.2 Context View ..20
5.3 Functional View..23

5.3.1 High-level functional view ..23
5.3.2 Market Event Broker and Real-time Multi-Protocol Event Broker26
5.3.3 Intra-factory Interoperability Layer ...28
5.3.4 HMI Framework ...32
5.3.5 Big Data Analytics ..33
5.3.7 Decision Support System ..40
5.3.8 Simulation and Forecasting ...43
5.3.9 Marketplace ...45
5.3.10 Agent Management System ...46
5.3.11 Marketplace Agents ..48
5.3.12 Marketplace Portal UI ...52
5.3.13 Security Framework ..53
5.3.14 Matchmaker ..57

5.4 Information View ..59
5.4.1 Data Models ...60
5.4.2 Data Persistence ..70
5.4.3 Data Flow ...72

5.5 Deployment View ...86
5.5.1 Docker ..86
5.5.2 COMPOSITION Production Deployment ...87
5.5.3 Digital Factory Model ...89
5.5.4 Agent Management System ..90
5.5.5 Supplier agent ..91
5.5.6 Requester Agent ..91
5.5.7 Decision Support System ..91
5.5.8 Simulation and Forecasting Tool ...91
5.5.9 Matchmaker ...91

5.6 Operational view ..92
5.6.1 Configuration Management ...92
5.6.2 Monitoring ..92
5.6.3 Components ...92

6 System Quality Perspectives ..94
6.1 Security Perspective ..94

6.1.1 Authentication and Authorization ...94
6.1.2 Blockchain Uses ..95

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 4 of 134 Submission date: 2018-09-18

6.1.3 Cyber-Security ...99
6.1.4 Transport Layer ..100

6.2 Scalability Perspective ...101
6.2.1 Basic Concepts and Terminology ..101
6.2.2 Issue identification and analysis ..103
6.2.3 Scenarios for scalability requirements of the system ..103
6.2.4 Performance and Scalability Design ..104
6.2.5 COMPOSITION Scalability Design ..105

7 Summary and future work ...112

8 Appendix 1: The RAMI4.0 Model...113
8.1 IT Layers ..113

8.1.1 Asset Layer ..113
8.1.2 Integration Layer ..113
8.1.3 Communication Layer ..113
8.1.4 Information Layer ...113
8.1.5 Function Layer ...114
8.1.6 Business Layer ..114
8.1.7 Hierarchy Levels ..114

8.2 Life Cycle and Value Stream ...115
8.3 Industrie 4.0 Component Administrative shell ...115

9 Appendix 2: Deep Learning Toolkit REST service interface ...117

10 Appendix 3: CXL JSON Schema ...128

11 References ..131

12 List of Figures and Tables ...133
12.1 Figures ...133
12.2 Tables ..134

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 5 of 134 Submission date: 2018-09-18

1 Executive Summary

In this deliverable, the second version of the software architecture for the COMPOSITION project is described.

COMPOSITION has two main goals: The first goal is to integrate data along the value chain inside a factory
into one integrated information management system (IIMS) combining physical world, simulation, planning and
forecasting data to enhance re-configurability, scalability and optimisation of resources and processes inside
the factory to optimise manufacturing and logistics processes.

The second goal is to create a (semi-)automatic ecosystem, which extends the local IIMS concept to a holistic
and collaborative system incorporating and interlinking both the supply and the value Chains. This should be
able to dynamically adapt to changing market requirements.

The objectives are achieved by the use of number of IoT enabling technologies and services together with
sophisticated big data analytics and deep learning as well as a trusted framework based on blockchain
technology. The main services realised by COMPOSITION are:

• Material and Component Tracking

• Product Quality Monitoring

• Manufacturing Forecasting

• Automated Procurement

• Ecosystem Collaboration Framework

The COMPOSITION architecture has been designed with consideration to compliance with RAMI 4.0
(Reference Architecture Model Industrie 4.0).

1.1 Content and structure of this deliverable

The deliverable closely follows the structure outlined by the selected architecture documentation approach
described in Section 3.2. The remainder of the document is structured as follows:

Section 2 - Terminology: defines the used in the deliverable and terminology specific to the COMPOSITION
domain.

Section 3 - Introduction: identifies the purpose, scope and context of the deliverable, and the architecture
design and description methodology used. Provides a summary of architectural design decisions.

Section 4 – Stakeholders, provides an overview of the stakeholders, concerns, and requirements that drive
the architecture design.

Section 5 - Architectural views: documents the architecture in five views: Context, Functional, Information,
Development and Operational.

Section 6 - System Quality Perspectives: documents quality attributes cross-cutting several views in two
architecture perspectives: Security and Scalability.

Section 7 - Summary and future work: presents a summary of the current state of architecture development
and how future architecture design will proceed.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 6 of 134 Submission date: 2018-09-18

2 Terminology

Commonly used acronyms and the currently adopted domain-specific terminology used in the remainder of
the document is presented in Table 1: Acronyms and COMPOSITION-specific terminology below.

Table 1: Acronyms and COMPOSITION-specific terminology.

Term Definition

Agent Container An agent container is a set of intelligent agents interacting through the same,
shared transport protocol and referring to shared platform services such as the
Directory Facilitator, DF and the Agent Management Service, AMS.

AMQP Advanced Message Queuing Protocol, an open standard application layer
protocol for message-oriented middleware (ISO/IEC 19464).

Closed Marketplace
• COMPOSITION Marketplace owned by one stakeholder and typically offered

to a trusted subset of other COMPOSITION stakeholders.

• The Closed Marketplace can be public or private.

o A public, closed market will accept join requests by agents living in the Open
Marketplace

o A private, closed marketplace will accept agents only by invitation.

• A Closed Marketplace is structurally equivalent to the open marketplace

• A Closed Marketplace is physically separated to the Open Marketplace and
has typically a separate infrastructure of shared platform services including the
broker, AMS, DF, etc.

COMPOSITION
Ecosystem

The supply chain part of a COMPOSITION system, implemented by a
COMPOSITION Marketplace and involving suppliers, producers and logistics
services.

COMPOSITION
Marketplace

o A COMPOSITION Marketplace is an agent container.

Computerised
Maintenance
Management System
(CMMS)

A software system to schedule, manage, plan and track maintenance
operations, equipment, inventory and workflows.

Decision Support
System (DSS)

The component the helps the decision-making process based on a rule engine
and retrieving data from other components. It also visualises COMPOSITION
components data in various ways, sends notifications to users and extracts
knowledge with an imbedded KPIs tool.

GUI Graphical User Interface

HMI Human Machine Interface

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 7 of 134 Submission date: 2018-09-18

Integrated Information
Management System
(IIMS)

The Integrated Information Management System is a digital automation
framework that optimizes the manufacturing processes by exploiting existing
data, knowledge and tools to increase productivity and dynamically adapt to
changing market requirements.

IoT
Internet Of Things

JSON
JavaScript Object Notation is an open-standard human-readable data format.

JSON-LD
JavaScript Object Notation for Linked Data I a standard for embedding
metadata in JSON documents, linking them to an RDF model.

Key Performance
Indicators (KPI)

Key Performance Indicators are extracted from factory data data in the Decision
Support System and KPIs tool to create graphs.

Message Broker
A message broker is an architectural pattern for message validation,
transformation and routing. A message broker can receive messages from
multiple destinations, determine the correct destination and route the message
to the correct channel. Used interchangeably with “Real-time event broker” in
this report.

MQTT
MQ Telemetry Transport or Message Queue Telemetry Transport. A binary,
lightweight messaging protocol for small sensors and mobile devices (ISO/IEC
PRF 20922).

OPC-UA
OPC Unified Architecture, IEC 62541, is an open, SOA-based, platform-
independent machine to machine communication protocol for industrial
automation.

RDF-A
Resource Description Framework in Attributes is a W3C Recommendation for
embedding metadata in HTML and XML documents types, linking them to an
RDF model.

Rule Engine The heart of the Decision Support System, where rules about operational and
maintenance processes are created based on finite state machines or non –
deterministic state machines.

SSL
Secure Sockets Layer is a standard technology for securing internet
connections.

Supply chain The sequence of processes involved in the production and distribution of a
commodity

TLS
Transport Layer Security is the successor to version 3 of the SSL protocol,

Virtual Marketplace
• A Virtual Marketplace, or group is a "multicast" group of agents interacting with

each other in the context of a negotiation.

• The group can be:

o – persistent over negotiations or

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 8 of 134 Submission date: 2018-09-18

o – just be defined for a single negotiation exchange.

• A Virtual Marketplace lives in, and exploits the infrastructure of the Open
Marketplace.

Value chain The process or activities by which a company adds value to an article,
including production, marketing, and the provision of after-sales service.

XML Extensible Markup Language is an open-standard human-readable data format.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 9 of 134 Submission date: 2018-09-18

3 Introduction

This deliverable, D2.4 “The COMPOSITION architecture specification II”, describes the current state of the
architecture and results of the software architecture design activities for the COMPOSITION system up to and
after the M2 milestone in month 10 of the project. The results up to milestone M2 were reported in D2.3: “The
COMPOSITION architecture specification I”. The system architecture design activities are carried out in Work
Package 2 (WP2), “Use Case Driven Requirements Engineering and Architecture”, in the COMPOSITION
work package structure defined by the project specification (COMPOSITION, 2016).

3.1 Purpose, context and scope of this deliverable

The purpose of this report is to provide a high-level overview of the design of the COMPOSITION system. It
documents the main elements of the system and the relations between these elements. It also documents the
stakeholder concerns - expressed in the project specification and user requirements – that drive the
architecture design and the resulting design decisions that affect the system on an architectural level. This
deliverable will focus on the fundamental concepts and properties of the COMPOSITION system. Properties
and design decisions for architectural elements are described when these affect the overall design or are
needed for the understanding of the components’ impact on architecture design.

Detailed descriptions of the elements of the architecture, e.g. the Security Framework, Decision Support
System or Digital Factory Model, are available as separate deliverables. The reader should refer to these for
implementation details and specifications; references have been included in the appropriate sections. This
report will include some diagrams and descriptions from detailed deliverables. Sections in D2.3 that have since
been provided as separate deliverables have been abbreviated or left out of this document.

Several key functional requirements and architectural constraints are defined in the project specification,
available at the start of the project. Gathering and validation of requirements and definition of pilot scenarios
and use cases have been performed in parallel to the architecture definition process. The results of these
activities have been reported in D2.1 “Industrial use cases for an Integrated Information Management System”
and D2.2 “Initial requirements specification”. The D2.5 report “Lessons Learned and updated requirements
report I” provided an update of the requirements which has served as input to the architecture design activities
in WP2.

3.2 Architectural Design and Documentation Approach

As in D2.3, the documentation will adhere to the IEEE 42010 standard, using several viewpoints to frame the
concerns of the system stakeholders and illustrate the design decisions taken. Specifically, the IEEE 42010
compliant framework presented in (Rozanski & Woods, 2012) will be used. This has been extended with the
concept of perspectives, which are used to evaluate quality attributes cross-cutting several viewpoints, e.g.
security, evolvability or scalability.

The architecture reference model RAMI 4.0, developed in the Industrie 4.0, is used for integration of research
and technical development efforts in the area of industrial IoT. This collaboration and integration with other
initiatives is a strategic objective of the project (COMPOSITION, 2016).

3.2.1 Methodology

The inception phase (Kruchten, 2004) of the architecture design is documented in the project specification,
which introduces several canonical architectural elements connected to technical objectives, tasks and
deliverables, providing a basic functional decomposition of the system. An initial list of system components
was derived from this source in architecture workshops early in the project. Developing and integrating these
components is necessary to ensure that the strategic and technical objectives of the project can be met.

In subsequent workshops, this bottom-up design approach has been complemented by additional components
and design decisions on standards and architectural mechanisms (Kruchten, 2004) to integrate the
components. The design of individual components has been carried out in parallel to the architecture design.
Evaluation and revision of this design is conducted continuously in workshops and design meetings (no formal
architecture evaluation has been performed). As the components have matured and feedback from pilot
development and revised requirements have produced, the architecture design has become predominantly
top-down. The development work has been driven by high-priority use cases, and cross-cutting concerns with
architectural scope has been handled in separate design tracks involving key developer partners. With the

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 10 of 134 Submission date: 2018-09-18

component design and key architectural decisions in place, strategies and mechanisms for scalability,
evolvability and other quality attributes can be elaborated.

The COMPOSITION architecture design process and the architecture description in this document follows the
ISO/IEC/IEEE 42010 “System and software engineering – Architecture description” (ISO/IEC/IEEE42010,
2011), which superseded the IEEE 1471 “Recommended Practice for Architectural Description for Software
Intensive Systems” (IEEE, 2000). See the conceptual model of architecture descriptions from
(ISO/IEC/IEEE42010, 2011) below.

Figure 1: ISO/IEC/IEEE 42010 Architecture Description Conceptual Model1

As can be seen from the ISO/IEX/IEEE 42010 conceptual model of architecture descriptions, a viewpoint uses
a set of model kinds to frame a specific set of concerns that stakeholders have about a system. However,
quality properties such as security, performance or availability need to be considered across several
viewpoints. In (Rozanski & Woods, 2012), the complementary concept of architectural perspectives is
introduced to address these cross-cutting concerns.

We have addressed the system design from five viewpoints – context, functional, information, deployment
and operational - and two perspectives, the security perspective and the scalability perspective.

3.2.2 Reference Architecture Model Industrie 4.0

In COMPOSITION, the Reference Architectural Model Industrie 4.0 (RAMI 4.0)2 will be adopted to
communicate the scope and design of the system, to further collaboration and integration with other relevant
initiatives by framing the developed concepts and technologies in a common model.3 COMPOSITION
alignment with RAMI will be described in section 5.

RAMI 4.0 is a reference architecture model for Industrial Internet of Things (IIoT). It has been developed by
the Industrie 4.0 platform, submitted as DIN SPEC 91345 and is available as IEC Publicly Available
Specification 63088:2017. RAMI 4.0 is modeled on Smart Grid Architecture Model (SGAM), IEC 62262,
Enterprise-control system integration (IEC62264, 2013) and the IEC 62890 ”Life-cycle management for
systems and products used in industrial-process measurement, control and automation” (IEC, 2013). The
focus of RAMI 4.0 is on manufacturing, primarily modelling systems for the production process and product
life cycle.

1 http://www.iso-architecture.org/42010/cm/
2 https://www.zvei.org/fileadmin/user_upload/Themen/Industrie_4.0/Das_Referenzarchitekturmodell_RAMI_4.0_und_die_Industrie_4.0-
Komponente/pdf/5305_Publikation_GMA_Status_Report_ZVEI_Reference_Architecture_Model.pdf
3 Pictures in this section copyright “Umsezungsstrategie Industrie 4.0 – Ergebnisbericht, Berlin, April 2015”

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 11 of 134 Submission date: 2018-09-18

Figure 2: The three dimensions of the RAMI 4.0. (Status Report Reference Architecture Model Industrie 4.0

(RAMI4.0), 2015)

In the three dimensional model, existing standards and architectures and candidate solutions can be plotted,
overlaps and gaps can be identified and resolved. It provides a map of Industry 4.0 components, solutions
and requirements by the three axes IT Layers, Hierarchy Levels and Life Cycle and Value Stream.

The purpose of the reference architecture model is to promote common understanding of different
architectures for industry 4.0. It can be used to derive specific architecture models and align existing
solutions. Examples of applications are:

• Provide a shared understanding of the function provided by every layer and the defined interfaces

between the layers.

• To see where existing and emerging architectures fit in and allow discussing associations and details

of components.

• Identification of overlaps and the scope of preferred solutions

• Identification of existing standards, closure of gaps and loopholes in standards, minimization of the

number of standards involved

• Identify new business models and applications

• Identification of use cases for Industry 4.0

A more comprehensive description of the RAMI4.0 model can be found in Appendix 1: The RAMI4.0 Model.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 12 of 134 Submission date: 2018-09-18

4 Stakeholders, Concerns and Architecture Decisions

This section describes the stakeholders of the COMPOSITION system and their concerns. These concerns
are expressed in different form and in different artefacts. Scenarios and requirements express some of these
concerns. Although the system envisioned in the project specification is scoped to address the needs of all
these, priorities must be made. Finally, architecture decisions pertaining to fundamental concerns are
documented.

4.1 Stakeholders

The COMPOSITION system has several stakeholders, whose interests and concerns are expressed in the
project governing documents. These may be categorized in groups, here we use the canonical ones from
(Rozanski & Woods, 2012). The three key stakeholder groups for COMPOSTION have been identified as
developers and maintainers (grouped together since these are basically the same in this case), acquirers, and
users.

Acquirers are the European commission in H2020 framework, whose goals and concerns are stated in the
project specification (COMPOSITION, 2016) and the technical and strategic objectives therein. These describe
the main goals of the system, some software artefacts that will be delivered, and the need for collaboration
with other projects, and re-use of results, in the industrial IoT and factory of the future programmes.

The developer stakeholder group consist of the technical partners in the project, commercial- and research-
oriented. The concern of commercial partners is to produce exploitable results that can be sold as products or
services and produce innovations that can provide a competitive advantage in their respective market.
Research organizations need to produce significant contributions to their respective field and build platforms
and knowledge for further research. The concerns of these stakeholders are captured in the innovation and
exploitation documents, the DOA and to some extent in the requirements.

The user stakeholder group are the pilot partners and future users of the system, whose concerns are mainly
expressed in the scenarios, use cases (D2.1 “Industrial Use Cases for an Integrated Information Management
System”) and requirements (D2.2 “Initial requirements specification”, D2.5 “Lessons Learned and updated
requirements report I”.). These capture the needs of the manufacturing industry and the priorities of the pilot
partners.

4.2 Requirements

In a process parallel to the scenario development, described in report D2.2 “Initial requirements specification”,
several user requirements have been elicited. These have been entered into the project management system
(Atlassian JIRA) and complemented by additional non-functional and operational requirements added by the
developer stakeholders. In the initial requirements phase, 105 requirements have been gathered, quality
checked and improved.

The development efforts have been be guided by the tasks in the project management system directly
connected to the requirements. The initial list of requirements has been revised and the results reported in
D2.5 “Lessons Learned and updated requirements report I”. Further updated requirements will be reported in
D2.6 “Lessons Learned and updated requirements report II”.

4.3 Scenarios and Use Cases

Scenario workshops with mainly the user stakeholder group and some participants from the developer
stakeholder group have been conducted to evaluate how COMPOSITION could optimise processes for
manufacturing, logistics and supply chain collaboration within the scope of the pilots defined by Technical
Objective 3.1. This resulted in nine functional intra- and inter-factory scenarios for describing application areas
of the COMPOSITION system. These were detailed in 16 use cases for the pilots that capture user stakeholder
concerns, presented in D2.1 “Industrial Use Cases for an Integrated Information Management System”. These
use cases have undergone some revision in the second year of the project.

The design and development work have been organized around on a set of prioritized use cases from these
scenarios, to ensure that the architecture provides coverage of the base functional requirements. The use
cases have been organized in three tiers by priority based on importance to user stakeholders, developer
stakeholders, acquirers (by impact on COMPOSITION objectives). User stakeholders and developer

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 13 of 134 Submission date: 2018-09-18

stakeholders rated the use cases by the coverage they provided of the systems intended functionality,
innovation potential and exploitation potential. The use cases in Tier 1 have been first in priority to be
implemented, tier 2 started being implemented as Tier 1 were nearing completion and Tier 3 are to wait until
Tier 1 and 2 are ready. All use cases have been considered in design decisions, however. A set of business
modelling use cases have recently been introduced which are also to be implemented, if possible.

Table 2: Prioritized Use Cases

Tier Use Case Scenario
Tier 1 UC-BSL-2 Predictive Maintenance

INTRA-2

UC-KLE-1 Maintenance Decision Support
UC-KLE-4 Scrap metal collection and bidding process INTER-1
UC-ELDIA-1 Fill-level Notification – Contractual wood
and recyclable materials management INTER-2

Tier 2 UC-BSL-5 Equipment Monitoring and Line Visualization INTRA-1
UC-KLE-2 Delayed Process Step

INTRA-3

UC-BSL-3 Component Tracking
UC-KLE-7 Ordering raw materials INTER-3
UC-ATL-3 Searching for recommended solutions INTER-4

Tier 3 UC-KLE-3 Scrap Metal and Recyclable Waste
Transportation

INTRA-3

UC-BSL-7 Automatic long-term tracking of high value
materials for physical security
UC-BSL-4 Automatic Solder Paste Touch Up INTRA-4
UC-ATL-1 Selling software/consultancy

INTER-4

UC-ATL-2 Searching for solutions
UC-ATL/NXW-1 Integrate external product into own
solution

INTER-5

UC-NXW-1 Decision support over marketplace
Business
Modelling
Use Cases

UC-BM-1 Waste notification, certificates and collection BM Subcase of UC-KLE-4

UC-BM-6 Contract fulfilment and supply chain
management BM Subcase of UC-KLE-7

The use cases have driven the development work and will be the primary instrument for analysing the
functional suitability of the design. Architectural design work, e.g. for communication or persistence
mechanisms, has been performed in parallel with the involved development stakeholders.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 14 of 134 Submission date: 2018-09-18

4.4 Concerns and Architectural Decisions

4.4.1 Concerns

The goals of the COMPOSITION system are stated in the strategic and technical objectives in the project
specification (COMPOSITION, 2016) and can be found summarized in the table below. These are necessary
objectives stated by the acquirers of the system. There is an emphasis on interoperability, integration and
analysis of information from heterogenous sources, dynamic adaptation to market requirements and
innovativeness.

The concerns of the user stakeholders are covered by the use cases listed in section 4.2.

The developer stakeholders, i.e. the technical partners, are interested in the exploitability of COMPOSITION
results. The system should be compatible with the existing products and stakeholders should be able to supply
components and services complementing and extending the system on the COMPOSITION aftermarket.
Developer stakeholders use different programming languages and make use of existing software frameworks
in the project.

Developer and maintainer stakeholders also have an interest of offering their (software) services using the
COMPOSITION system (D2.1).

This creates requirements for the extensibility and evolvability qualities of the system, and the need of a set of
standards and interfaces that companies developing a component extending the COMPOSITION system can
adhere to. Components should not use programming language or platform specific inter component
communication. Opens standards should be used and special consideration should be taken to the ones
already supported by the development stakeholder products.

The formats, protocols and interfaces (“open, standard connectors”) should be designed to enable both use of
and extension of FI-WARE and FITMAN Generic Enablers as well as the integration of concepts and
technologies from other initiatives in Industrial IoT.

• Strategic Objective 1: Create a digital automation framework (the COMPOSITION IIMS) that optimizes the
manufacturing processes by exploiting existing data, knowledge and tools to increase productivity and
dynamically adapt to changing market requirements.

o Technical Objective 1.1: Innovate and extend the FI-WARE and FITMAN catalogues of Generic
Enablers with an innovative CPS-aware library of open, standard connectors specialised for
real-time architectures for interoperability in manufacturing to ease the integration and coupling
of data, information and knowledge from existing, heterogeneous, sources in the factory.

o Technical Objective 1.2: Research and develop innovative, multi-level, cross-domain analytics
detecting complex patterns in manufacturing big data sets, and implementing a continuous deep
learning toolkit for re-adaptation and adjustments of operational metrics, in real time.

o Technical Objective 1.3: Develop a set of modelling and simulation tools including a Decision
Support System (DSS) to help users build the digital models of processes and products and to
forecast impacts of reconfigurations of the production process.

• Strategic Objective 2: Enable the COMPOSITION ecosystem by designing and implementing a technical
operating system supporting connected and interoperable factories, with their stakeholders and, by
optimizing manufacturing and logistics processes through new innovative services and practices.

o Technical Objective 2.1: Design and implement a Log Oriented Architecture, based on
blockchain technology, ensuring the trusted, secure and automated exchange of supply chain
data among all authorized stakeholders, to connect factories and support interoperability and
product traceability along the supply chain.

o Technical Objective 2.2: Provide end-to-end security from factory floor to cloud services
encompassing major mechanisms in a seamless and fully integrated manner including
authentication and access control, transport security, as well as system security, while
maintaining suitable levels of IPR and knowledge protection.

o Technical Objective 2.3: Develop an interoperable agent-based marketplace, where each party
is represented by one or more agents, endowed with sufficient autonomy to set up exchanges
and to enable new economic collaboration models.

• Strategic Objective 3: Demonstrate and validate reference implementations of the full COMPOSITION
ecosystem in real value and supply chains to foster take-up and re-use at European level.

o Technical Objective 3.1: Implement, demonstrate and validate the COMPOSITION operating
system in two multi-sided pilots.

o Technical Objective 3.2: Collaborate and integrate successful concepts and technologies with
other relevant initiatives such as Industrial Data Space and FITMAN.

Figure 3: The strategical and technical objectives of COMPOSITION

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 15 of 134 Submission date: 2018-09-18

The context in which the COMPOSITION system will be deployed is expected to be heterogenous, with
different factories using different infrastructure. The architecture design will have to take this into account and
allow for flexibility in deployment of components and adaptation to existing infrastructure.

COMPOSITION services and applications should be possible to deploy independently of each other under
different licences to accommodate for the interests of the commercial consortium partners. Licensing must
allow for commercial usage of individual components or the entire system. Incorporating or applying open
source licensing affecting the possibility of commercial exploitation, such as GPL, is explicitly forbidden
(COMPOSITION, 2016).

Security should be seamlessly integrated in the entire system and allow for integration of components from
external sources into the COMPOSITION platform. The use of open standards is thus a requirement from the
security perspective as well.

4.4.2 Architectural decisions

The COMPOSITION project specification (COMPOSITION, 2016) provides a basic functional decomposition
of the system. This considers the objectives of the acquirers, the frameworks and components brought to the
project by developer stakeholders and provides a division of development work in alignment with the project
plan. The decision was made to build the system bottom up starting from the components given by the
breakdown in the project specification and revise this as needed. The aim has been to support an extensible
modular design where other components could be added as needed.

Existing components form developer partners are integrated in the system. COMPOSITION re-uses earlier
results, frameworks and standards familiar to the partners, e.g. the LinkSmart Middleware and the Symphony
BMS. This provides a code base to build on and provides compatibility with existing product lines, enhancing
exploitability of the results for the partners. The design of external interfaces and extension points have been
made to allow for the use of other frameworks providing similar functionality.

With these preconditions, a number of architectural design decisions, or choices for architectural mechanisms
(Kruchten, 2004), have been made to address the stakeholder concerns. These have been made in
architecture workshops, dedicated discussions, using input from the design process for individual components.
Below is a summary of architectural decisions.

The following sections will use some terms and concepts that will be explained in other sections.

 Development

The COMPOSITION system is comprised of existing and specifically developed components from several
development stakeholders with specific expertise. The use of heterogenous platforms and frameworks as well
as existing products from several development stakeholders within the COMPOSITION system will result in
different build chains and platforms being used. External actors in the inter-factory ecosystem are also likely
to use different technologies. This has made the project suited to a development approach where teams
dedicated to a specific system service apply the technology stack most appropriate to the task. Integration is
performed through shared use of standards, well defined interfaces and componentization.

This approach is also applied in the HMI development where several “micro frontends”45 are developed
independently and integrated in the portal.

Extensions and additions to the COMPOSITION system will have to support the standards used but may use
the frameworks and technology best suited for that component. No alignment of technical platforms or software
build chains is necessary.

 Deployment and System Management mechanism

The development stakeholders will be free use the most appropriate technology stacks and target different
runtime platforms. To provide both a consistent deployment and system management mechanism, all
components will be made available as pre-configured, container-based instances. As described in section
5.5.1, COMPOSITION have chosen Docker as the container implementation and uses Portainer as a
management tool. Orchestration of clusters of nodes in larger installations for load-balancing and failover may

4 https://www.thoughtworks.com/radar/techniques/micro-frontends
5 https://micro-frontends.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 16 of 134 Submission date: 2018-09-18

be performed using e.g. Kubernetes or Docker Swarm. Portainer is compatible with Docker Swarm mode,
which consequently is the first choice for managing clusters of deployment nodes.

 Communication Mechanism

Given the emphasis of extensibility, interoperability, analysis of heterogenous data and loose coupling in the
COMPOSITION system, the general communication mechanism for the system will be data-centric and
messaging-based, where factory data is published and interested components (performing e.g. analytical or
supervisory functions) subscribe to this data without direct addressing between components. This will be built
using standard message broker components with extensions for security, multi-protocol and multi-format
support.

The focus of COMPOSITION is on functionality that requires “human scale” response time, e.g. visualization,
simulation, forecasting rather than real-time device control in the sub-millisecond range. It is therefore not
required to build on very fast device-device integration protocols (e.g. Data Distribution Service (DDS)6) as a
communication layer, but rather include such protocols as a possible asset layer should it be needed.
Interoperability and integration of heterogenous data sources for analysis, optimization and decision support
are the primary concerns for the communication mechanism design.

The intra-factory IoT interoperability functionality builds on LinkSmart and Symphony BMS, which use MQTT
as its message-based communication mechanism. The developer stakeholders have extensive experience
with the LinkSmart platform, which has been used in several large IoT projects previously and using this will
be effective in developing the core interoperability functionality of the project. However, alternatives were
considered. Standards such as the Foundation Open Platform Communications-Unified Architecture (OPC-
UA)7 and DDS are already used in industrial applications. In terms of architectures for industrial applications,
the proposed solution has more similarities with the message-centric design of DDS than the more device-
centric model of OPC-UA. However, the platform allows both for directly addressing devices, requesting data
and subscribing to data by type without knowledge about the hardware involved. An OPC-UA adapter for
integration with compatible installations has been developed to address exploitation concerns. (OPC-UA is the
recommended standard for implementing the RAMI4.0 communication layer, and MQTT and AMQP are
defined transports in the OPC-UA Pub/Sub Architecture.)

4.4.2.3.1 Inter-factory communication

Data sharing between marketplace actors and agent communication is message-based and use the
COMPOSITION eXchange Language (CXL) extension to the Foundation for Intelligent Physical Agents (FIPA)
ACL language specification. Some external management interfaces and security (e.g. log-on, token validation)
will expose REST-based services over HTTP.

The AMQP protocol is used for intra-factory messaging in the COMPOSITION Marketplace. It is a very flexible
protocol that may be configured for different message routing schemes and emulation of other protocols such
as MQTT, STOMP, XMPP or the Publish-Subscribe Broker for the Constrained Application Protocol (CoAP)8.
It also supports fine-grained access control for message exchanges and queues. The project has selected
RabbitMQ as the implementation of this mechanism. RabbitMQ is open source software, extensible and has
support for multiple platforms.

4.4.2.3.2 Intra-factory communication

The external interfaces of components in the COMPOSITION system use RESTful HTTP interfaces for
request-response communication with other components. For message-based communication, e.g. sensor
and forecasting data, the MQTT protocol are used. Widely used in IoT applications, and with a low message
overhead, this protocol is already supported by several components in COMPOSITION. MQTT may be
transparently used by clients on top of an AMQP broker architecture.

The Intra-factory Integration Layer uses custom adapters for integration with sensor platforms and existing
systems.

The OGC SensorThings API Data Model is used for system-generated factory information passed between
COMPOSITION components.

6 http://www.omg.org/spec/DDS/
7 https://opcfoundation.org/about/opc-technologies/opc-ua/
8 https://www.rabbitmq.com/community-plugins.html

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 17 of 134 Submission date: 2018-09-18

 Security mechanism

The Security Framework will manage authentication and authorization of actors in COMPOSITION, and access
to the system data, service endpoints and HMI. The security framework has been integrated with the message
broker, thus allowing all components to use the security system in a uniform manner. Standards used will be
TLS, Open ID Connect, and Oath 2.0. Keycloak and EPICA are used to implement these standards, together
with components developed in COMPOSITION.

A Security Information and Event Management (SIEM) solution is being implemented to analyse large volumes
of messaging data and raise security alerts.

Blockchain functionality will also be integrated in the broker functionality, providing distributed trust for any
message sent through this mechanism. Multichain is used as the blockchain implementation in
COMPOSITION. This implementation and extension to the bitcoin protocol supports logging of immutable data
streams – not only asset transactions – which was a good match for COMPOSITION requirements.

A Reputation Model for the marketplace agent system is currently in the design phase.

 Data persistence mechanism

Component-specific configuration data and caching is handled inside the components, whereas regarding the
shop-floor data, the approach of reusing existing components from technical partners has been followed. Thus,
instead of implementing everything from scratch, COMPOSITION is relying on Symphony BMS not only for
collecting real-time data from external sources, but also for their persistence. Symphony BMS storage service
leverages on its internal mechanisms to save the information collected during its operation and provides
interfaces for retrieving it. In order to allow for the use of other frameworks that may provide similar functionality,
the design choice has been to create RESTful APIs that might be compliant also with most common standards
(or to-be), such as FIWARE and OGC Sensor Things API. This is discussed in more detail in section 5.4.2.

Data generated internally in COMPOSITION, e.g. output from a trained artificial neural network, uses the OGC
SensorThings format. Consequently, an OGC SensorThings compliant data store is used. DFM implements a
subset of the standard and has the necessary storage capacity for the pilot installations. However, there are
several implementations available for OGC SensorThings API, e.g. GOST9 and FROST10.

 Metadata mechanism

The Digital Factory Model (DFM) (COMPOSITION, 2016), described in section 5.4.1.2, is the system source
of information on classes and instances in the factory. It contains information on production lines, sensors, the
id of a sensor, what phenomenon it reports data for, format and unit of measurement.

Other parts of the system, such as the middleware, the message broker and the human computer interfaces,
will need this information when searching for or subscribing to messages containing data on specific objects
or types of objects. E.g., the intra-factory interoperability layer will publish information coming from a
temperature sensor.

This may be published containing metadata in-band, e.g. containing information on the unit of measurement
or associated production line, or the metadata may be located out-of band. In the latter case, components
subscribing to data for a production line will have to first locate the relevant data sources using the DFM and
then subscribe to data based in the identifiers of these data sources.

Some components are the source of all metadata regarding the data streams, e.g. the BDA IoT Learning
Agent, which publishes metadata in-band by default. The default is to communicate metadata out-of-band.
When new data sources are added, the metadata is communicated to the DFM via the message broker. There
is a well-defined mapping between the OGC SensorThings data model and the DFM schema.

 External interfaces, standards and protocols

JSON is selected as the internal and external communication data format. It is a text format that is completely
language independent but uses conventions that are familiar to programmers. Also, it is easy for machines to
parse and generate this format. These properties make JSON an ideal format for data-exchange.

Agents in the inter-factory marketplace communicate through messages encoded in a dedicated language
named COMPOSITION eXchange Language (CXL). CXL has been designed as a dialect of the well-known

9 https://www.gostserver.xyz/
10 https://github.com/FraunhoferIOSB/FROST-Server

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 18 of 134 Submission date: 2018-09-18

Foundation for Intelligent Physical Agents (FIPA) ACL language specification, with a dedicated syntax and
with reference to a well-defined set of ontologies for representing the message payload data. This is the
external interface through which actors in the marketplace interact and exchange data. The messaging
protocol used is AMQP.

Adaptation to external data sources in the intra-factory system is handled by the Intrafactory Adaptation Layer,
providing implementations for sensor communication protocols as well as custom adapters for e.g. existing
ERP systems. The internal interfaces and standards used are OGC SensorThings, with communication over
MQTT and REST-based services.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 19 of 134 Submission date: 2018-09-18

5 Architectural views

5.1 Overview

The strategic objectives of COMPOSITION state two main deliverables of the project: a digital automation
framework to integrate data along the value chain inside the factory, and a largely automatic ecosystem to
interconnect different stakeholders in the supply chain.

COMPOSITION has two main goals: The first goal is to integrate data along the value chain inside a factory
into one integrated information management system (IIMS) combining physical world, simulation, planning and
forecasting data to enhance re-configurability, scalability and optimisation of resources and processes inside
the factory to optimise manufacturing and logistics processes.

The second goal is to create a (semi-)automatic ecosystem, which extends the local IIMS concept to a holistic
and collaborative system incorporating and interlinking both the supply and value chains. This should be able
to dynamically adapt to changing market requirements.

Figure 4: COMPOSITION conceptual architecture

The digital automations framework combines the data sources in the factory value chain, data from the
production lines, ERP systems, forecasting, simulation and analytics data to form an integrated information
management system (the COMPOSITION IIMS). At the lowest level the Shop Floor Connectivity provides
access to devices, machines, equipment and sensors installed in the factory. The Industrial IoT Services layer
creates an Internet of Things environment and enables standardised communication, discovery, data
exchange and service innovation mechanisms.

The Industrial IoT Services feeds a number of business services with collected IoT and other production data:

Material & Component Tracking

A Realtime Location Tracker System keeps track of where products and other valuable components are on
the shop floor while an Asset Tracking Blockchain is used to log transfer and movements of components in
the manufacturing chain.

Production Quality Monitoring

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 20 of 134 Submission date: 2018-09-18

The Compliance Monitor is responsible for checking that a product is manufactured and handled according to
relevant regulations. The Realtime Product Defect Detector uses advanced data fusion and big data analytics
to detect any deficiencies in a product.

Manufacturing Forecasting

The Machine Failure Predictor uses deep learning and advanced big data analytics to predict failures of
machine and needs of maintenance. The Price Forecaster uses trained artificial neural networks to forecast
the price of products and components. A Production Simulation and Forecasting Engine allows shop managers
to simulate effects of re-configuration of processes inside the factory to optimise manufacturing and logistics
processes.

Automated Procurement

One of the main innovations of COMPOSITION is the use of agent technologies to automate the procurement
and negotiation process. Autonomous Supplier or Requestor Agents that negotiate and reach agreements with
other stakeholders. A Matchmaker helps in find and matching best available offers with request.

Ecosystem Collaboration Framework

A virtual marketplace is envisioned where each party is represented by one or more semi-autonomous agents.
To enable the COMPOSITION ecosystem an infrastructure for an Agent Marketplace is developed to support
dynamic and automated connections between stakeholders in the supply chain, making manufacturers,
suppliers and logistics interoperable and optimizable. The Market Event Broker propagates message between
different actors in the marketplace. Trust is achieved by the use of an Audit Log Blockchain to maintain an
immutable ledger of agreements and transactions.

Meta Data and Storage

Finally, IoT Storage allows for logging and storing of historical data from the shop floor. The Digital Factory
Model is a high-level representation of the shop floor, stations, cells, productions lines and all the IoT sensors.
The Manufacturing Ontology contains semantics about the market place.

Cyber Security, Privacy and Trust Framework

The Security Framework managing Cyber Security, Privacy and Trust, is a cross-cutting concern spanning the
entire platform, providing end-to-end security by means of standard and widely used protocols for identification
and distributed trust (e.g. OpenID and the Bitcoin blockchain protocol).

5.2 Context View

The Context View describes the system boundaries and interactions with its environment: how the system is
connected to actors in the marketplace and other systems, e.g. existing factory infrastructure.

Figure 5: The COMPOSITION system context view

The value chain IIMS interacts with the actors in the value chain and external systems in the factory, e.g.
Product Data Management (PDM), Manufacturing Execution System (MES) and Supervisory Control And Data
Acquisition (SCADA). Some analytics components in COMPOSITION use external data logs as input. The
COMPOSITION Marketplace Agent is the intermediary between the factory IIMS and the COMPOSITION

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 21 of 134 Submission date: 2018-09-18

Marketplace. The agent uses information from external systems for Product Data Management (PDM), Supply
Chain Management (SCM), Logistics or Customer Relationship Management (CRM) and/or data from
COMPOSITION to initiate and guide the actions it takes in the Marketplace. The Agents use the discovery,
communication and data sharing facilities of the COMPOSITION Agent Marketplace to create supply chains
and share factory information with business partners.

The intra-factory system manages assets in the manufacturing value chain (the RAMI4.0 Life Cycle and Value
Stream). For each such asset, whether it is a product or manufacturing equipment, data is collected and stored
by the industrial IoT services. From this data, key performance indicators and analysis models are extracted,
to support business services such as material and component tracking, product quality monitoring,
manufacturing forecasting and automated procurement in the ecosystem collaboration framework of the
COMPOSITION marketplace.

The COMPOSITION marketplace can be seen as a particular variation of a Multi-Agent System (MAS). MAS
have been widely investigated in research, and their application domains range from Distributed Constraints
Optimization (DCO) problems to coordination and delegation of computational tasks. While the adoption of
agent systems in automatic negotiation, i.e., for DCO problems, is not new, as witnessed by the huge amount
of literature available, application of such techniques in real-industrial environments, in a fully decentralized
set-up still presents some research challenge and offers possibilities for advancing the state of the art. As part
of the architecture specification process documented in this deliverable, activities on the agent marketplace
mainly lead to a fully de-centralized definition of MAS, including the de-materialization of traditional agent
containers into a much lighter set of collaborating software (agents) sharing a common communication
infrastructure and common agency services (i.e., white and yellow pages).

According to the COMPOSITION approach, agent containers are defined as follows.

An agent container is a set of intelligent agents interacting through the same, shared broker (can be a
cluster) and referring to shared platform services such as the Directory Facilitator11 and the Agent
Management Service.”

Differently from approaches, in which the agent container is seen as a central runtime environment where all
the agents belonging to a certain system live, in COMPOSITION agents are designed to live at the stakeholder
premises (or in its IT infrastructure). This permits on one hand, to improve trustworthiness of agents, and
acceptance, as no real code access is possible for entities other than the agent owner itself. On the other
hand, it permits to remove typical constraints of traditional MAS systems, e.g., (a) the single point of failure
represented by the Agent Container, (b) the scalability issues, (c) the techniques for enabling container-to-
container communication, (d) the performance issues related to central deployment of computationally
intensive agents. Moreover, the fully distributed approach proposed in COMPOSITION, reduces as much as
possible the typical overhead of intercommunicating agent containers. Agency services are in fact shared
naturally among distributed agents, thus removing the typical issues of duplication among containers and the
related synchronization and/or delegation problems of activities needed for effectively supporting agent search
and/or directory services.

While being decentralized by design, the COMPOSITION marketplace definition is centred on a so-called
communication broker, which might be identified as single-point-of-failure for the architecture. However,
several studies, and results in literature, show that design solutions can be adopted, based on clustered
deployment, which can ensure high resilience to failures for these kind of broker-centric messaging
infrastructures (see Section 6.1).

In COMPOSITION, an agent-based marketplace is simply defined as an “agent container”.

Despite this simple, technical, definition, several variations of the marketplace concept are introduced including
the distinction between open and closed marketplaces as well as the introduction of temporary association of
agents, or “virtual marketplaces”.

COMPOSITION foresees the possibility to have more than one market place running at the same time, serving
different communities. However, according to the project specification (COMPOSITION, 2016), the
marketplace must support the discovery of stakeholders not part of established supply chains. Assuming that
in first instance a single market place corresponds to an extended supply chain, the concept of a so-called
"open marketplace" can be introduced.

11 In COMPOSITION a more advanced version of such an agent, namely the MatchMaker, operating based on ontology models is
adopted.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 22 of 134 Submission date: 2018-09-18

A COMPOSITION Open Marketplace is “a COMPOSITION Marketplace open to any stakeholder having valid
COMPOSITION credentials”.

All players of the COMPOSITION ecosystem shall have a representative in the Open Marketplace. However,
some stakeholder might decide to invite other stakeholders to participate in a Closed Marketplace, e.g., to
protect/isolate certain supply chains. Such an invitation is managed through suitable agent interaction (i.e.,
messages) and/or through a dedicated marketplace portal. Closed Marketplaces are structurally equivalent to
open marketplaces. The main difference with respect to an open marketplace is that a closed marketplace is
a separated marketplace with its own infrastructure, e.g., AMS, DF and communication broker. Closed
Marketplaces typically run on the premises of the marketplace owner and are subject to additional join and/or
participation policies defined by the marketplace owner. The closed market place operations and exchanges
are "isolated" from the open marketplace. A closed marketplace is defined as follows.

“A COMPOSITION Closed Marketplace is a COMPOSITION Marketplace owned by one stakeholder and
typically offered to a trusted subset of other COMPOSITION stakeholders. The Closed Marketplace can be
public or private. The former will accept join requests by agents living in the Open Marketplace while the latter
will accept agents only by invitation. A Closed Marketplace is physically separated by the Open Marketplace
and has typically a separate infrastructure including the broker, AMS, DF, etc.”

In case collaboration within agents shall occur on a temporary basis, Virtual Marketplaces, are supported, e.g.,
through grouping mechanisms similar to multicast communication. In particular,

“A Virtual Marketplace, or group, is a "multicast" group of agents interacting with each other in the context of
a negotiation. The group can be persistent over negotiations or can just be defined for a single negotiation
exchange. A Virtual Marketplace lives in, and exploits the infrastructure of an Open Marketplace.”

While these technical innovations are still subject of active research, and will certainly be refined during the
project lifespan, they already open new exploitation possibilities for the COMPOSITION marketplace concept
and contribute to lower the technology acceptance level for industrial stakeholders.

More specifically:

• The Distributed Marketplace derives from strict interactions with the COMPOSITION industrial
partners and provides means to ensure trust on the system, as the involved stakeholders retain full
control on their software representatives on the marketplace. Moreover, it opens possibilities for new
businesses in the supply chain, e.g., the marketplace infrastructure provider, which can be
independent from involved stakeholders and might require a fee for using provided services. Such
services include basic connectivity, agency services and the possibility for stakeholders to define and
run their own Closed Marketplaces.

• The Closed Marketplace allows the marketplace owner, typically the “central actor” of a supply chain,
to keep control on involved partners and to ensure a certain degree of reliability of actors involved in
the chain(s). This concept provides a tuneable tool to trade-off the need of marketplaces open to
possibly new stakeholders (Open Marketplace) and the contrasting need of having trusted, certified
suppliers able to guarantee proven quality in provided materials / services. This ability to tune the
“openness” of a certain marketplace is a relevant factor for effective adoption of COMPOSITION,
possibly opening access to very controlled supply chains, e.g., those subject to strict certification
processes.

• While being central to the marketplace, supply chain formation and related activities (e.g., post-sell
services) are not the only focus of the marketplace. Active advertisement and support to service /
stakeholder search is a valuable asset, as witnessed by explicit requirements set by the project SME
providing added value services, e.g., consultancy, integration and customization. The inclusion of such
needs in the initial design of the COMPOSITION marketplace shall increase the overall exploitability
of the project outcome, by widening the possible stakeholder base.

• To form and integrate supply chain as discussed above, sharing of information along the supply chain
is crucial. Products are nowadays composed of parts from different suppliers and are possibly being
assembled in more than one manufacturing plant. This has often been achieved through custom point-
to-point integrations with specific partners. The agent marketplace will enable data sharing for products
and production processes with other actors in the supply chain in a secure, flexible and standardized
manner. Access-controlled closed or virtual marketplaces and a reputation model for agents will make
it easier to select trustworthy partners with which enterprise data can be shared.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 23 of 134 Submission date: 2018-09-18

5.3 Functional View

The purpose of the functional view is to describe the main functional elements of the system; their roles and
responsibilities, interfaces and dependencies.

5.3.1 High-level functional view

Figure 6: High-level functional view of COMPOSITION architecture

The above diagram describes the COMPOSITION system from business architecture functional view. Generic
functional components like Complex Event Processing (CEP) and Deep Learning ANNs (Artificial Neural
Networks) are used to implement business specific functionality, e.g. machine failure prediction. The Intra-
factory Interoperability Layer connects external factory systems and heterogeneous sensors and provides a
uniform model and set of protocols for handling this information to the other packages. The Security Framework
provides authentication, authorization, SIEM (Security Information and Event Management), blockchain
services and a trust model to the inter – and intra-factory system. Some functional packages are part of both
the inter- and intra- factory system, e.g. the common HMI framework and the Message Broker.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 24 of 134 Submission date: 2018-09-18

It is worth mentioning that the main differences between the Deep Learning Toolkit and Dynamic Reasoning
Engine have been highlighted during the architecture definition workshops. The former acts as a continuous
learning toolkit for providing predictions on both historical and live data streams from the shop floor level based
on Artificial Neural Networks models and supervised learning techniques. The latter provides simulations to
needed components, such as the Decision Support System, based on both live and virtual data in a
bidirectional manner, simulating possible criticalities adding hypothetical data perturbation to live streams.

Figure 7: COMPOSITION Component dependencies

The external interfaces of a generic COMPOSITION component providing business function (in the RAMI4,0
Functional Layer) is illustrated in the above diagram. New analysis tools need only to conform to the relevant
interface specifications (and the deployment design) to be integrated into the system.

 RAMI 4.0

A mapping of the COMPOSITION system components to RAMI 4.0 Layers can be seen in Figure 8.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 25 of 134 Submission date: 2018-09-18

Figure 8: A mapping of COMPOSITION functional packages to the RAMI 4.0 Layers

The COMPOSITION system scope and pilots cover the intra-factory functionality from "Field Device" to "Work
Center" via the IIMS and has a special emphasis on the inter-factory ecosystem of the "Connected World",
provided by the interoperable agent-based marketplace and the blockchain-based log-oriented architecture,
providing secure and trusted exchange of supply chain data between independent parties.

Life cycles of both types and instances of products and machines is covered by COMPOSITION, where
complex pattern detection, deep learning networks and simulation capabilities may be used both for
operational management and continuous improvement of factory equipment and products.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 26 of 134 Submission date: 2018-09-18

The administrative shell can be implemented at various levels in the COMPOSITION system. The BMS (or
other possible implementation mechanisms of the Adaptation Layer of the Intrafactory Interoperability Layer)
create administrative shells for the connected assets (see section 5.3.3.2). More complex administrative shells
for production lines are implemented inside the IIMS using other components such as the Big Data Analytics,
Decision Support System or Simulation and Forecasting Tool. The I4.0 components will be layered on top of
each other and more than one administrative shell may exist for the same asset or combination of assets.

The project has implemented an adapter for OPC-UA, the recommended communication standard in RAMI4.0.
MQTT and AMQP, which are defined transports in the OPC-UA Pub/Sub Architecture. The Administration
Shells for these assets are realized in the Intra-factory Integration Layer.

5.3.2 Market Event Broker and Real-time Multi-Protocol Event Broker

The role of the Market Event Broker is to manage message-based communication in the agent-based
marketplace. The Real-time Multi-Protocol Event Broker manages the streams of factory data in the intra-
factory integration layer and loosely coupled communication between components in the intra-factory system.

Primary concerns when designing both components were security, scalability and extensibility. Multiple
protocols and formats should be supported. The use of open standards, ease of integration of the chosen
implementation and compatibility with software brought into the project was desired.

The Market Event Broker and Real-time Multi-Protocol Event broker have been merged in one component
referred to as the Message Broker. This can fulfil both roles, using different configurations.

The Message Broker is described in further detail in D6.1 “Real-time Event Broker I”. Scalability design for the
inter-factory system is described in D6.3 “COMPOSITION Marketplace I”.

The AMQP protocol will be used for component communication and message routing in the inter-factory
system. It is a very flexible protocol with high-level configurability for different message routing schemes and
emulation of other protocols. The more lightweight MQTT protocol will be used for the components in the intra-
factory IIMS. Most COMPOSITION components already implement support for MQTT. MQTT may be
transparently used by clients on top of an AMQP broker architecture.

The COMPOSITION project selected RabbitMQ12 as the implementation mechanism for the message broker.
This was suggested in the inception phase documented in the project description (COMPOSITION, 2016).
RabbitMQ is a widely used open source message broker13 with an extensible architecture. It implements the
AMQP 0-9-1 protocol14 and can through extension mechanisms, plugins, support the most common
messaging protocols, e.g. MQTT, STOMP and XMPP. Extensions and adapters can be written to support
other messaging patterns, protocols and security management solutions.

RabbitMQ implements AMQP 0-9-1 and the AMQP concepts of brokers, messages, producers, exchanges,
queues and consumers. A publisher – an application that produces messages - sends a message to an
exchange, where it is routed to one or more queues. The message is then pushed to (or pulled by) a
consumer – an application that processes messages - for processing. Exchanges and brokers may reside on
different brokers. The topology of the message routing is controlled by the publisher and consumer, which
allows for very flexible communication design. Exchanges and brokers are access-controlled, which allows
for fine-grain security control over the communication.

To provide an integrated security solution for COMPOSITION, an adapter has been developed to allow the
authentication and authorization mechanisms of RabbitMQ to be managed by Keycloak, the RabbitMQ
Authentication/Authorization Service (RAAS). The same security system can thus be used for intra-factory
business user identity, marketplace partners and system components. An adapter for the blockchain
distributed trust mechanism is being built to allow the integrity and non-repudiation of broker messages.

When the broker is used for inter-component communication, logical addressing of components can be used
– a component identifier instead of a network address and port – decoupling components and providing a
consistent way to address and find them for other components. As mentioned above, authentication and
authorization can also be managed in a uniform manner via the broker. As extensibility is a concern for the
developer stakeholders, it is desirable to use the broker for all component communication. De-coupled,
message-based communication suits the data-centric nature of the COMPOSITION system well, where

12 https://www.rabbitmq.com/
13 At the time of writing 35.000 production deployments , https://www.rabbitmq.com/
14 http://www.amqp.org/sites/amqp.org/files/amqp0-9-1.zip

https://www.rabbitmq.com/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 27 of 134 Submission date: 2018-09-18

several components independently subscribe to the same information. However, some exchanges are more
suited for request-response interaction, e.g. REST APIs used for querying or administration. An adapter for
RabbitMQ has been developed provide transparent request-response messaging (tentatively named
“RabbitHole”). A bit simplified, this routes HTTP requests through an HTTP Proxy, resolves the base URL to
a queue where the HTTP request is put. Clients (the REST services) may subscribe to the requests directed
at them and return the response without exposing any public HTTP ports. The RPC Executer handles the
request-response transparently to the service. This implements request and response buffering, work
queues, load balancing, logical addressing and the RAAS provides integrated security for all calls. Further
work (outside the scope of COMPOSITION) will extend this to a general purpose microservice execution
framework.

Message Broker

HTTP
Proxy

RPC Executer

RPC Executer

RPC Executer

...

RAAS

Call Queue

Call Queue

Call Queue

Service Catalogue

...

Figure 9: RPC over AMQP

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 28 of 134 Submission date: 2018-09-18

5.3.3 Intra-factory Interoperability Layer

Figure 10: Intrafactory Interoperability Layer and Shop-floor

The Intra-factory Interoperability Layer (IIL) has two main goals, defined in the Description of Action
(COMPOSITION, 2016). The first one is to provide a model for interconnecting the COMPOSITION ecosystem
in the intra-factory scenario, providing integration and adaptation in the COMPOSITION IIMS of shop-floor
data sources, i.e. sensors, control units (e.g. PLCs) and existing software systems (e.g. Manufacturing
Execution System (MES). The second one is to ensure the conformity between communications among
interconnected components. The involved technology has been provided by development partners of
COMPOSITION, with extensions and additions of the connectors that will be defined, developed and deployed
to integrate the assets used in the pilot installations.

A detailed description of the IIL can be found in deliverable D5.8 “Intrafactory Interoperability Layer I”.

The IIL spans two RAMI4.0 Layers: the Interoperability Layer and the Communication Layer. The RAMI4.0
Integration Layer performs digitization of assets; the mapping from the physical world to the digital and
provides virtualization of shop-floor resources. The main component here is the Building Management
System (BMS) which fulfils the requirements for COMPOSITION – other possible implementations, e.g. the

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 29 of 134 Submission date: 2018-09-18

IoT Hub described in D2.3, are optional for the exploitation phase of the project. The RAMI4.0
Communication Layer provides standardized data formats, protocols and interfaces from the Integration
Layer to the Information Layer, which processes and stores data and events. The Message Broker and
connected micro services are responsible for this task. Interface endpoints for components are managed by
the Service Catalog. The intra-factory communication system manages all internal communication in
COMPOSITION.

The interfaces exposed by the IIL are the Service Catalog API, the BMS OM API, and the Message Broker
MQTT publish-subscribe mechanism. It interacts with the heterogeneous factory CPS systems, other
COMPOSITION components and the security framework. All data from the factory and data generated by
COMPOSITION is published using JSON format according to the OGC SensorThings Data Model.

Sensors, Sensors Buffering and Sensors Gateways will be developed and adopted from existing technology.
The BMS is provided by a project development stakeholder and is the translation layer providing shop floor
connectivity from sensors to the COMPOSITION system. Raw data storage will be added for offline debug
purposes. Consideration will be taken to Technical Objective 1.1.

• Individual partners’ responsibilities and work package outputs are highlighted in the followings:

• The middleware is the main recipient in which the interoperability of single components acts.

• LinkSmart is a well-known middleware solution per se and will be customized to satisfy
COMPOSITION requirements.

• Keycloak is a virtual layer that ensures authorization and authentication. Like all security related
measures, it will be deployed by the Security Framework.

• The Big Data Analytics provides Complex Event Processing (CEP) capabilities for the data provided
by the intra-factory integration layer.

• The Hidden Storage is a storage not accessible from the outside in which aggregated data are stored
for debug purposes, i.e. re-bootstrapping already trained artificial neural networks belonging to the
Deep Learning Toolkit and to the Dynamic Reasoning Engine.

• The Deep Learning toolkit component for this intra-factory scenario and as described in next section,
it foresees a private connection with the Big Data Analytics that mediates all interconnection with the
IIMS and all other components connected through the Intra-factory interoperability layer.

• The Visual Analytics component is the reporting interface of the Decision Support System and
Simulation and Forecasting Toolkit.

• The Dynamic Reasoning Engine is part of the Simulation and Forecasting Toolkit.

• The Decision Support System uses process models to guide the production process.

Human Machine Interfaces are to be considered connected at the very end of these data streams exchanging
components and serve the interaction with human beings whereas the automated processing happens
underneath the surface. The aggregated data is also forwarded to the COMPOSITION Agents where it is used
to support the agent decision making.

BMS, LinkSmart and the RabbitMQ message broker are mature and components that have been deployed in
many other systems. Final deployment won’t foresee any meaningful change in the architecture of the Intra-
factory interoperability layer, in fact a well-established and reliable communication layer dwells its foundations
in the homogenized components’ pool that has been specified, developed and ready to be deployed.

 LinkSmart

LinkSmart was originally developed within the Hydra co-founded EU project (The Hydra Project, 2018) for
Networked Embedded Systems. It is an enabler allowing heterogeneous physical devices to be incorporated
into their applications through easy-to-use web services for controlling any device. In spite of its inclusion in
the Intra-factory scenario, a reduced set of LinkSmart functionalities have been required by components, so a
stripped down version has been supposedly envisaged, leaving in the Inter-factory Interoperability Layer an
agile tool for improving the versatility of the broker-based communication system infrastructure. The design
iterations in the project will produce a LinkSmart configuration that suits the COMPOSITION ecosystem.
Furthermore, the LinkSmart middleware has been mentioned above and while its inclusion in the intra-factory

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 30 of 134 Submission date: 2018-09-18

layer is certain, there are a number of modifications made to it and its deep connection with the Big Data
Analytics has created the IoT Learning Agent which is a key component of the IIMS.

• Components used include

o Resource catalogue, works as resources index

o Service catalogue, works as service index

o Event Aggregator, parses messages to ensure well-formed and conformity in data streams

 Building Management System

The Adaptation Layer is part of the Integrated Information Management System (IIMS) of COMPOSITION.
The main purpose of this layer is allowing a seamless, homogeneous representation and interconnection
among all the cyber-physical systems in the factory and the software modules in the upper layer (data
processing, decision support, etc.). It has been designed considering the general principles set in the RAMI
4.0 specification, and is split into two logical sub-layers, highlighted in yellow and green in the picture below.

Figure 11: Components and interactions of the BMS: LinkSmart middleware, Configuration Shell, BMS (Building
Management System), RAMI Administration Shell

The lower part (yellow in picture above) is built on top of the existing BMS software modules provided by NXW,
which guarantee low level interoperability with a number of different field buses (this is positioned at the Asset
/ Integration RAMI layers). Such modules gather data read from the sensors installed in the local environment,
interconnected through different field buses (e.g. KNX, Modbus, BACnet), and organize it into a uniform Data
Model. This model provides a representation of sensor and actuator data which is independent of the physical
type of underlying devices (Information/Communication RAMI layers).

It supports KNX, BACnet, Modbus/TCP and, Modbus/RTU as well as, several other proprietary control
protocols. It can be interconnected with specific field buses either directly - such as via RS232/485 serial ports
or GPIOs - or through the use of IP based gateways - such as KNX IP router and/or interface, Modbus/TCP
gateways. It, can be extended by developing modules that can be dynamically plugged into its core. Regarding
to COMPOSITION, the HAL component has been enhanced in order to support communications via MQTT,
which is the protocol used by sensors that are going to be deployed in the project use cases (e.g. vibrometer
sensor, fill level sensor, etc.).

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 31 of 134 Submission date: 2018-09-18

In general, the HAL exposes a virtualized version of the underlying physical objects to the upper layers, from
which information can be read and actuations can be performed. Moreover, in order to be flexible towards the
configuration of the integrated devices, the component provides a user interface as well, that is the equivalent
of an Administration Shell in the RAMI architecture.

The BMS HAL and COMPOSITION Object Mapper expose a virtualized version of the underlying physical
objects from which information can be read and actuations can be performed, thus providing the equivalent of
an Administration Shell in the RAMI architecture.

The upper part (green the picture above) is made of components belonging to the LinkSmart architecture and
provides both real-time and historical data connectors for the other IIMS components. Communication between
LinkSmart and the BMS components will be done through standard LinkSmart interfaces, implemented into
the BMS Agent Process.

 OPC Connector

OPC (OPC Foundation, 2018) is the most common standard used when interfacing factory equipment, such
as PLCs and HMIs. In order to be able to integrate these data sources and address exploitability concerns, a
connector has been developed within COMPOSITION. The responsible development stakeholder is a member
of the OPC-UA Foundation, which allows use of OPC Foundation source code in commercial products and
Distribution of OPC Foundation source code.

The OPC standards are governed and maintained by the OPC-Foundation15. The connector developed within
COMPOSITION supports both the older OPC-DA standard, which is still very common, and the newer OPC-
UA (OPC Universal Access) standard.

PLCPLC

COMPOSITION OPC Connector Components

OPC UA/DA Server OPC UA or DA Client

COMPOSITION
Intrafactory interoperability Layer

Buffer

Data Sender

Subscribe To OPC Tags

Updated OPC Tag Values

Control
OPC DA or UA Client

Set Tag values

Buffer Cleaner

Figure 12: COMPOSITION OPC Connector

In Figure 12, the components of the COMPOSITION are shown:

• OPC UA or DA Client: Communicates with OPC server.

15 OPC-Foundation https://opcfoundation.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 32 of 134 Submission date: 2018-09-18

• Buffer: Buffers the values before sending them to the Intra-factory interoperability layer.

• Data Sender: Reads the Buffer and send the acquired data to the Intra-factory interoperability layer.

• Buffer Cleaner: Cleans the data buffer, removing all transmitted data.

• Control OPC-DA or UA Client: Used to set tags in the OPC server, i.e. doing control. This component
is not yet developed.

Because the very different nature of the OPC-DA and OPC-UA Client these will be described in more detail in
the following sub chapters. The other components are developed in .net core and can be deployed in Windows,
Docker Containers and Linux (Including Raspbian).

5.3.3.3.1 OPC-DA Client

OPC-DA is an older standard that is built on top OLE in Windows and it requires Windows to be able to run.
The OPC-DA standard includes a simple “tag” model where it is possible to list the available tags. The
metadata information available for the tags is quite simplistic. Basically, it contains the name, datatype, update
frequency and finally if it is a read only or writable tag. OPC-DA includes a messaging model where the clients
can subscribe to tag value changes.

The OPC-DA Client in COMPOSITION is built on top of the reference OPC-DA Client provided by the OPC-
Foundation which should allow for good interoperability. The basic steps of the functionality in the OPC-DA
Client is:

• List all the available tags in the OPC-DA server.

• Create subscriptions for the tags

• Listen to tag value changes and update the buffer database.
As mentioned before the OPC-DA client needs to run on a machine with Windows operating system.
Typically, it is installed in the HMI or SCADA PC.

5.3.3.3.2 OPC-UA Client

OPC-UA is a more modern standard that is open source and can run on multiple platforms. The standard
includes a certificate-based security model. The OPC-UA standard has a more advanced data model where
items can belong to different namespaces and can describe methods, variables and objects. For instance, it
is possible to describe that variables belong to a specific machine that has a location. OPC-UA includes a
messaging model where the clients can subscribe to item value changes.

The OPC-UA Client in COMPOSITION is built on top of the reference OPC-UA Client provided by the OPC-
Foundation which should allow for good interoperability. The basic steps of the functionality in the OPC-UA
Client is:

• List all the available items that are of type variable in the OPC-UA server.
o The OPC-UA Client can filter items using namespaces or objects to only include information

regarding certain equipment.

• Create subscriptions for the tags

• Listen to tag value changes and update the buffer database.

The OPC-UA client can run in all environments supported by .net core which means that most Linux based
environments such as Raspbian on Raspberry PI can be used for deployment of the OPC-UA client.

5.3.4 HMI Framework

The human machine interfaces of COMPOSITION are comprised by front ends to different monitoring,
analytics, and management backends. These are developed by the specialist teams in the respective area as
self-sustained, vertically integrated components. However, these are integrated into a coherent user interface
with a common look-and-feel as “micro frontends”1617, a design analogous to the well-known concept of micro
services.

16 https://www.thoughtworks.com/radar/techniques/micro-frontends
17 https://micro-frontends.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 33 of 134 Submission date: 2018-09-18

The implementation mechanism used in COMPOSITION to realize this is Web Components, a set of features
that allow for extending HTML with reusable custom elements with encapsulated styling and custom behaviour.
These features are under review by W3C18 to be added to the HTML and DOM specifications. The Web
components de-facto standards are based on existing web standards and consist of four specifications:

• Custom Elements – The Custom Elements specification defines the APIs for designing and using new
types of custom DOM elements.

• Shadow DOM – The Shadow DOM specification defines encapsulated style and HTML markup that
can be rendered by the browser without being included in the main document DOM tree

• HTML Imports – The HTML Imports specification defines how to include and reuse HTML documents
in other HTML documents.

• HTML Templates - The HTML template element specification defines an HTML fragment which is not
rendered when the page is loaded but stored until it is instantiated via JavaScript.

These work across the major browsers (Chrome, Opera, Safari, Firefox), with backward compatibility
implemented using JavaScript libraries for browsers that do not support a specification (“polyfill”). Custom web
components can be used with any JavaScript library or framework that works with HTML.

 HMI Integrations

Web components are used for the common parts of the HMIs such as login and menu in order to give the user
the impression of one single application when in fact it is multiple applications developed by different partners
using different frameworks. These components are created separately from the marketplace applications with
their own style and functionality. Once created they need to be implemented by each application.

Figure 13: Common HMI Components

The navigation and login will be shared, configurable components. The menu can be configured through a
RESTful API with a persistent backend, where each application adds the menus and submenus related to that
application. The menu will receive information about the signed in user, since the menus look different
depending on the user role.

Custom components can communicate in a loosely coupled fashion via DOM events and attribute updates on
custom components through Javascript. Security mechanisms and style information is shared, like the
common menu.

5.3.5 Big Data Analytics

Manufacturing in assembly lines consist in a set of hundreds, thousands or millions of small discrete steps
aligned in a production process. Automatized production processes or production lines, they produce for each
of those steps small bits of data in form of events. The events possess valuable information, but this information

18 https://www.w3.org/standards/techs/components#w3c_all

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 34 of 134 Submission date: 2018-09-18

loses the value through time. Additionally, the data in the events usually are meaningless if they are not
contextualized, either by other events, sensor data or process context. To extract most value of the data, it
must be process as it’s produced. In other words, in real-time and on demand. Therefore, we prose for the Big
Data Analysis; the usage of Complex-Event Processing for the data management coming from the production
facilities. In this manner, the data is processed at the moment when it is produced extracting the maximum
value, reducing latency, providing reactivity, giving it context, and avoiding the need of archiving unnecessary
data.

The Complex-Event Processing service is provided by the LinkSmart® Learning Service (LS). The LS is a
Stream Mining service that provide means to manage real-time data for several propose. In the first place, the
LS provide a set of tools for collect, annotate, filter, aggregate, or cache the real-time data incoming from the
production facilities. This set of tools facilitate the possibility to build applications on top of real-time data.
Secondly, the LS provide a set of APIs to manga the real-time data lifecycle for continuous learning. Thirdly,
the LS can process the live data to provide complex analysis creating real-time results for alerting or informing
about important conditions in the factory, that may be not be seeing at first glance. Finally, the LS allows the
possibility to adapt to the productions needs during the production process.

Below, we discuss the most relevant developments related to the Big Data Analytics. For more detail, please
see deliverable D5.1 “Big data mining and analytics tools I”.

The Learning Agent (component in implementing the Big Data Analytics) started development in 2014 in the
ALMANAC project as a simple CEP for Smart Cities and was presented in (Bonino, et al., 2015). Since then,
the LA has been developed and transformed in a self-managed learning orchestrator service that combined
Complex-Event Processing and Machine Learning and other techniques. Specifically, in COMPOSITION there
has been the following improvements:

• Python interoperability layer for programmers or Python SDK

• Micro-batch learning handling for non-iterative learning models

• Implementation and testing of a default detection model for SMTs using the Python SDK and Random
Forest model.

• Implementation of the JWS standard for the I/O API.

• Full Dockarized distribution

• Introduction of CI for quality assurance using automatic testing. This includes

o Development of Docker based Integration Test for Statement API

o Development of Docker based Integration Test for CEML API

Figure 14: LinkSmart® Learning Service Architecture Sketch

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 35 of 134 Submission date: 2018-09-18

• Other smaller improvements and fixes had been done. For more detailed information please check
the LinkSmart® project documentation19 and source20 code release notes.

Figure 15: DLT and LA integration

Additionally, an important development is the integration between DLT and the LA. The DLT chapter, the
integration of the DLT using the Python Pyro adapter will be explain by introduction the different parts of the
adapter. The adapter will implement the different phases of the CEML (explain below).

 The Complex-Event Machine Learning methodology

The Complex-Event Machine Learning (CEML) (Carvajal Soto, Jentsch, Preuveneers, & Ilie-Zudor, 2016) is a
framework that combines Complex-Event Processing (CEP) (Cugola & Margara, 2012) and Machine Learning
(ML) (Andrieu, De Freitas, Doucet, & Jordan, 2003) applied to the IoT. This means that the framework was
developed to be deployed everywhere, from the edge of the network to the cloud. Furthermore, the framework
can manage itself and works autonomously. The following section briefly describes the different aspects that
CEML covers. The framework must automate the learning process and the deployment management. This
process can be broken down in different phases: (1) the data must be collected from different sensors, either
from the same device or in a local network. (2) The data must be pre-processed for attribute extraction. (3)
The learning process takes place. (4) The learning must be evaluated. (5) When the evaluation shows that the
model is ready, the deployment must take place. Finally, all these phases happen continuously and repetitively,
while the environment constantly changes. Therefore, the model and the deployment must adapt as well.

 Data Propagation Phase

Data in the IoT is produced in several places, protocols, formats, and devices. Although this deliverable does
not address the problem of data heterogeneity in detail, the learning agents require a mechanism to acquire
and manage the heterogeneity of the data. The mechanism must be scalable and, at the same time, the
protocol should handle the asynchronous nature of IoT. Finally, the protocol must provide tools to handle the
pub/sub characteristics of the CEP engines. Therefore, we have chosen MQTT21, a well-established Client
Server publish/subscribe messaging transport protocol. The topic based message protocol provides a
mechanism to manage the data heterogeneity by making a relation between topics and payloads. It allows
deployments in several architectures, OS, and hardware platforms; basic constraints at the edge of the

19 https://docs.linksmart.eu/display/LA
20 https://code.linksmart.eu/projects/LA/
21 MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. Source http://mqtt.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 36 of 134 Submission date: 2018-09-18

network. The protocol is payload agnostic, and as such allows for maximum flexibility to support several types
of payloads.

 Data Pre-Processing (Munging) Phase

Usually ML is tied to stored datasets, which incurs several drawbacks. Firstly, the learning can take place only
with persistent data. Secondly, usually the models generated are based on historical data, not current data.
Both constrains, in the IoT, have dire consequences. It is neither feasible nor profitable to store all data. Also,
embedded devices do not have much storage capacity which makes it impossible to use ML algorithms on
them. Furthermore, IoT deployments are commonly exposed to ever-changing environments.

Using historical data for off-line learning could cause outdated models learning old patterns rather than current
ones, producing drifted models. Although some IoT platforms like COMPOSITION support storage of historical
data, it may be too time and space consuming to create large enough times series. Therefore, there is also a
need for non-persistence manipulation tools. This is precisely what the CEP engine provides in the CEML
framework. This means, the CEP engine decides which and how the data is manipulated using predefined
CEP statements deployed in the engine. Each statement can be seen as a topic, to which each learning model
is subscribed. Any update of the subscribers provides a sample to be learnt in the learning phase.

 Learning Phase

There is no pre-selection of algorithms in the framework. They are selected by the restrictions imposed by the
problem domain. For example, in extreme constrained devices, algorithms such as Algorithm Output
Granularity (AOG) (Gaber, Advanced Methods for Knowledge Discovery from Complex Data) may be the right
choice. In other cases where the model changes quickly, one-shot algorithms may be the best fit. Artificial
Neural Networks are good for complex problems but only with stable phenomena. This means that the
algorithm selection should be made case-by-case. Our framework provides mechanisms for the management
and deployment of the learning models, and the process of how the model is fed with samples. In general, the
process is based on incremental learning (Syed, Huan, Kah, & Sung, 1999) albeit with online and non-
persistent data. The process can be summarized as follows: the samples, without the target provided in the
last phase, are used to generate a prediction. The prediction will then be sent to the next phase. Thereafter,
the sample is applied to update the model. Thus, all updates are used for the learning process.

 Continuous Validation Phase

This section describes how the validation of the learning models is done inside the CEML. This phase does
not influence the learning process nor validate the CEML framework itself.

ML model validation is a challenging topic in real-time environments and the evaluation for distributed
environments or embedded devices is not addressed extensively in the literature, which is why we think it
needs further research. There are two addressed strategies. Either we holdout an evaluation dataset by taking
a control subset for given time-frame (time window), or we use Predictive Sequential, also known as
Prequential (Dawid, 1984), in which we asses each sequential prediction against the observation. The following
section describes the continuous validation we applied for a classification problem, even though it can be
applied for other cases as well.

Instead of accumulating a sample for validation, we analyse the predictions made before the learning takes
place. All predictions are assessed each time an update arrives. The assessment is an entry for the confusion
matrix (Stehman, 1997) which is accumulated in an accumulated confusion matrix. The matrix contains the
accumulation of all assessed predictions done before. In other words, the matrix does not describe the current
validation state of the model, but instead the trajectory of it. Using this matrix, the accumulated validation
metrics (e.g. Accuracy, Precision, Sensitivity, etc.) are being calculated. This methodology does have some
drawbacks and advantages, explained more extensively in (Carvajal Soto, Jentsch, Preuveneers, & Ilie-Zudor,
2016).

 Deployment Phase

The continuous validation opens the possibility for making an assessment of the status of the model each time
a new update arrives, e.g. if it is accrued or not. Using this information, the CEML framework has the capability
to decide if the model should or should not be deployed into the system at any time. If the model is behaving
well, then it should be deployed, otherwise it should be removed from the deployment. The decision is made
by user-provided thresholds with regards to evaluation metrics. If a threshold is reached, the CEML inserts the

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 37 of 134 Submission date: 2018-09-18

model into the CEP engine and starts processing the streams using the model. Otherwise, if the model does
not reach the threshold then its remove form the CEP engine.

5.3.6 Deep Learning Toolkit

 Role and responsibilities in the COMPOSITION Acrhitecture

The Deep Learning Toolkit delivers predictions and forecasting of relevant indicators based on machine
learning models. It is a component of the COMPOSITION ecosystem and belongs to both the intra and inter-
factory scenarios.

In the former it is in charge of analysing the shop floor parameters, feed to the component by the IIMS and
more specifically by the BMS (section 5.3.3.2) through the middleware. So, despite not being directly
connected to the broker-based messaging system, it heavily depends on data transported by all
COMPOSITION components attached to it, since it belongs and rely on the same Intra-factory Interoperability
Layer. The main difference with the other components dwells in the theoretical fact that it is mediated by the
Big Data Analytics tool for all the activities. In fact, the Deep Learning Toolkit component has a private 1:1
connection with the Learning Agent framework implemented by the Big Data Analytics through a specific
architecture that foresees the usage of Remote Procedures Calls between the two components within the
Intra-factory scenario. The technology used for this communication is called Pyro (Pyro - Python Remote
Objects, 2018), and allows message translation and interoperability among different languages as well as
seamless communication overlay physical dislocated processes among different Docker containers.

In the latter, it has a 1:1 mapped connection to the Agent-based marketplace, in specific one deployed agent
corresponds to one deployed instance of the Deep Learning Toolkit component. In this scenario, the Agent is
provided with the intelligence required for making future assumption on specific market behaviours.

The twofold nature of the Deep Learning toolkit serves both the Intra and Inter scenarios. In the Intra-factory
scenario, the use case UC-BSL-2 is addressed and the Deep Learning Toolkit is deployed to operate as
predictive maintenance intelligent tool. In the Inter-factory scenario, the Deep Learning Toolkit works as a
REST service, providing intelligence to the correspondent Agent, and provides market estimations.

Both implementations foresee a common pattern regarding the internal architecture. In specific, a continuous
learning process can be broken down to a predetermined number of phases which constitute the core of the
component itself, and its information lifecycle can be envisaged as follows:

• offline training phase

• validation phase

• testing phase

• continuous learning phase

The offline training phase, as it’s named after, starts with an offline analysis of the historical data and takes
place outside the shop-floor. It is the longest by far of the four phases and it embeds sub-phases such as the
data gathering, validation, preparation, filtering and formatting. Moreover, a humongous number of tests is
required for optimally or sub-optimally shape the Artificial Neural Network and its hyper-parameters.

The validation phase takes also place offline and it’s the phase in which the network parameters and hyper-
parameters the of the Artificial Neural Network are adjusted in order to reach the threshold set for an acceptable
accuracy level. This phase is also iterative and has the empowerment of rolling back to the previous phase. In
fact, a not adequate result in this phase leads right back to square one.

The training phase is also consequent to the validation and it’s the phase, where the component and the
Artificial Neural Network has consumed all historical data. The result is a network that has finally embedded
the most appropriate stochastic gradient descent and therefore a robust algorithm ready to be deployed and
tested on the field.

The continuous learning phase is the longest of the four phases and takes place at the shop-floor level, at the
end-user’s premises, that has provided the shop floor data the Artificial Neural Network is base on. In this
phase, the component is online and connected to the COMPOSITION ecosystem, where it learns from near
real time data, accurately formatted and batched to resemble the training set, coming from target sensors at
the shop-floor level.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 38 of 134 Submission date: 2018-09-18

 Deep Learning Toolkit interactions

As it is an active part of the IIMS, it would be easy to suppose that the Continuous Deep Learning Toolkit
module would receive both its raw and pre-processed input data from the component that acts as a middleware
as the Adaptation Layer for Intra-factory Interoperability does. In spite of being this the first implementation
choice, the final deployment has foreseen the complete integration with the Learning Agent framework
implemented by the Big Data Analysis module. In fact, thanks to the Pyro integration performed in the second
project year, the two components now rely on a 1:1 private connection among their Docker containers.

The Deep Learning Toolkit when operated in its continuous mode, foresees communications that are all
mediated by the Learning Agent framework that is in charge of feeding the data in a pre-formatted manner,
mimicking the training data and also is responsible for publishing and propagating the prediction results coming
from the component.

The stack diagram in Figure 1Figure 16 are depicted the most relevant interactions between the two
aforementioned modules, highlighting the difference between the first and the second iteration of the
implementation phase.

Figure 16: Deep Learning Toolkit in COMPOSITION architecture, before and after first implementation

 Deep Learning Toolkit interfaces for Intra-factory

As for the Pyro interfaces used for communicating within the 1:1 mapped private connection among the Deep
Learning Toolkit and the Learning Agent components, it has been clearly identified a superset of Remote
Procedure Calls that will be beneficial for the correct functioning of both. In the following the superset is
provided.

5.3.6.3.1 Method build: def build(self, classifier)

Builds the model. The classifier parameter is not required. Can throw exceptions. This method must be called
before the learn, predict and exportModel methods. The model status is preserved across agent restarts. The
destroy method is required to build a new model from scratch.

5.3.6.3.2 Method destroy: def destroy(self)

Destroys the current model and reset the internal status of the model. Can throw exceptions. The next call to
build method will create a new model from scratch.

5.3.6.3.3 Method predict: def predict(self, datapoint)

Generates output predictions for the input datapoint. Must be called after the build method. Can throw
exceptions. The datapoint argument contains the time series required for the prediction. It is a numpy array
with shape (n_samples, n_features). The n_samples is dependent by the DLT model; currently this value is
32 but can updated with the model refinements.

5.3.6.3.4 Method batchPredict: def batchPredict(self, datapoints)

Generates output predictions for the input batch. Must be called after the build method. Can throw exceptions.
The datapoints argument contains the data required for multiple predictions. It is a numpy array with shape
(n_slices, n_samples, n_features). The n_slices can be any value greater than 0. The n_samples value is
dependent by the DLT model; currently this value is 32 but can updated with the model refinements. Each

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 39 of 134 Submission date: 2018-09-18

slice can be independent from the other. The prediction result is the list of fault probabilities as a float in the
range 0 (no faults) to 1 (faults) for each slice of the batch.

5.3.6.3.5 Method learn: def learn(self, datapoint)

Trains the model with the provided datapoint. Must be called after the build method. Can throw exceptions.
The datapoint argument contains the inputs data required to update the model. It is a numpy array with the
shape (n_samples, n_features). The n_samples is dependent by the DLT type; at the moment, it must be
greater than 64 to allow the creation of the batch from the time series. This value can change with the model
refinements. This method doesn’t return anything.

5.3.6.3.6 Method batchLearn: def batchLearn(self, datapoints)

Trains the model with the provided datapoints. Must be called after the build method. The datapoints argument
contains the data required to update the model. It is a numpy array with shape (n_slices, n_samples,
n_features). The n_slices can be any value greater than 0. The n_samples value is dependent by the DLT
model; currently this value is 32 but can updated with the model refinements. This method doesn’t return
anything.

5.3.6.3.7 Method exportModel: def exportModel(self):

Serializes and returns the model as a json object. Must be called after the build method. Can throw exceptions.

5.3.6.3.8 Method importModel: def importModel(self, model)

Loads a serialized JSON model provided as parameter. Must be called before the build method. Can throw
exceptions. Doesn’t return anything.

At the current stage of this deliverable, it has not been decided if all interfaces will be implemented and if some
parameters will vary, but any modification will be considered as minor from the architecture perspective.
Furthermore, the sequence diagrams provided in the first iteration of this deliverable (D2.3) are to be
considered still valid, but the only difference is that the main interlocutor is now the Learning Agent framework
instead of the Intra-factory Interoperability Layer as implemented previously. For this reason, the sequence
diagrams are not reported since they have been overcome by the interfaces defined above.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 40 of 134 Submission date: 2018-09-18

 Deep Learning Toolkit interfaces for Inter-factory

The inter-factory scenario foresees the Deep Learning Toolkit as an instrument for providing intelligence to the
Agent-based Marketplace. In specific, each agent will have a tailored version of the Deep Learning Toolkit
trained with specific data and custom hyper parameters. Similarly, to what has been designed for the intra-
factory scenario, also in this one the components will have a dedicated point to point connection. In fact, this
implements the security-by-design paradigm that the COMPOSITION ecosystem evangelize.

In the followings the main REST interfaces that are exposed on the private network between the two Docker
containers, are detailed:

Figure 17: REST service interfaces details

For a more detailed insight on the interfaces details, the full description of the interfaces compatible with JSON
RFC 4627, is provided in section 9.

5.3.7 Decision Support System

 Role and responsibilities in COMPOSITION architecture

The main purpose of the COMPOSITION DSS is to aid managers to the decision – making process on a
manufacturing shop floor. It is mainly oriented to maintenance processes, but it can also be implemented on
all manufacturing processes on shop floors.

DSS exploits historical data from CMMS (Computerised Maintenance Management System) and live data
coming from sensor networks and uses it, for its rule engine. The rule engine is based on finite state machines
algorithms, which include states, parameters and transitions for the rule. The rules provide suitable suggestion
to many different situations on the shop floor. Rule engine also uses data and predictions that come from other
COMPOSITION components and are fed to it.

All incoming data is also valuable for the KPIs tool of the DSS. The tool creates KPIs based on the data and
visualises them in graphs such as time series, bars or pie charts. DSS also visualises live data from sensors
and the predictions that come from other tools.

Finally, the system provides a personnel and task database, where the users are logged. Along with the
embedded notifications mechanism, it provides a complete environment where visualisation, notification and
decision – making processes are intertwined.

A detailed description of the DSS is provided in D3.8 “Manufacturing Decision Support System”.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 41 of 134 Submission date: 2018-09-18

 Architectually significant design decisions

The COMPOSITION Decision Support System communicates with the rest of the COMPOSITION components
using the establish MQTT topics to retrieve data.

It also integrates the security aspects developed for the COMPOSITION project. The received data is
processed by the DSS Rule Engine and it should follow the data streaming process established for the project.
Communication between DSS and components such as DFM and DLT are based on the streaming process.
Knowledge extraction based on KPIs and decision – making process are the basic rationales of the DSS in
the COMPOSITION project.

The knowledge is propagated to the DSS users with a build – in notifications mechanism that can send several
kinds of notifications using WiFi or Internet connectivity.

Application dockerisation is one of the final steps in the design analysis of the component. Dockerisation is
essential due the fact that all components should operate as a whole bundle and the operation should be
seamless to the user.

 Functional View

Figure 18: Component Diagram - Decision Support System

Figure 18 shows the component diagram of the DSS. As it is shown, DSS consists of five sub – components
and communicates with other three COMPOSITION components, either directly or non – directly. The five sub
– components are: Stream Processing, Decision Making (Rule Engine), KPIs, HMI and Data Persistence.
These sub – components communicate with GET/POST requests. On the other hand, there are three
components: Deep Learning Toolkit, Simulation and Forecasting Toolkit and DFM which communicate with
the DSS with MQTT topic on the Message Broker tool.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 42 of 134 Submission date: 2018-09-18

Figure 19: DSS Sequence Diagram

 DSS HMI

The DSS HMI consists of the Log In screen, the main dashboard where visualisation elements exist, the KPIs
tool and their visualisation, the Rule Engine HMI. The main design of the HMIs is based on the principled
described below.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 43 of 134 Submission date: 2018-09-18

Figure 20: DSS HMI Screens: a) Log In Screen, b) Main Dashboard, c) KPIs tool and d) Rule Engine

Figure 20 shows the HMI screens of the DSS, where there is still working to be on the Rule Engine screen.

The DSS HMI has been updated and redesigned from the previous version. The whole functionality of the
previous version remains in the new one, while new features are added. The new design of the DSS is based
on the basic HMI designing principles:

• Clarity: the interface provides all the necessary information to use the component

• Flexibility: the component HMI is quite flexible and can be shown in different screens without
problems, implementing Bootstrap standard

• Familiarity: HMI follows most of the known administrative HMI and its interface is already familiar to
most of the users. No further user training is needed while using the system

• Efficiency: The HMI design allows users to follow their work in the rule engine or the KPIs tool and
also have an overview of the whole component without feeling that the task requires them to dedicate
much and be very detail – oriented.

The DSS HMI will be integrated as a micro-frontend in the HMI framework.

5.3.8 Simulation and Forecasting

 Role and responsibilities in COMPOSITION architecture

The Simulation and Forecasting Tool (SFT) component is part of the high-level platform of COMPOSITION,
the Integrated Information Management System (IIMS), and its main purpose is to simulate processes models
and to provide forecast of events whose actuals outcomes have not yet been observed. This component will
provide a constantly updated sensing layer regarding the integration of different sensors so as to support a
Dynamic Reasoning Engine (DRE) and alarming services in production and logistics.

 Functional view

The main inputs of Simulation and Forecasting engine component are real time data coming from installed
sensors on industrial machines, historical machine data coming from COMPOSITION Database, historical

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 44 of 134 Submission date: 2018-09-18

sensor data coming from Building Management System (BMS) and models of processes from Digital Factory
Model (DFM). The schema is presented below:

Main input(s):

• Sensors

• Databases

• Building Management System (BMS)

• Digital Factory Model (DFM)

Main output(s):

• Digital Factory Model (DFM)

• Visual Analytics (VA)

• Decision Support System (DSS)

Main functionalities:

• Simulation of process or logistic models

• Forecast future outcomes based on models

Figure 21: The updated Simulation and Forecasting Tool and dependencies

Simulation and Forecasting Tool component is divided in to sub-components: Simulation and Forecasting.
Simulation sub-component will simulate models (provided by DFM component) on historical data (provided by
COMPOSITION Database) or real-time data (provided by COMPOSITION sensors) so as to provide results
on several process or logistic scenarios, according to projects’ use case. The initial internal parameters of a
simulation scenario will be defined be the user, accordingly. The simulation results will be fed into the
COMPOSITION Digital Factory Model (DFM) so as to update models. Possible models that at first fit to a
process and subsequently simulated could be several approaches of regression, such as linear, ridge, lasso,
and elastic net regression. Forecasting sub-component will provide predictions of future events for the selected
process model, based on the model parameters decided by the COMPOSITION Decision Support System
(DSS) for the specific process when the iterations of simulation process end. The simulation and forecasting
scenarios will be fed into COMPOSITION Visual Analytics (VA) component so as to present with the most
compelling way with advanced and innovative data visualization techniques utilizing an interactive human-
machine interface. The components of DFM and VA will be a main input to Decision Support System (DSS),

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 45 of 134 Submission date: 2018-09-18

where by an internal procedure there will be a decision(s) for more scenarios to be simulated or not, regarding
the tested process.

 Visual Analytics Tool

The COMPOSITION Visual Analytics (VA) tool imports data from Simulation and forecasting tool and Big Data
Analytics tools. As it is based on the data of the aforementioned tools, and especially from the SFT we choose
to present it here as a sub-component of SFT. The VA offers an interactive user interface for the SFT
algorithms and apply visual analytics techniques present the output to the users as graphical representations.
The Visual Analytics tool will provide the ability to manufacturers/end-users to evaluate the simulation results
and identify possible problems.

Based on the COMPOSITION architecture, the VA was designed as a completely web-based component. It is
developed in AngularJS22 and a template similar to FUSE23 template that follows Google’s material design
specifications. Many different widgets and directives are offered from the VA tool. A wide variety of charts,
pies, line charts, tables and time series representation is available in the Visual Analytics tool as the open
source Chart.js 24library is adopted.

The Visual Analytics Tool communicates with SFT using MQTT and REST protocol as both of them are
supported by the aforementioned tools. In particular, the SFT output that contains analysis results transferred
to the VA tool using these two protocols. After that, visualizations of these results are available to the end-
users. Moreover, the user is able to demand further visualization and analysis results using the interactive
interface. The Visual Analytics Tool will be integrated as a micro-frontend in the HMI framework.

5.3.9 Marketplace

The COMPOSITION marketplace is a fully distributed multi-agent system designed to support industry 4.0
exchanges between involved stakeholders. It is aimed at supporting automatic supply chain formation and
negotiation of goods/data exchanges. The COMPOSITION marketplace exploits a microservice architecture
and relies upon a scalable messaging infrastructure provided by the Message Broker. Trust and security are
granted in every negotiation step undertaken by automated agents on behalf of involved stakeholders.

The COMPOSITION marketplace is described in further detail in D6.3 “COMPOSITION Marketplace I”.

The COMPOSITION marketplace is composed of four main building blocks: The Agents, the Management
Portal and Services, the Communication Infrastructure (Message Broker configured for intra-factory) and the
Security Services (see Figure 22).

22 https://angularjs.org/
23 http://fusetheme.com/admin-templates/angular
24 https://www.chartjs.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 46 of 134 Submission date: 2018-09-18

Figure 22: Marketplace components

Agents may implement market-specific services, such as the white pages agent or the matchmaker, or they
can act on behalf of industry stakeholders participating in the marketplace. Required communication
infrastructure is provided by the Message Broker which provides message delivery services to all other
components through a well-known, publish-subscribe, interaction paradigm.

The set of components formed by the Marketplace Portal and the Marketplace Management Services has
been designed to offer suitable means to administer marketplaces, register new market stakeholders, provide
access credentials and connection parameters for agents to be deployed on the COMPOSITION market, and
the like. This design choice allows stakeholders to easily manage the entire marketplace infrastructure, e.g.,
for defining new Closed Marketplaces.

Transactions and interactions between components in the platform are subject to a certain number of security
checks and procedures aimed at ensuring a high degree of trust and reliability of exchanged information. These
involve, among the others, restricted access to the marketplace communication infrastructure, channel
encryption, provenance assessment techniques for messages, audit logs on message trails, etc. To support
marketplace components in achieving such a trusted and secure operation, a dedicated set of components is
purposely part of the marketplace design: the so-called Marketplace Security Services (described in Section
5.3.12).

5.3.10 Agent Management System

According to FIPA specifications (FIPA, 2004), an Agent Management System (AMS) is a mandatory
component of every agent platform, and only one AMS should exist in every platform. It offers the white pages
service to other agents on the platform by maintaining a directory of the agent identifiers currently active on
the platform. A White Pages service is required to locate and name agents on the system, making it possible
for one agent to connect with one another. In the current implementation of the Agent Management Service,
the agent identifiers are stored in a MySQL Database. MySQL has been chosen because it offers relevant
features for the project such as on-demand scalability, high availability and reliability. Other agent platforms,
like SPADE25, use MySQL as well for offering the White Pages service.

The current development of the component includes the White Pages Service implemented with a MySql
database. (More details in the next sections)

The main component’s interfaces are described in D6.5 “Connectors for inter-factory interoperability and
logistics I”.

25 https://pypi.python.org/pypi/SPADE

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 47 of 134 Submission date: 2018-09-18

 Functional View

Figure 23: Design and dependencies of the Agent Management System: Matchmaker, Database for storing
agents’ data

AMS provides the agents with the necessary means to:

• Register on the marketplace

• Deregister from the marketplace

• Update agent information on the marketplace

• Interact with the Matchmaker

The main internal components are:

• Agent Service: provides REST interfaces for interacting with the agent

• Database connector: provides an abstract layer of interaction with the database underlying the White
Pages Service

• White Pages Service: Provides access to the database where agent identifiers for the marketplace are
stored.

Agents on the marketplace depend on Agent Management System in order to be able to participate in the
marketplace. This component cannot be missing from the marketplace deployment.

In order to guarantee a correct registration of the agents on the White Pages database, the expected input for
registration is the following:

{
 "description" : "A message used by user to register an agent",
 "type" : "object",

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 48 of 134 Submission date: 2018-09-18

 "properties" : {
 "agent_id" : {
 "description" : "The unique identifier of the agent",
 "type" : "string"
 },
 "agent_owner" : {
 "description" : "Identifier for agent's owner",
 "type" : "string"
 },
 "agent_role" : {
 "description" : "An agent can be either requester or supplier",
 "type" : "string",
 "enum" : ["requester", "supplier"]
 }
 }
}

This schema is only temporary and will be modified when the whole set of ontologies for agent management
will be ready (to be reported in D6.6 “Connectors for Inter-factory Interoperability and Logistics II”, M34).

 Architecturally significant design decisions

As mentioned before, the AMS is a key component of any Multi Agent System, therefore it must provide high-
availability, scalability and fault-tolerance. The AMS offers the White Pages Service to all the agents which
want to participate in the marketplace, therefore it is important that the storage of agents’ identifiers (and other
important info) are always available with guarantee of not being lost.

To address scalability while providing high availability, a deployment combining MySql cluster26 and HAProxy27
has been studied and setup. MySQL Cluster has been chosen since it is a distributed database combining
linear scalability and high availability. Moreover, it provides in-memory real-time access with transactional
consistency across partitioned and distributed datasets, and it is designed for mission critical applications.
HAProxy has been chosen since it is done for the purpose (load balancing), it is very fast and reliable.

5.3.11 Marketplace Agents

Agents are primary actors of the COMPOSITION marketplace. They typically instantiate the supply-chain
formation strategy of industry stakeholders and are therefore crucial for the success of the project inter-
factory solutions. Although in the long term many different agent types are expected to coexist in the same
marketplace, 2 main categories of agents can be defined a priori, depending on the kind of provided
services: Marketplace agents and Stakeholder agents.

The former category groups all the agents providing services that are crucial for the marketplace to operate.
The latter category, instead, groups agents developed and deployed by the marketplace stakeholders to
take part in chain formation rounds.

 Marketplace agents

Following FIPA specifications, an Agent Management System (AMS) is a mandatory component of every agent
platform, and only one AMS should exist in every platform. It offers the White Pages service to other agents
on the platform by maintaining a directory of the agent identifiers currently active on the platform.

 Stakeholder Agents

Stakeholder agents are deployed at the stakeholder’s premises and their purpose is to fulfil the stakeholder’s
interests. In the following sections the reference implementations for the two different kinds of stakeholder

26 https://www.mysql.com/it/products/cluster/
27 http://www.haproxy.org/

https://www.mysql.com/it/products/cluster/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 49 of 134 Submission date: 2018-09-18

agents will be described. The set of APIs for the interaction with the agents will not be described here, since
they have been thoroughly analysed in deliverable D6.5: Connectors for Inter-factory Interoperability and
Logistics I.

Two types of stakeholders’ agents have been identified: the Requester agent and the Supplier agent.

 Supplier Agents

5.3.11.3.1 Role and responsibilities in COMPOSITION architecture

The Supplier agent is the counterpart of the Requester agent on the COMPOSITION marketplace. It is
usually
adopted by actual suppliers to respond to supply requests coming from other stakeholders in the
marketplace. Factories transforming goods typically employ at least one Requester agent, to get prime
goods and one supplier agent to sell intermediate products to other factories.

The current status of implementation includes the capability of acting according to the base contract-net
negotiation protocol using COMPOSITION eXchange Language. Also, the connection with IIMS and GUI has
been performed.

5.3.11.3.2 Functional view

Figure 24: Design and dependencies of the Supplier Agent: Agent Management System, Matchmaker, Deep
Learning Toolkit

As shown in Figure 26, agent’s main internal components are:

• Agent Service: This component oversees the exposure of the services offered by the agent through
REST endpoints, interfacing with GUI and IIMS according to the specific endpoint.

• Protocol Handler: This component handles all the protocol-related activities of the agent, such as state
transitions, providing appropriate behaviour according to the current agent state.

• Agent to agent messaging handler: This component handles the incoming and outgoing messages
from/to other agents on the marketplace, by providing language and ontology syntax check.

• RabbitMQ adapter: This component handles the communication with the RabbitMQ broker. In future
it might be replaced by a more generic transport adapter, according to the broker in use on the
marketplace.

To communicate with the Matchmaker agent, the Requester agent needs to have a connection with the Agent
Management System.

The communication with the Deep Learning Toolkit is guaranteed by a point-to-point connection. The Deep
Learning Toolkit is used by the Supplier agent to obtain features such as the price predictions for a certain
good.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 50 of 134 Submission date: 2018-09-18

All the messages exchanged between the agents over the marketplace happen over AMQP through the
RabbitMQ broker.

The messages flowing from the IIMS are received to a dedicated REST endpoint.

The messages from and toward the GUI flow through HTTP and dedicated REST endpoints.

Figure 25: Supplier Agent sequence diagram

 Requester Agents

5.3.11.4.1 Role and responsibilities in COMPOSITION architecture

The Requester Agent is the agent exploited by a factory to request the execution of an existing supply chain
or to initiate a new supply chain. Due to the dynamics of exchanges pursued in COMPOSITION, there is no
actual distinction between the two processes, i.e., for any supply need a new chain is formed and a new
execution of the chain is triggered. The Requester agent may act according to several negotiation protocols,
which can possibly be supported by only a subset of the agents active on a specific marketplace instance.

The current status of implementation includes the capability of acting according to the base contract-net
negotiation protocol using COMPOSITION eXchange Language. Also, the connection with IIMS and GUI has
been performed.

Compute lie value
and utility

Form own
baseline
reputation
model

Search for
new agents in

the

marketplace

Factory IIMS

double click to edit

Handle
proposal

Requestor Agent

Negotiation Behavior

Formulate
Proposal

Compute
Expected
Utility of
sending a
proposal

Formulate
Proposal

Compute
Estimated
Utility

Initialize Negotiation
Protocol Handler

Start

Reputation
Behavior

Start on demand

Supplier Behavior

Store Market
Access Token

Agent logs in
the market

Security Framework

Authentication

Provide Market
Credentials

Supplier Agent

Authentication Behavior On Demand Supplier Behavior Proactive Supplier Behavior Reputation Behavior

Login
Login
Request

Send market
Auth Token

Accepted Login

Start Proactive
Supplier Behavior

Received CFP

Is requestor acceptable

Can CFP be fulfilled

 es

 es

Send Proposal

worth participating

0..

 es

No

No

No

Initialize Negotiation
Protocol Handler

 ait for some event , e.g., threshold passing.

 atch relevant
streams

 ho defines what is
relevant The supplier

IIMS how can the supplier
IIMS decide that the

threshold is critical by
learning

Is Utility worth proposing

Send Proposal

Here Learning might
play a crucial role, the
agent can learn how

quickly react to
 trigger2 events if the
offers are public, the
agent might wait
longer to place a
lower offer

Receive Answer

Is Accepted

No

was solicited

 es

Receive
Proposal

Send result

 es

Is The market open

No

 es

No

Notify deal

Complex activity,
might imply

communication with
the Factory IIMS

Initialize Reputation
Protocol Handler

Chit Chat Timeout

New agents available

No
Ask known agents
for newcomers
reputation

Receive
reputation
response

Is reputation availableis proactive

Contact new
agent

No

 es

No

 es

Request for
reputation

is requestor trusted

willingness to disclose

willingness to lie

Reject

Send reputation

Send lie on
reputation

 es

 es

No

No

No

 es

Complex activity,
might imply

communication with
the Factory IIMS

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 51 of 134 Submission date: 2018-09-18

5.3.11.4.2 Functional view

Figure 26: Design and dependencies of the Requester Agent: Agent Management System, Matchmaker

As shown in Figure 26, agent’s main internal components are:

• Agent Service: This component oversees the exposure of the services offered by the agent through
REST endpoints, interfacing with GUI and IIMS according to the specific endpoint.

• Protocol Handler: This component handles all the protocol-related activities of the agent, such as state
transitions, providing appropriate behaviour according to the current agent state.

• Agent to agent messaging handler: This component handles the incoming and outgoing messages
from/to other agents on the marketplace, by providing language and ontology syntax check.

• RabbitMQ adapter: This component handles the communication with the RabbitMQ broker. In future
it might be replaced by a more generic transport adapter, according to the broker in use on the
marketplace.

To communicate with the Matchmaker agent, the Requester agent needs to have a connection with the Agent
Management System.

All the messages exchanged between the agents over the marketplace happen over AMQP through the
RabbitMQ broker.

The messages flowing from the IIMS are received to a dedicated REST endpoint.

The messages from and toward the GUI flow through HTTP and dedicated REST endpoints.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 52 of 134 Submission date: 2018-09-18

Figure 27: Requester Agent sequence diagram.

5.3.12 Marketplace Portal UI

 Bidding Process Management UI

Messages are sent from the Supplier and Request agents to the respective GUI, these messages are sent
through an API created in NodeJS and stored in a Firebase Realtime database which keeps the GUI
updated at all times. The GUI is created using the Angular framework.

Store/Update
proposal

IIMS Activity

Find Matching
Agents

Directory Facilitator/ Match Maker

Matchmaker

Agent Login in
the market

Security Framework
Authentication

 e est gent

Authentication Behavior Negotiation Behavior Reputation Behavior Spontaneous offer handling behavior inform behavior

Provide Market
Credentials

Login

Accepted Login

Store Market
 Access Token

Login to the Marketplace, with Agent s Credentials Login Request

Send Market
Auth Token

Accepted login, token/credentials attached

Start Negotiation
Behavior

Initialize

Negotiation
Protocol Handler

Initialize

Reputation
Protocol Handler

Receive Request
for supply

Prepare Call for
Proposal

Agents
compatible to the

CFP

Possible Suppliers

Dispatch CFP to
Suppliers

Check Trust on
Suppliers
(optional)

Request agents able to full fill a specific supply request

Agents possibly able to fulfill the request

Start Reputation
Behavior

Received Request
for Agents

Provide
Compatible
Agents

double click to edit

Request for
supply

Receive Proposal

Is proposal answering
a CFP

yes

no

Is
CFP open

Store Offer
Refuse
Offer

CFP deadline expired

Select Best
Proposal

Send proposal
accepted for the

winner

Send proposal
rejected for all

others

Notify deal
succeeded

Is a winner
available

yes

no

Notify deal
failed

Initialize
Spontaneous

Offer handling
behavior

Receive Urgent
Request for

supply/ service

Pending offers for the given
supply/ service

Select best offer

Send Request for
supply

Set short and
strict deadline

Send proposal
accepted for the

winner

Notify deal
succeeded

Send proposal
rejected for all

others

Notify no offer
pending

This is meant to
handle asynch offers
by suppliers, might
be triggered by the
agent itself, by

observing relevant
indicators(less

scalable, probably)

In case no valid offers
have yet been

received, than start a
normal CFP with strict
and short deadline

Initialize
Spontaneous

Offer handling
behavior

Receive relevant
event to notify

Send Inform to
destination

addresses

Receive request
tosubscribefor
given data

Check requestor
agent trust level
and credentials

If allowed

Send Inform to
requesting agent,
with the topic to
subscribe to

Notify new
subscriber to data

Reject request

no

yes

Option 1, agents
deliver informational
messages to other

agents, e.g., the scrap
metal level

Option2: potential
subscribers ask to
 subscribe to given
data feed, if the agent
agrees, they get a
 pointer to the

relevant message
queue(more
scalable)

chit chat timeout

Search for new
agents in the
marketplace

Ask known agents
for newcomers
reputation

New agents available

Receive
reputation
response

Is reputation available

Form own
baseline

reputation model

Contact new
agent

If proactive

yes

no

yes

no

yes

no

Request for
reputation

Is requestor trusted

 illingness to disclose

 illingness to lie

no

yes

yes
Compute Lie
value and utility

Send lie on
reputation

Send reputation

Reject

no
yes

no

Start Inform
Behavior

Start
Spontaneous offer
handling Behavior

From supplier agents

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 53 of 134 Submission date: 2018-09-18

Figure 28: Bidding Process management

 Material Management

The API, database used here are the same as for the Bidding process manage, only the source of the
messages is different. Messages containing current information about containers etc. are sent by the BMS
through an API and stored in the Realtime database that is connected to the GUI.

Figure 29: Material Management GUI

5.3.13 Security Framework

 Introduction

The Security Framework implements the security core mechanisms aiming to ensure the security,
confidentiality, integrity and availability of the managed information for all authorized COMPOSITION
stakeholders. Below there is an overview of the current identified components that will conform the Security
Framework.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 54 of 134 Submission date: 2018-09-18

Figure 30: Components of the Security Framework

The current components in the Security have been grouped in for main categories, each of them focusing on
different security tasks:

1. Authentication:

a. Keycloak: Open source Identity and Access Management solution.

b. RabbitMQ Authentication Service: Service that relays in Keycloak and Authorization Service to
override built-in RabbitMQ authentication mechanisms.

2. Authorization:

a. Authorization Service: Atos tool EPICA based on XACML3.0 that provides authorization and
privacy access control to resources

3. Log-Trust-IPR

a. Multichain: Blockchain based on Bitcoin with added functionalities.

b. Multichain REST API: Will provide functionalities based on blockchain.

4. Cybersecurity:

a. SIEM: Atos tool that provides the capabilities of a Security Information and Event Management
(SIEM) solution with the advantage of being able of handling large volumes of data and raise
security alerts from a business perspective.

b. Cyber-Agents: These components are responsible to catch the events that later will be analysed
by the SIEM.

In front of all web applications and services, in this case Keycloak, RabbitMQ Authentication Service,
Authorization Service and Multichain REST API; Nginx will be used as reverse proxy configured for using
TLS/SSL.

The following sections will provide details on each of the components and their categories.

 Authentication

The components in this category are the responsible of providing the authentication mechanisms for users,
applications, services and devices.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 55 of 134 Submission date: 2018-09-18

5.3.13.2.1 Keycloak

Keycloak28 is an open source Identity and Access Management solution. Some of the features are:

• Single-Sign On: Authenticate on Keycloak rather on different applications. One single login will allow
access to multiple applications and/o services.

• Identity Brokering and Social Login: Enable login with social networks such as Google, Facebook,
Twitter and GitHub.

• User Federation: Connect directly to LDAP and Active Directory servers.

• Standard Protocols: OpenID Connect OAuth 2.0 and SAML.

Figure 31: Keycloak administration interface

COMPOSITION components requesting access to system endpoints or Message Broker resources and HMI
Framework components managing end-user access will use the standard protocols provided by Keycloak to
e.g. request access tokens.

5.3.13.2.2 RabbitMQ Authentication Service (RAAS)

This component implements the needed interfaces to override RabbitMQ built-in authentication and
authorization engine and it makes use of Keycloak and the EPICA Authorization Service for authentication and
authorization instead.

 Authorization

This category is responsible of all aspects about authorization mechanisms. Only one component has been
identified under this category, the EPICA Authorization Service, which is a tool based on XACML 3.0

28 http://www.keycloak.org

http://www.keycloak.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 56 of 134 Submission date: 2018-09-18

5.3.13.3.1 Authorization Service (EPICA)

The EPICA Authorization Service is a tool based on XACML 3.0 that provides authorization and privacy access
control to resources. It provides two different functionalities:

- Policy management: Ability to manage policies. This means generating, storing, removing and
modifying policies.

- Policy enforcement: Ability to enforce that a given access request for a specific resource fulfils the
requirements of the policies applicable to the resource trying to be accessed.

 Log, Trust and IPR

This category is responsible of the component that will contribute to the protection of IPR, the creation of trust
and the audit trail for manufacturing and supply chain data.

5.3.13.4.1 Multichain

Multichain29 is a private blockchain platform based on Bitcoin enhanced with added functionalities like
managed permissions and data streams. Data streams are separately permissioned entities in the blockchain
optimized for logging data in key-value pairs, as opposed to transactions involving assets (e.g. bitcoins).
Several blockchains may be run in parallel, with managed permissions and several data streams per chain.
The ability to run multichain in a consortium with a controlled set of block validators (“miners”) negates the
need for proof-of-work mining, making the generation of blocks, and consequently transaction validation, much
faster.

Multichain is designed for compatibility with Bitcoin Core30, with extensions to e.g. more conveniently manage
data streams.

 Cyber-Security

The components on this category focuses on the analysis of the cyber security in collaborative manufacturing
and logistics ecosystems, identifying the variety of attacks (such as abuse of privileges, denial of access…)
that could affect and be more relevant for the availability and reliability of the platform and infrastructure and
potential remediation measures to mitigate their effects.

5.3.13.5.1 SIEM

SIEM provides the capabilities of a Security Information and Event Management (SIEM) solution with the
advantage of being able of handling large volumes of data and raise security alerts from a business perspective
thanks to the analysis and event processing in a Storm cluster. The main SIEM functionalities can be
summarized in the following points:

- Real-time collection and analysis of security events.

- Prioritization, filtering and normalization of the data gathered from different sources.

- Consolidation and correlation of the security events to carry out a risk assessment and generation of
alarms and reports.

5.3.13.5.2 Cyber-Agents

These components are responsible to catch the security events and transmit them to SIEM to be analysed.
They are installed on the systems that need to be secured and their configuration may differ from one
installation to another depending on the events to be monitored.

 Nginx

Nginx31 is a free and open-source web server software, which can also be used as a reverse proxy, load
balancer and HTTP cache. Currently it´s only envisioned to be used as a reverse proxy in front of the web
applications and services providing an additional security layer. It will also provide Transport Layer Security
(TLS) encryption capabilities to all the applications and services behind it.

29 http://www.multichain.com
30 https://bitcoin.org/en/bitcoin-core/
31 https://nginx.org/

http://www.multichain.com/
https://nginx.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 57 of 134 Submission date: 2018-09-18

5.3.14 Matchmaker

The Matchmaker component is a complete semantic framework for the COMPOSITION Collaborative
Ecosystem. It contains the Rule-based Matchmaker, the Ontology Querying Component, the Ontology Store
and corresponding APIs.

 Role and responsibilities in COMPOSITION architecture

COMPOSITION Matchmaker package’s role is to offer a complete semantic framework to the Agents
Marketplace. The Ontology store is initialized with Collaborative Manufacturing Services Ontology and consists
the main knowledge base of the Marketplace. The Ontology Querying Component offers CRUD operation to
agents. The operations are applied to the Ontology Store. The COMPOSITION Rule-based Matchmaker is
designed to be the core component of the COMPOSITION Broker. It supports semantic matching in terms of
manufacturing capabilities, in order to find the best possible supplier to fulfil a request for a service or products
involved in the supply chain. Different decision criteria for supplier selection, according to several qualitative
and quantitative factors, are considered by the Matchmaker. Furthermore, the Matchmaker acts as a broker
for the Marketplace’s bidding processes and enables the automation of these processes as well. The
Matchmaker evaluates the available offers from the providers in order to suggest the best one to the supplier.

The current status of the implementation of the Matchmaker component is a stable version able to offer a
complete semantic framework in order to support ontology storage, ontology manipulation services, possible
customers and suppliers’ matchmaking and available offers’ evaluation as well. The Matchmaker component
is deployed in a Docker container to the project’s inter-factory server.

 Functional view

Figure 32: Functional view of COMPOSITION Matchmaker package

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 58 of 134 Submission date: 2018-09-18

Three are the main components from the Matchmaker package:

1. Ontology Store: The Ontology Store is the main knowledge base for the COMPOSITION
Marketplace. All the created ontology instances (business entities, manufacturing services, offers etc.) will be
stored in the Ontology Store. More precisely, the Collaborative Manufacturing Services Ontology initialises a
Jena TDB store. By using TDB, the Ontology is saved as a Model in the file system. Jena’s component TDB
used as a high-performance RDF store instead of a classic SQL database (it is faster and supports the storage
of millions of individuals). Every change at the ontology takes place at the Model stored in the file system
leaving the original ontology immutable.

2. Ontology Querying Component: This component enables agents’ access to the Ontology Store.
Agents can use Ontology Query API services by sending requests in a compatible to CXL JSON format. Then
the Ontology Query engine will create SPARQL queries based on the agents’s request and these queries will
be applied to the Ontology Store. In this way, the agents will be able to create, read, update and delete
instances from the Ontology Store.

3. Rule-based Matchmaker: The Rule-Based Matchmaker will be used by Marketplace’s agents in order
to match customers with suppliers and requests with offers in the Marketplace. Its core component is the
Matchmaking Module which consists of the following sub-components:

 • Agent Matchmaking Module: This module interacts with agents. An agent sends a request for a
service to the Agent Matchmaking Module which applies a set of rules in ontology stored to the Ontology Store.
Then the matchmaking module sends a response to the agent with a list contains the agents who support a
matching offer for this request.

• Offer Matchmaking Module: This module interacts with agents too. An agent sends a request for
available offers’ evaluation to the Offer Matchmaking Module which applies a set of rules in the Ontology Store.
The set of rules considers several qualitative and quantitative factors to match the agent’s request with the
best available offer and it is not limited to match the agent with all the other agents that can support his request
as the Agent Matchmaking Module does. So, the response of the Offer Matchmaking Module is the best
available offer.

The Semantic Rules component is a sub-component of Rule-base Matchmaker which contains all the files with
rules. These rules will be applied by Matchmaking Module to the Ontology Store which is initialized by the
Collaborative Manufacturing Service Ontology in order to extract the requested matching. The rules are in
Jena format.

Dependencies:

The Matchmaker framework’s provided functionalities are depended from the contained in the framework
Collaborative Manufacturing Services Ontology. The Rule-based Matchmaker services are exclusively
designed for the aforementioned ontology’s concepts. Moreover, the SPARQL queries from the Ontology
Querying component are designed based on the Collaborative Manufacturing Services Ontology terms.

Besides the dependency with the ontology, the Marketplace Agents can be considered as a type of
dependency as well. Actually, the agents asks for the Matchmaker functionalities however all the Matchmaker’s
services triggered by agents’ requests. This interaction defines the input and the output of the Matchmaker.
The input is the agents’ requests described in JSON format (CXL compliant format). A request contains
information about a new instance that is going to be added in the marketplace, or information about a requested
service or a set of provided offers that the Matchmaker should evaluate etc. The produced output is in the case
of CRUD operations from Ontology Querying component a message of successful operation in JSON format
(CXL compliant format). In the cases of matchmaking services will be a list of matching agents or offers in the
same format.

Communication and Interactions:

The Matchmaker component communicates with the agents using HTTP protocol. The components
functionalities are offered to the agents though RESTful web services. Two APIs is provided by the
Matchmaker and they presented in the next table. More details about the services of these APIs are available
to the corresponding deliverable.

Table 3: Matchmaker APIs

Matchmaker APIs Description

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 59 of 134 Submission date: 2018-09-18

Ontology Query API This API receives as input agents’ requests (related to
CRUD operations to the ontology) and response back to
the agent with a message of a successful operation or
an error message. Inputs and outputs are in a
predefined common format (JSON and CXL). The API is
connected with the Querying component that applies a
SPARQL query (e.g. Insert/Select commands) into the
Ontology Store based on the agents’ request. This
interface is defined by the REST protocol.

Matchmaking API This API receives as input agent’s requests for
customer/suppliers matching or offers/demands
matching and response back to the agent with the
matchmaking result. Inputs and outputs are in a
predefined common format (JSON and CXL). The API is
connected to Rule-based Matchmaker that performs the
appropriate level of matchmaking based the request.
This interface is defined by the REST protocol.

 Architecturally significant design decisions

The Matchmaking Module is developed in Java and it is built upon the Apache Jena API32. Java was selected
as it is one of the most popular programming languages in use, especially for client server web applications.
The Apache Jena API is a free and open source tool which supports OWL and RDF languages and offers
querying, reasoning and storing capabilities. All these criteria suggest the Jena framework as the perfect tool
for COMPOSITION Matchmaker implementation. The Matchmaker is offered to other components through
RESTful web services. Its core functionality is to receive Marketplace Agents’ requests via Matchmaker API
and to apply sets of semantic rules to the Ontology Store based on these requests. New knowledge will be
inferred by the rules’ appliance, and then the Matchmaking Module responses to the Agents by using the
Matchmaker API. Furthermore, agents can access and manipulate the Ontology Store using Ontology
Querying Component and the corresponding Ontology API.

JSON is selected as the communication data format. It is a text format that is completely language independent
but uses conventions that are familiar to programmers. Also it is easy for machines to parse and generate this
format. These properties make JSON an ideal format for data-exchange. More precisely, a format compatible
with COMPOSITION eXchange Language (CXL) is used in order to offer easy communication with the
Marketplace Agents.

Apache Tomcat33 was the selected web server environment. It is an open-source Java Servlet Container
developed by the Apache Software Foundation. It provides an HTTP web server environment in which Java
code can run. The complete Matchmaker package is deployed to Tomcat server. After that, the Tomcat server
is deployed as a Docker image.

5.4 Information View

The purpose of the information view is to describe how information is represented, persisted, and distributed
in the architecture.

32 https://jena.apache.org/
33 http://tomcat.apache.org/

http://tomcat.apache.org/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 60 of 134 Submission date: 2018-09-18

5.4.1 Data Models

 Overview

Figure 33: Dependencies of data models used in the system

The Digital Factory Model (DFM) contains both types and instances of the intra-factory components, e.g.
production lines, products and sensors. This information will be used by e.g. the BMS to connect the physical
sensors to the DFM instances and propagate this information to the LinkSmart middleware to identity the
sensor data. The information is also used to build the topics in the message broker by which other components
can subscribe to live data. The broker topic schemas have not yet been defined.

The process models describe the production process, linking information in the system to the process context
used in the Decision Support System.

The OGC SensorThings Data Model is the used for system-generated data, e.g. data in the IIMS that has
passed through the LinkSmart middleware and is exposed in inter-component communication will use the OGC
SensorThings Data Model, with links to the DFM types and instances.

The inter-factory domain is modelled in the Marketplace Ontology and expressed in the COMPOSITION
Exchange Language (CXL) used for agent communication.

 Process Models

The goal of process models in COMPOSITION is to use common formats or standards to describe the
production process. With such process models, process-oriented monitoring is made possible. By definition,
process-oriented monitoring is a monitoring strategy that builds correlation measured values from sensors to
a specific process procedure and a specific product instance in a production line, so that those sensor values
could be further analysed within context. For example, with process-oriented monitoring it is possible to
investigate how much energy is consumed while producing a specific PCB panel in solder printing. Process-
oriented monitoring opens up possibilities for different big data analysing strategy, such as real-time
abnormalities detection, product quality prediction etc.

5.4.1.2.1 BPMN

The process models of the industrial processes follow the Business Process Model and Notation (BPMN)
standard. BPMN is a standard for business process modelling that provides a graphical notation for
specifying business processes in a Business Process Diagram (BPD), based on a flowcharting technique
very similar to activity diagrams from Unified Modelling Language (UML). Besides the graphical
representation, the standard also specifies the XML schema for describing BPMN, which makes it easy to
communicate between different systems.

Different elements from BPMN are adopted to model manufacture process in process models. First of all,
production procedures will be modelled as activities in BPMN. The procedure will be modelled according to

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 61 of 134 Submission date: 2018-09-18

its property, such as if it is a manual task, or if it is an automatic task finished by machines. Between
activities there are intermediate message events, which matches to the corresponding sensor signals. These
message events act as a transition between activities, which is triggered only when the matching sensor
signals is received. With this structure, we can ensure that the BPMN virtual process is always synchronized
with the real product process. Gateways are also utilized to model conditional forks during manufacture
process.

During runtime, the process models will be instantiated and managed by a BPMN engine, such as the Activiti
BPMN Engine. One can imagine the relation between the process model and an instantiated process as the
relation between class and object in object oriented programming. Typically, each product on the line is
represented by one instantiation of the model, tracking its current activity. This strategy enables a real-time
matching between sensor values and the correspondent workpiece in the production line.
Figure 34 shows an example of a process model describing the production line of BSL. Notice that the process
consists of many activities (rectangles in the diagram), each of which represents one step in production, such
as laser marking PCB, screen printing solder, inspecting solder, etc. Between activities are intermediate
message events, which will only be triggered by the matching sensor signals. Exclusive gateways are also
used to model choices in process, such as if panel fails to pass Inspect solder test, it will be rejected to conveyor
belt for either manual touch-up or touch-up in machine.

Figure 34: Initial BPMN diagram of BSL production line

5.4.1.2.2 DSS Process Model

DSS process model is based on Finite State Machines models and algorithms. Furthermore, the language,
states and transition function are modified to accommodate the creation of the rules. States are defined based
on the already existing states of the system. Alphabet is the conditions for each state. Each condition can be
mathematical expressions, which when they change the state should change also, regular alphanumeric
expressions and strings or a combination between all of them. The transitions are defined from the alphabet
and they are a subset of it. The transition function for each transition is evaluated as true or false and when
the transition is evaluated true, the system moves from the transition’s initial state to the transitions final state.

A state diagram is created for each rule. State diagrams graphically represent the FSM, and contain initial and
final states, transitions for different conditions and each transition’s condition. The more complicated the rule,
the more complicated the state diagram also is. The initial rules contain a few states and transitions, even

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 62 of 134 Submission date: 2018-09-18

though the transitions are more than the states, because there are different ways from transitioning from one
state to the other, back and forth. Figure 35 shows an initial state diagram for a rule in the rule engine34

Figure 35: State Diagram for FSM Rule in the Rule Engine

 Digital Factory Model

The Digital Factory Model or DFM was designed with the aim to describe in a common format, the data coming
from heterogeneous resources with heterogeneous formats and to define this common format, which will be
used by other COMPOSITION IIMS components. Both JSON and XML data formats were used in the definition
of the DFM.

34 D3.8 - Manufacturing Decision Support System I

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 63 of 134 Submission date: 2018-09-18

Figure 36: DFM Data Model

As depicted in the previous figure the DFM schema is divided in two parts:

• the Information model that contains all the static information related to a factory and

• the Events model that contains all the dynamic data related to a shop-floor

The B2MML35 package covers the assets, equipment, procedures and actors concepts’ descriptions. A
sensors schema has been designed in a familiar format with the B2MML and was connected with assets. The
description of the factory processes is covered by BPMN36 package and the building information model is
covered by gbXML37. The Events model which is related to dynamic data such as sensors’ measurements and
analytics tools’ output is covered by OGC Observations and Measurements 38JSON package. More details
about the DFM are documented in D3.2 Digital Factory Model I and they will be updating in D3.3 Digital Factory
Model II (M26).

 COMPOSITION eXchange Language

Agents communicate through messages encoded in a dedicated language named COMPOSITION
eXchange Language (CXL). Rather than defining yet another agent communication language, the
consortium decided to stick to existing standards and to extend them wherever needed. CXL has therefore
been designed as a dialect of the well-known FIPA ACL language specification, with a dedicated syntax
(“codec” in the FIPA jargon) and with reference to a well-defined set of ontologies for representing the
message payload data.
A CXL message is composed of:

• An almost fixed set of parameters, identifying the message purpose, sender and language

• A variable payload whose content depends on the message type, and typically is encoded according
to an explicitly pre-defined ontology.

The CXL JSON schema listed in Appendix 3: CXL JSON Schema depicts the exact fields defined in CXL.
Each of them has a 1-to-1 mapping to the corresponding FIPA ACL message parameter. The CXL schema
has undergone minor changes compared to what defined in the previous deliverable D2.3.

At the current stage of development 3 main vocabularies, i.e., ontologies, have been identified and
catalogued for use in the COMPOSITION CXL between stakeholder agents.

35 http://www.mesa.org/en/B2MML.asp
36 http://www.bpmn.org/
37 http://www.gbxml.org/
38 http://www.opengeospatial.org/standards/om

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 64 of 134 Submission date: 2018-09-18

The first vocabulary is called COMPOSITION-negotiation-ontology, and it is used in order to prepare/reply to
offers on the marketplace. Its definition is the following:

{
 "description":"The JSON syntax specification of the COMPOSITION-negotiation-ontology",
 "type": "object",
 "properties": {
 "offer-details": {
 "type": "object",
 "properties": {
 "good": {
 "type": "string",
 "description": "The good involved in the current bidding process"
 },
 "pickup-details": {
 "type": "object",
 "properties": {
 "start-date": {
 "type": "string",
 "format":"date-time",
 "description": "The earliest date for pickup"
 },
 "end-date": {
 "type": "string",
 "format":"date-time",
 "description": "The latest date for pickup"
 },
 "proposed-date": {
 "type": "string",
 "format":"date-time",
 "description": "The proposed date for pickup"
 }
 }
 },
 "currency": {
 "type": "string",
 "description": "The currency adopted for the bidding process"
 },
 "quantity-uom": {
 "type": "string",
 "description": "The unity of measure for the quantity",
 "enum":["kg", "q", "t"]
 },
 "quantity": {
 "type": "integer",
 "description": "The quantity of the good"
 },
 "price": {
 "type": "number",
 "description": "The offered price for the good, within the bidding process"
 },

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 65 of 134 Submission date: 2018-09-18

 "rating": {
 "type": "number",
 "description": "The company rating"
 }
 }
 }
 }
}

The second vocabulary is called COMPOSITION-informative-ontology, and it is used in exchange of
informative messages between stakeholder agents. It is still undergoing different changes, current
implementation is the following:

{
 "description":"The JSON syntax specification of the COMPOSITION informative ontology",
 "type": "object",
 "properties": {
 "info": {
 "type": "object",
 "properties": {
 "information-type": {
 "type": "string",
 "description": "The type of informative message, either fill_level or price_forecast",
 "enum" : ["fill_level", "price_forecast"]
 },
 "details": {
 "type": "object",
 "properties": {
 "timestamp": {
 "type": "string",
 "format":"date-time",
 "description": "The timestamp related to the information"
 },
 "good": {
 "type": "string",
 "format":"date-time",
 "description": "The good involved in the current informative flow"
 },
 "price": {
 "type": "number",
 "description": "The (forecasted) price of the good"
 },
 "quantity-uom": {
 "type": "string",
 "description": "The quantity unity of measure",
 "enum":["kg", "q", "t"]
 },
 "quantity": {
 "type": "integer",
 "description": "The quantity of the good"
 },
 "fill-level": {

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 66 of 134 Submission date: 2018-09-18

 "type": "number",
 "description": "The fill level for a certain container, containing the good"
 }
 }
 }
 }
 }
 }
}

The third vocabulary is called COMPOSITION-reputation-ontology, and it is used in order to support
reputation values exchanges between stakeholder agents. Its definition is the following:

{
 "description": "The JSON syntax specification of the COMPOSITION reputation ontology",
 "type": "object",
 "properties": {
 "reputation-details": {
 "type": "object",
 "properties": {
 "agent-id": {
 "type": "string",
 "description": "Agent identifier"
 },
 "agent-owner": {
 "type": "string",
 "description": "Identifier for the company owning the agent"
 },
 "rating": {
 "type": "number",
 "description": "Rating for the company"
 },
 "timestamp": {
 "type": "string",
 "format": "date-time",
 "description": "Timestamp for the rating"
 }
 }
 }
 }
}

 Marketplace Ontology

Collaborative Manufacturing Services Ontology is the knowledge base for the COMPOSITION Marketplace.
It is used as a common vocabulary that offers interoperability and representation of both meanings and data
in the Marketplace. The Collaborative Manufacturing Services Ontology enables:

• The description of manufacturing services, capabilities and resources for entities participate in the

COMPOSITION Marketplace

• The description of supply and demand entities participate in the Marketplace

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 67 of 134 Submission date: 2018-09-18

The Marketplace gents will be able to make transactions as the above information will be described using
this common ontology. For example an agent who requests a service or a product will be able to find a
matching agent who supports this service or product as they will be described using the ontology as a
common vocabulary.

Collaborative Manufacturing Services Ontology should be able to represent manufacturing services and
resources. For this reason, MSDL (Ameri, 2006) and MASON (Lemaignan, 2006) ontologies are imported to
the Marketplace Ontology as they are manufacturing domain specific and they offer a large variety of classes
and properties about this domain. Moreover, the COMPOSITION Marketplace should be able to support
collaboration mechanism between business entities. This means that it should be able to describe relations
and transactions between supply and demand entities which participate in the Marketplace. In order to fulfill
this requirement the GoodRelations Language 39ontology which is one of the most well-known and widely used
ontologies in ecommerce domain is imported to the Collaborative Manufacturing Services Ontology as well.
All the aforementioned ontological resources were imported and re-engineered using Neon Methodology
(Suárez-Figueroa, 2010) in order to create a stable and consistent version of the Collaborative Manufacturing
Services Ontology. The implemented ontology’s main classes are presented in the next figure and they are
presented in more details in the next page’s table:

Figure 37: Collaborative Manufacturing Services Ontology Class Diagram

Table 4: Collaborative Manufacturing Services Ontology Main Classes

Class name Description

Business entity Represents an Ecosystem Agent who has a
service (e.g. manufacturing service) and provides
or seeks an offer

Business entity type Represents the legal form, the size and the
position of a business entity in value chain

Service Conceptualizes all operations and processes
related to a product in an abstract level

Operation Represents the processes of a service

39 http://www.heppnetz.de/ontologies/goodrelations/v1.html

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 68 of 134 Submission date: 2018-09-18

Resource Represents the total set of linked resources of a
business entity

Supporting service Represent services which are not basic services
but are related to the basic one and support them

Supporting system Represents some systems which support a
business entity’s services

Offer Represents a public announcement of a business
entity that provides or seeks a certain service or
product

Warranty Represents the duration and the scope of free
services that will be provided to a customer in
case of a possible malfunction or problem

Quantitative value Represent the range of a certain property

Generic Term Define common operations, materials and tools

Delivery method Define the available delivery options for a service
or product

Dates and Times The days that a business entity has opening
hours. Also represents the day of delivery or the
day of availability of a service

Capability Represents the capability of a service

Entity Represents an entity as a result of a
manufacturing process and describe its geometric
flaw and entity, assembly entity and raw material

Price specification Specifies the price of a unit, additional delivery
costs and additional costs related to a payment
method

Payment method Describes the available procedures for
transferring the requested amount for a purchase

 OGC SensorThings

The SensorThings API40 is an OGC41 standard specification, part of the OGC Sensor Web Enablement
standards42. This standard has been selected as the generic representation of data managed by the
COMPOSITION system (see Figure 38 for the SensorThings data model). It is also used in the LinkSmart
platform43 and several implementations of persistent data stores are available.

As described in section 5.4.1.3, the project has defined mappings in the DFM between the data streams and
observations in the OGC SensorThings Data Model and the factory assets and equipment.

40 http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
41 http://www.opengeospatial.org/
42 http://www.opengeospatial.org/ogc/markets-technologies/swe
43 https://linksmart.eu/redmine/projects/iot-data-processing-agent/wiki/Usage_IoT_Data-Processing_Agent_

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 69 of 134 Submission date: 2018-09-18

The OGC SensorThings API consists of the Sensing and Tasking profiles.

The Sensing profile allows IoT devices and applications to CREATE, READ, UPDATE, and DELETE (i.e.,
HTTP POST, GET, PATCH, and DELETE) IoT data and metadata in a Thing service. Managing and retrieving
observations and metadata from IoT sensor systems is one of the most common use cases. As a result, the
Sensing profile is designed based on the ISO/OGC Observation and Measurement (O&M) model (OGC and
ISO 19156:2011).

The key to the model is that an Observation is modelled as an act that produces a result whose value is an
estimation of a property of the observation target or FeatureOfInterest. An Observation instance is classified
by its event time (e.g., resultTime and phenomenonTime), FeatureOfInterest, ObservedProperty, and the
procedure used (often corresponding to a Sensor). Things are also modeled in the SensorThings API, together
with the historical set of their geographical positions

More specifically, in the Sensing profile, a Thing has Locations and HistoricalLocations. It can also have
multiple Datastreams associated. A Datastream is a collection of Observations grouped by the same
ObservedProperty and Sensor. An Observation is an event performed by a Sensor that produces a result
whose value is an estimate of an ObservedProperty of the FeatureOfInterest.

Following subsections better detail the single data model entries.

5.4.1.6.1 Thing

The OGC SensorThings API follows the ITU-T definition, i.e., with regard to the Internet of Things, a thing is
an object of the physical world (physical things) or the information world (virtual things) that is capable of
being identified and integrated into communication networks (Y.2060, 2012).

 Figure 38: OGC SensorThings Data Model

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 70 of 134 Submission date: 2018-09-18

5.4.1.6.2 Location

The Location entity locates the Thing or the Things it is associated with. A Thing’s Location entity is defined
as the last known location of the Thing.

5.4.1.6.3 HistoricalLocation

A Thing’s HistoricalLocation entity set provides the current (i.e. last known) and previous locations of the
Thing with their time.

5.4.1.6.4 Datastream

A Datastream groups a collection of Observations and the Observations in a Datastream measure the same
ObservedProperty and are produced by the same Sensor.

5.4.1.6.5 Sensor

A Sensor is an instrument that observes a property or phenomenon with the goal of producing an estimate of
the value of the property.

5.4.1.6.6 ObservedProperty

An ObservedProperty specifies the phenomenon of an Observation.

5.4.1.6.7 Observation

An Observation is an act of measuring or otherwise determining the value of a property (ISO19156, 2011).

5.4.1.6.8 FeatureOfInterest

An Observation results in a value being assigned to a phenomenon. The phenomenon is a property of a
feature, the latter being the FeatureOfInterest of the Observation (ISO19156, 2011). In the context of the
Internet of Things, many Observations’ FeatureOfInterest can be the Location of the Thing. For example, the
FeatureOfInterest of a wifi-connect thermostat can be the Location of the thermostat (i.e. the living room
where the thermostat is located in). In the case of remote sensing, the FeatureOfInterest can be the
geographical area or volume that is being sensed.

5.4.2 Data Persistence

Data Persistence contains the COMPOSITION sub-components which are related to data storage and
retrieval. These stored data are static information related to pilot cases, live data coming continuously from
sensors or data related to predictions coming from the analytics tools. As decided the aforementioned data will
be stored in two different components. The BMS will store all the real world data which are the sensors’
measurements and the DFM together with an OGC SensorThings compliant data store will store all the
COMPOSITION generated data (process models, predictions etc.)

 Sensor data

The Deep Learning Toolkit needs to have historical data available to train the artificial neural networks,
although this only has to be available as unstructured bulk data, without query capabilities. The Intrafactory
Adaptation Layer leverages on Symphony BMS built-in storage for unprocessed shop-floor level data which
can be used in this capacity and LinkSmart also provides capabilities for storing historical observation data.

Data persistence will to a significant extent be handled internal to the components and exposed through the
component interfaces, in the case of component-specific data. However, there will still be a need to record and
query both shop-floor data and data generated by the COMPOSITION system, common to all components.
The Decision Support System and the Simulation and Forecasting Tool both need access to structured
historical data generated by the system, with query capabilities.

The BMS provides a set of tools for collect and filter the real-time data incoming from the production facilities.
This set of tools facilitate the possibility to build applications on top of real-time data. Secondly, through a
component called Storage Handler, the BMS provides a repository for information valuable to be kept during
the whole machine lifetime. These raw measurements can also be enhanced by providing additional metadata
to be attached to them, in case it should become necessary.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 71 of 134 Submission date: 2018-09-18

In order to be as much as possible compliant with existing standards (actual or de facto), the design choice
has been to implement a RESTful API that follows the specifications of "FIWARE-NGSI v2 Specification API44".
This interface is used to manage data according to a very simple model using objects that are called context
entities (applying this concept in COMPOSITION environment can turn into, e.g., an entity Sensor that have
the type vibration_sensor and attributes such as battery_level, amplitude or frequency).

This data is transported in OGC SensorThings format inside the COMPOSITION system. The amount of data
retrieved at every request coming from COMPOSITION components to the BMS storage could be very high
and thus the risk of overloads must be taken into consideration. Therefore, it was necessary to use something
less verbose than OGC Sensor Things Observation. In order to avoid the usage of completely different formats
to represent the same information, OCG SensorThings dataArray45 was the logical choice.

 COMPOSITION-generated data

As COMPOSITION-generated data should be considered the data were produced from COMPOSITION
components or models of the real world’s objects:

• SFT and DLT predictions which are represented as OGC Observations in JSON format

• The designed BPMN diagrams that are exported in XML format

• Buildings information that are modelled in gbXML format

• Assets, sensors and actors modelled information in B2MML format

 All these types of data will be stored in DFM instances using a developed and deployed DFM API. The use of
the DFM API enables the creation of factory live instances stored in a MongoDB46. The COMPOSITION-
generated data can be stored using the DFM API and its provided services. Furthermore, stored data related
to a factory instance are able to be retrieved by other components such as decision support systems etc. using
the DFM API services. The format of the data that are transferred through the API’s services is the one that is
defined by DFM schema. So, by using DFM schema and its corresponding API all the generated data can be
available to other IIMS components or end users in a common format and in a common way.

The DFM API was implemented as a Java web application and it is offered through Restful web services. Its
main functionality is to receive HTTP requests from IIMS components. Based on requests, the DFM API stores
or retrieves data from MongoDB. After that, DFM API returns an HTTP response to the requested IIMS
component. The response contains the requested resource from the MongoDB in the cases the requests are
related to data retrieval. In the cases that the requests are about data storage or deletion, the response is just
a simple message for successful operation. The next table summarizes the DFM API’s provided services:

44 https://orioncontextbroker.docs.apiary.io/
45 http://docs.opengeospatial.org/is/15-078r6/15-078r6.html#79
46 https://www.mongodb.com/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 72 of 134 Submission date: 2018-09-18

Table 5: DFM API Web Services

How OGC SensorThings data is persisted and queried is specified in the OGC SensorThings Sensing Profile
API (Liang, Huang , & Khalafbeigi, 2016).

5.4.3 Data Flow

 High-level data flow

The Digital Factory Model (DFM) (described in D3.2 “Digital Factory Model I”) is the common source for
information about the factory equipment and processes for all COMPOSITION components. Static and
dynamic data provided from the COMPOSITION system are described in a common format using the DFM
schema. The machines, devices and sensors in the factory instance are described in a Deployment Model;
this also contains the mapping of these resources to a specific IoT data channel, such as a MQTT topic or
REST endpoint. The DFM provides interfaces that other components use for reading and updating the models.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 73 of 134 Submission date: 2018-09-18

Figure 39: Example Intra-factory data flow

The format chosen for sensor data in COMPOSITION is SensorThings API Sensing Entities47 JSON encoding.
The BMS will deliver data from sensors and other shop-floor sources to the Message broker in this format.
Information about the context of the data from the DFM will be added by the BMS Object Mapper. The data
will be published on a MQTT topic structure adapted from the SensorThings Sensing MQTT Extension which
allows subscribers to be notified when Observations are added to a Datastream or FeatureOfInterest.

Data consumers may subscribe to these topics to receive the sensor data. Components like the Deep Learning
Toolkit (DLT) are configured at deployment to subscribe (mediated via the BDA) to specific data streams.

The Decision Support System (DSS) will dynamically visualize factory processes and will benefit from
subscribing to annotated data from a topic where data on an entire process or asset is published. The IoT
Agent in the Big Data Analytics (BDA) package may be used to annotate and re-publish data on a MQTT topic
structure that includes information from the DFM on e.g. the process involved. Data generated microservices
or other system components may also be published on such topics.

The data flow between the BDA and DLT has been integrated as one component and is no longer part of the
external interfaces of these components.

 Decision Support System

Data comes in the DSS component following the streaming process for the whole project. This data does not
create any new data for the DSS and they are only used for predictions and KPIs. Data created by the rule
engine stays only in the buffer as long as the conditions are valid, or the user decides against the suggested
actions. Notifications mechanism only buffer internally the notifications, for as long as it is needed. DSS should
be able to store tasks and users in the DFM following the schema provided and connecting with it using MQTT
topics on the message broker.

JSON format is used for both incoming and outcoming data. The format follows the schema described for the
project and is compatible for the whole project. Incoming data should also be stored in the DFM from the
previous components.

Table 6: Data sources for DSS by use case

COMPONENTS USE CASES

SFT + DFM + BMS UC – KLE-1

WSN + BMS UC – KLE-1

DLT + BMS UC – BSL-2

47 http://docs.opengeospatial.org/is/15-078r6/15-078r6.html

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 74 of 134 Submission date: 2018-09-18

WSN + BMS UC – BSL-2

 Simulation and Forecasting Tool

As described in 5.3.8.2, the data comes to the Simulation and Forecasting Tool component from the Sensors,
BMS and DFM results. The end user selects the input parameters based on decisions from DSS and
visualizations from VA components. The SFT interacts with DFM, BMS and sensors so as to send results
(DFM) and get new inputs (DFM, BMS and sensors) and with DSS/VA to provide the final results for the
specified set of parameters and get new decisions. The interactions between DSS/VA, SFT, DFM, BMS,
Sensors and end user are presented below:

Figure 40: Sequence diagram of COMPOSITION Simulation and Forecasting Tool

 Matchmaker

As described in 5.3.14.2, the data comes to the Matchmaker component from the Marketplace Agents’
requests. The agents are responsible to add instances to the ontology and to trigger matchmaking processes
by their provided requests. An agent request to Ontology Querying API is just a call and a response. However,
the interaction of the agents and the Matchmaker during a bidding process in the Marketplace is more complex
and it is presented below:

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 75 of 134 Submission date: 2018-09-18

Figure 41: Sequence diagram of main interactions of COMPOSITION Matchmaker

All the data are exchanged in JSON format by using HTTP protocol.

 Agent Management System

The data flow between the Agent Service component and the database underlying the White Pages Service
is described in Figure 42 for the three main scenarios (insertion, deletion and update of an agent on the
database).

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 76 of 134 Submission date: 2018-09-18

Figure 42: Data flow between AMS and underlying Database

The current deployment of the Agent Management System provides a proxy service towards the Matchmaker
agent for the requests coming from the agents on the marketplace. This implementation allows to have a finer-
grained control over the requests and having the Matchmaker agent deployed anywhere, without need for the

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 77 of 134 Submission date: 2018-09-18

agents to know its address during the initialization phase. The data flow for a generic request for a Matchmaker
service coming either from a Requester or Supplier agent is shown in Figure 43.

Figure 43: Data flow between Requester/Supplier agent, AMS and Matchmaker

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 78 of 134 Submission date: 2018-09-18

 Supplier Agent

Figure 44: Internal Supplier Agent data flow

The communication between the agent and the GUI consists of two flows:

• Actions: commands sent from the GUI to the agent

• Notifications: notifications sent from the agents to the GUI

The schema for the actions is the following:

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 79 of 134 Submission date: 2018-09-18

{
 "description":"An action request sent by a GUI to the associated agent",
 "type":"object",
 "properties":{
 "session_id":{
 "type":"string"
 },
 "agent_role":{
 "type":"string",
 "enum":["requester","supplier"]
 },
 "action":{
 "type":"string",
 "enum":["withdraw","selected_option","confirmed","rejected","start_bid"]
 },
 "payload":{
 "selected_option":{
 "type":"object",
 "properties":{
 "price":{
 "type":"number"
 },
 "currency":{
 "type":"string",
 "enum":["EUR","USD"]
 },
 "company":{
 "type":"string"
 },
 "rating":{
 "type":"number",
 "minimum":0,
 "maximum":5
 },
 "quantity":{
 "type":"number"
 },
 "quantity_uom":{
 "type":"string"
 },
 "good":{
 "type":"string"
 }
 }
 }
 }
 },
 "additionalProperties": false
}

The schema for the notifications is the following:

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 80 of 134 Submission date: 2018-09-18

{
 "description":"Notification sent by an agent to the corresponding GUI, may be replied with a withdraw
action request",
 "type":"object",
 "properties":{
 "session_id":{
 "type":"string"
 },
 "agent_role":{
 "type":"string",
 "enum":["requester","supplier"]
 },
 "agent_owner":{
 "type":"string"
 },
 "sender_owner":{
 "type":"string"
 },
 "notification_type":{
 "type":"string",
 "enum":["withdrawable","confirmable","selection","info","ack"]
 },
 "status":{
 "type":"string"
 },
 "result":{
 "type":"string"
 },
 "payload":{
 "type":"object",
 "description": "Variable payload according to the notification"
 }
 }
 },
 "additionalProperties":false
}

COMPOSITION eXchange Language is used by the agent for communicating with other agents on the
marketplace. Details about the language are in Section 5.4.1.4.

By default, the agent stores locally all the messages that have been sent or received, in plain format as they
have been received. Future implementations will grant user an easier access to such logs through a proper
GUI.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 81 of 134 Submission date: 2018-09-18

 Requester Agent

Figure 45: Internal Requester Agent data flow

In the typical protocol flow, Requester agent receives a request from IIMS to start a new negotiation session.
The schema for such triggering message is the following:

{
 "description":"Trigger message sent by intra-factory toolchains to the requester agent",

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 82 of 134 Submission date: 2018-09-18

 "type":"object",
 "properties":{
 "action":{
 "type":"string",
 "enum":["start_bid"]
 },
 "quantity":{
 "description" : "The quantity of the good to be traded"
 "type":"number"
 },
 "quantity_uom":{
 "description" : "The quantity unity of measure."
 "type":"string"
 }
 }
}

The communication between the agent and the GUI consists of two flows:

• Actions: commands sent from the GUI to the agent

• Notifications: notifications sent from the agents to the GUI

The schema for the actions is the following:

{
 "description":"An action request sent by a GUI to the associated agent",
 "type":"object",
 "properties":{
 "session_id":{
 "type":"string"
 },
 "agent_role":{
 "type":"string",
 "enum":["requester","supplier"]
 },
 "action":{
 "type":"string",
 "enum":["withdraw","selected_option","confirmed","rejected","start_bid"]
 },
 "payload":{
 "selected_option":{
 "type":"object",
 "properties":{
 "price":{
 "type":"number"
 },
 "currency":{
 "type":"string",
 "enum":["EUR","USD"]
 },
 "company":{
 "type":"string"

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 83 of 134 Submission date: 2018-09-18

 },
 "rating":{
 "type":"number",
 "minimum":0,
 "maximum":5
 },
 "quantity":{
 "type":"number"
 },
 "quantity_uom":{
 "type":"string"
 },
 "good":{
 "type":"string"
 }
 }
 }
 }
 },
 "additionalProperties": false
}

The schema for the notifications is the following:

{
 "description":"Notification sent by an agent to the corresponding UI, may be replied with a withdraw
action request",
 "type":"object",
 "properties":{
 "session_id":{
 "type":"string"
 },
 "agent_role":{
 "type":"string",
 "enum":["requester","supplier"]
 },
 "agent_owner":{
 "type":"string"
 },
 "sender_owner":{
 "type":"string"
 },
 "notification_type":{
 "type":"string",
 "enum":["withdrawable","confirmable","selection","info","ack"]
 },
 "status":{
 "type":"string"
 },
 "result":{
 "type":"string"

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 84 of 134 Submission date: 2018-09-18

 },
 "payload":{
 "type":"object",
 "description": "Variable payload according to the notification"
 }
 }
 },
 "additionalProperties":false
}

COMPOSITION eXchange Language is used by the agent for communicating with other agents on the
marketplace. Details about the language are in Section 5.4.1.4.

By default, the agent stores locally all the messages that have been sent or received, in plain format as they
have been received. Future implementations will grant user an easier access to such logs through a proper
GUI.

 Marketplace Data Sharing

COMPOSITION will provide mechanisms to share data from the intra-factory IIMS with other stakeholders in
the marketplace. A factory may choose to share certain data with partners across the supply chain on a
permanent basis or a single interaction, e.g., inventory data or scrap container fill levels. The sdata owner
agent will route required information to the right recipient agents, through dedicated CXL messages. A
sequence diagram illustrating the negotiation between agents using CXL to set up the data exchange can be
seen in Figure 46.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 85 of 134 Submission date: 2018-09-18

Figure 46: Data routing information flow

The data sharing mechanism is realized through the Message Broker (Figure 47). Integrated access control
provided by the Security Framework makes it possible to set up an exclusive message queue for a business
partner at the Marketplace Broker. Only the approved actors in the marketplace may publish and/or read data
from the queue. The messages sent can also be secured by the possibility to store a hash of each message
in the distributed blockchain ledger. As with all CXL messages, the agreement to share data itself may also be
stored in the ledger to keep a non-repudiable audit trail of agreements.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 86 of 134 Submission date: 2018-09-18

Figure 47: Simplified model of the marketplace data exchange design

5.5 Deployment View

The purpose of the deployment view is to describe the environment in which the system will be deployed, how
components are mapped to deployment nodes, the requirements for each component, and the mapping of the
software elements to the runtime environment that will execute them.

5.5.1 Docker

One of the critical points in adopting new systems in productive contexts is the need to perform specific
hardware and software set-up, which are typically difficult to deploy, as companies have precise software
deployment policies, rather strict options on operating systems and public access to company IT services.
These restrictions are strongly dependent on company-level decisions and are the result of years of operation
in real business.

In COMPOSITION, we have clear in mind that any particular technological requirement for the COMPOSITION
IIMS and Marketplace may hamper or slow down adoption of the platforms in the real world. Therefore, after
a careful evaluation of possible solutions, included PAAS and SAAS solutions (which on the other hand could
be difficult to handle due to data ownership issues), the technical partners, in accordance with industrial
stakeholders, identified Docker as a viable deployment infrastructure.

Docker is an open-source project aiming at automating the deployment of applications as portable, self-
sufficient containers that can run virtually anywhere, on any kind of server. It can be considered as a lightweight
alternative to full machine virtualization provided by hypervisors such as ESXi, Xen or KVM. While in the
traditional hypervisor approaches each virtual machine (VM) needs its own operating system, in Docker
applications operate inside a container that resides on a single host operating system that can serve many
different containers at the same time.

Docker containers are designed to run on a wide range of platforms ranging from physical computers to bare-
metal servers and up to cloud clusters, e.g., based on OpenStack. Technically speaking Docker extends the
LinuX Containers (LXC) format designed to provide an isolated environment for applications, by enabling
image management and deployment services. Among supported platforms, we can cite:

• Mac, Windows and Linux desktops

• AWS and Azure cloud services

• Windows, CentOS, Debian, Fedora, Oracle Linux, RHEL, SLES and Ubuntu servers.

This ensures the ability to deploy Docker-based COMPOSITION components on virtually all possible IT
infrastructure available on site. Since deployment is a crucial part of the agile development process adopted
in COMPOSITION, components are wrapped into Docker images since the very beginning. All continuous
integration and testing processes in the project rely on Docker and act upon Docker images. This ensures full
compatibility of systems under development with the targeted deployment tools.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 87 of 134 Submission date: 2018-09-18

Thanks to a dedicated web management tool, namely Portainer48, also deployed as a Docker container,
partners and in general all technical stakeholders have the ability to publish, run and test the single
COMPOSITION components under their respective responsibility. Continuous monitoring and logging
infrastructure allow deep analysis of the performances of deployed software that can both be carried before
the final deployment inside factories and during real-world operation.

Docker natively supports distribution and replication of services. Moreover, it can easily be deployed on cloud-
based platforms. This flexibility is a strong hint to the fact that such a deployment design choice will not
generate issues when upscaling of performance will be required.

5.5.2 COMPOSITION Production Deployment

The original design of COMPOSITION architecture envisioned the deployment of an Inter-Factory server on
the cloud and instances of Intra-Factory servers on premise infrastructures within use-case factories.
Deployment of Intra-Factory components on premise provides full control of resources to data owners and
significantly reduces centralized computational, networking, and storage requirements. Even though this
remains the recommended approach, the consortium decided to offer Intra-Factory on the cloud for the
following reasons:

• End-users often lack resources to setup and maintain server infrastructures.

• End-users are often reluctant to provide remote access to their server infrastructure due to security

and privacy concerns.

• Changes to existing server infrastructure to satisfy the requirements for COMPOSITION pilots is

usually infeasible because the effects can influence daily factory operations.

As of writing, the Inter-Factory server operate purely on the cloud and Intra-Factory ones offer infrastructure
flexibility between cloud and on-premise to match different deployment requirements. Figure 48 illustrates
the deployment view of COMPOSITION ecosystem.

48 http://portainer.io/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 88 of 134 Submission date: 2018-09-18

Figure 48: Current COMPOSITION production servers: all components are deployed as Docker containers,
external traffic is secured by TLS

Cloud COMPOSITION
The COMPOSITION Ecosystem uses Amazon Web Services (AWS)49 as the infrastructure for cloud
components of the system. All selected computing, storage, and networking AWS resources operate in

49 https://aws.amazon.com/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 89 of 134 Submission date: 2018-09-18

Frankfurt (eu-central-1) region, providing low latency across Europe. AWS guarantees data privacy50 and is
compliant to European Union’s General Data Protection Regulation (GDPR)51.

The current specifications of Inter- and Intra-Factory instances are described in Table 7. The resources are
selected based on current requirements and can be easily expanded to support larger scale of deployments.
The instance types are T2 Elastic Compute Cloud (EC2), general purpose instances with a monthly uptime
percentage of at least 99.99%52. The CPU and RAM are bound to the instance type and can be changed
with zero-migration efforts according to the demand. The secondary storage is Elastic Block Store (EBS)53
that is automatically replicated within the availability zone (eu-central-1a) to protect the system from
component failure, offering high availability and durability. In addition, there a backup system is set to take
snapshots of data volumes, nightly kept for 7 days on S354, a highly-durable, available, and scalable storage
system.

Table 7: Specifications of AWS resources for Inter- and Intra-Factory servers.

Name Inter-Factory Server Intra-Factory Server

Instance Type t2.medium t2.small

CPU 2 vCPU 1 vCPU

CPU Credits 24 per hour55 12 per hour

RAM 4GB 2GB

Secondary Storage 8GB SSD (root)
100GB SSD (data)

8GB SSD (root)
50GB SSD (data)

Snapshots 7 x data volume (nightly) 7 x data volume (nightly)

Static IPs 1 1

Operating System Amazon Linux 2 Amazon Linux 2

Domain inter.composition-ecosystem.eu intra.composition-ecosystem.eu

The servers support network traffic of up to 5 Gbps for single-flow traffic or 25 Gbps for multi-flow traffic
within the AWS region.56

All cloud software components are deployed as Docker containers to improve portability and isolation. The
Inter-Factory server additionally hosts instances of Portainer57 and Nginx58. Portainer provides an interface
to manage Docker container across all servers. Nginx is the entry point to COMPOSITION Ecosystem,
securing all the traffic by TLS (Let’s Encrypt certificate) and proxying requests to appropriate servers and
components based on subdomains and URL paths.

5.5.3 Digital Factory Model

The DFM API is deployed in a Glassfish59 server. A Docker image for this server has been built with the DFM
API deployed on it. The Docker container contains the aforementioned image communicates with a Docker
container that contains a MongoDB Docker image in order to enable the connection between the API and the
data base. Based on Glassfish documentation 60the DFM API can receive over than 256 concurrent requests
as it is depended on server’s capabilities. Furthermore, the used MongoDB61 is able to store about 32TB of
data which is considered more than enough for static data and the continuously updated data (document type)
of the prediction tools.

50 https://aws.amazon.com/compliance/data-privacy-faq/
51 https://aws.amazon.com/compliance/gdpr-center/
52 https://aws.amazon.com/compute/sla/
53 https://aws.amazon.com/ebs/
54 https://aws.amazon.com/s3/
55 One CPU credit is equal to one vCPU running at 100% utilization for one minute. When CPU credits are unused, they accumulate for
up to 24-hours and can be consumed during CPU intensive burst operations.
56 https://aws.amazon.com/blogs/aws/the-floodgates-are-open-increased-network-bandwidth-for-ec2-instances/
57 https://portainer.io/
58 https://www.nginx.com/
59 http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
60 https://docs.oracle.com/cd/E19879-01/820-4343/abefk/index.html
61 https://docs.mongodb.com/manual/reference/limits/

https://docs.oracle.com/cd/E19879-01/820-4343/abefk/index.html

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 90 of 134 Submission date: 2018-09-18

5.5.4 Agent Management System

Figure 49: White Pages Deployment View

As shown in Figure 49, the current deployment foresees:

• A Manager Node in charge of managing the other nodes within the Cluster, performing such functions
as providing configuration data, starting and stopping nodes, and running backups.

• Two MySql Data Nodes, storing the cluster data.

• Two MySql Server Nodes accessing the cluster data. They are actually specialized types of API node,
which designate any application which accesses Cluster data

• An HAProxy to provide load balancing between incoming requests, in order not to overload a MySql
Server Node.

Since it is recommended to have 2 (or more) replicas to provide redundancy (and thus high availability), the
current deployment provide this minimal set. However, to support continuous operation, MySQL Cluster allows
on-line addition of nodes and updates to live database schema to support rapidly evolving and highly dynamic
workloads.

The Agent Management system can be deployed with a set of Docker containers:

• Agent Management System: ~300Mb

• 2 MySql data nodes: ~300Mb (150Mb each)

• 2 MySql Server nodes: ~300Mb (150Mb each)

• 1 MySql Manager node: ~150Mb

• 1 HAProxy: ~300Mb

The total amount of storage required with this configuration is ~1.5Gb, and it is important to notice that this is
the smallest deployment guaranteeing high availability, scalability and reliability. If more data/server nodes are
required, the amount of storage will increase accordingly.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 91 of 134 Submission date: 2018-09-18

No special requirements regarding CPU and RAM have emerged by analysing the statistics from the test
server.

5.5.5 Supplier agent

A Supplier Agent can be deployed with a single Docker container, ~500 Mb.

No special needs regarding CPU and RAM have emerged by analysing the statistics from the test server, with
an average use of 0% CPU, 40 Mb RAM.

A connection to the RabbitMQ (or other broker supporting AMQP) is needed to communicate with other agents
on the marketplace. Further implementations might exploit an MQTT broker as well.

In order to store all the messages that have been sent or received by the agent, an appropriate quantity of
storage must be allocated.

5.5.6 Requester Agent

A Requester Agent can be deployed with a single Docker container, ~500 Mb.

No special needs regarding CPU and RAM have emerged by analysing the statistics from the test server, with
an average use of 0% CPU, 40 Mb RAM.

A connection to the RabbitMQ (or other broker supporting AMQP) is needed to communicate with other agents
on the marketplace. Further implementations might exploit an MQTT broker as well.

In order to store all the messages that have been sent or received by the agent, an appropriate quantity of
storage must be allocated.

5.5.7 Decision Support System

The DSS component is a dockerized web–based application which will be deployed in the intra-factory server
(or on the shop floors to help decision – making process. Runtime requirements are a steady internet
connection at 24Mbps. No dedicated server for the application.

• Browser compatibility

• WiFi network with speed at 24Mbps or Ethernet connection

• Physical obstructions arise connectivity issues

• Application on a heavy “noise” environment where connection is frequently lost

• Experimental application

• Security integration for shop floor data

Ease of use

5.5.8 Simulation and Forecasting Tool

The SFT component is a web-based component implemented in Python and deployed in Docker containers.
Different Docker images are built for the different supported algorithms. The Docker containers of the SFT are
deployed at COMPOSITION intra-factory production server.

5.5.9 Matchmaker

The Matchmaker component is a web-based component deployed in a Docker container. The Matchmaker
contains the complete semantic framework as it is described in the functional view sub-section. The Docker
container of the Matchmaker is deployed at COMPOSITION inter-factory production server.

The Matchmaker framework was developed as a Java EE application and was packaged as a .war file. The
Docker image of the Matchmaker was created by using the Docker official image of the Apache Tomcat Server
with the addition of the Matchmaker’s .war file. The application servers with stateless applications such as
Tomcat is easy to be dockerized and scale easier as each new instance can receive requests without any

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 92 of 134 Submission date: 2018-09-18

synchronization of state. There are no special network requirements as there are no other network bridges
and dependences but only the default network requirements of Tomcat. Moreover, there are no third-party
software requirements as they are all packaged in the Matchmaker image.

5.6 Operational view

The purpose of the Operational viewpoint is to identify a system-wide strategy for addressing the operational
concerns of the system’s stakeholders and to identify solutions that address these. For a product
development project, the Operational view is more generic and illustrates the types of operational concerns
that customers of the product are likely to encounter, rather than the concerns of a specific site. This view
also identifies the solutions to be applied throughout the product implementation to resolve these concerns.
These concerns pertain to system aspects not explicitly covered in the use cases; such as how the system is
set up and administrated during its lifecycle. E.g. how can the functionalities demonstrated in the use cases
in the two industrial pilots be applied to other customers. The operational view describes the architectural
design to cover the gap between proof-of-concept and product.

In the pilot phase, all development partners monitor and manage the software and hardware installed.
Manually monitoring systems is feasible in this environment by Portainer. In production, however, this task
will need tool support and a unified management interface that could be managed by a small group of IT
management staff. It is the aim of this viewpoint to illustrate how the system is prepared for such tools.

5.6.1 Configuration Management

The system components need to be installed, updated and versioned. In COMPOSITION, all components are
kept as versioned docker repositories in Docker registries (Docker Hub62 is used for all components except
LinkSmart which has a dedicated registry). Portainer is used to manage the installed versions of components
in the pilot deployment environment. Configuration files can be accessed through Portainer and exposed as
Docker volumes on the docker host. This can be combined with a versioning system for the configuration files.

The life-cycles of connected equipment needs to be managed, e.g. sensor hardware providing a specific data
stream may need replacing and new equipment will to be added and connected to the factory model. The DFM
provides this functionality in COMPOSITION.

5.6.2 Monitoring

The status of components and logs can be inspected through Portainer in the pilot deployment environment.
Developing operational monitoring tools is out of the scope of the project, however, the status of components
can be reported in two ways that may be used by external tools. First, status messages (start, stop, errors)
can be reported on a specific MQTT/AMQP topic to the broker. A system operator can monitor these using
simple tools like MQTTfx. Second, components can expose REST endpoints reporting the status of the
component simply by returning HTTP status codes in response to a GET request or respond with a more
informative JSON payload. There is a wealth of free tools available to automate the monitoring of the status of
endpoints, e.g. Postman63 or PHP Server Monitor64. In the exploitation phase, the stakeholder operating the
system is likely to already employ an operational monitoring toll (e.g. Microsoft System Center Operations
Manager (SCOM)65) and the monitoring may be done through this.

5.6.3 Components

This section contains operational view documentation for specific components. This is ongoing work which is
not completed at the time of writing and it will be further updated until the end of the COMPOSITION project.

 Agent Management System

Like other COMPOSITION components, the component can be booted by launching the appropriate
containers. Solutions (based on Docker Compose) are being studied in order to provide a smooth deploying

62 https://hub.docker.com/u/composition/dashboard/
63 https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors
64 https://www.phpservermonitor.org/
65 https://docs.microsoft.com/en-us/system-center/scom/welcome?view=sc-om-1807

https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 93 of 134 Submission date: 2018-09-18

experience for the final end user, more details about these configurations will be provided in D6.6 “Connectors
for Inter-factory Interoperability and Logistics II” (M34).

To support the monitoring of the component status, the current implementation provides a REST endpoint,
located at <Agent IP Address>/status, that replies to GET calls. Future developments will provide more
advanced and user-friendly solutions.

To guarantee the correct exchange of information about agents’ registrations over the marketplace, a
mechanism for verifying the database connection status has been setup on AMS.

 Requester Agent

Like other COMPOSITION components, the component can be booted by launching the appropriate container,
providing an appropriate configuration file containing information such (but not limited to):

• Network configurations (e.g. GUI address, AMS address)

• Policies for market exchange (e.g. price, service, priorities)

• Languages and ontologies supported

More details about these configurations will be provided in D6.6 (M34).

To support the monitoring of the component status, the current implementation provides a REST endpoint,
located at <Agent IP Address>/status, that replies to GET calls. Future developments will provide more
advanced and user-friendly solutions.

 Supplier agent

Like other COMPOSITION components, the component can be booted by launching the appropriate container,
providing an appropriate configuration file containing information such (but not limited to):

• Network configurations (e.g. GUI address, AMS address)

• Policies for market exchange (e.g. price, service, priorities)

• Languages and ontologies supported

More details about these configurations will be provided in D6.6 (M34).

To support the monitoring of the component status, the current implementation provides a REST endpoint,
located at <Agent IP Address>/status, that replies to GET calls. Future developments will provide more
advanced and user-friendly solutions.

 Matchmaker

Matchmaker component is part of the COMPOSITION Marketplace. It is deployed in Docker inter-factory
production server and offers its operations as exposed end points (RESTful web services) to the Marketplace
agents. It will be deployed, updated and supported by developers and production server administrators.

 Decision Support System

DSS will run on the docker server and used as a web application on the shop floor. It will be run by
maintenance personnel on the shop floor and maintained by project’s developers with the consent of
docker’s administrators. RESTful web services in the backend can provide status information.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 94 of 134 Submission date: 2018-09-18

6 System Quality Perspectives

6.1 Security Perspective

This section describes how end-to-end security is realized in the COMPOSITION system by the
COMPOSITION Security Framework, addressed in WP4. The details of the security framework are described
in the deliverables D4.1 “Design of the Security Framework I”, D4.2 “Design of the Security Framework II” and
D4.4 “Prototype of the Security Framework I”. This section will describe the integration and use of the Security
Framework in COMPOSITION.

6.1.1 Authentication and Authorization

The prerequisites stated in the previous version of this document (D2.3 “The COMPOSITION architecture
specification 1.1”) regarding authentication and authorization are still valid: two components have been
deployed and integrated for the achievement of the authentication (Keycloak) and authorization services
(EPICA). Figure 50 shows an overview of the architecture of how the the Authentication and Authorization
framework is used.

Figure 50: The Authentication and Authorization framework.

Any user or application needs to be identified through Keycloak before having access to the secured
COMPOSITION applications and services. Once identification is successful Keycloak issue a token which is
valid for a limited time and should be renewed after it expires. This token is also the one used by the
Authorization Service to allow or deny access to data and resources based on the rights of the user/application
and the rules stored in the Authorization Service.

Furthermore, the messages traffic is dispatched by the Message Broker, sending the appropriate requests and
messages to the different components of the Security Framework, via the Reverse Proxy (Nginx component)
which isolates the components that are part of the Security Framework from the rest of the COMPOSITION
architecture, in order to prevent external intromissions or direct attacks.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 95 of 134 Submission date: 2018-09-18

Figure 51: Authorization and authentication schema for the Message Broker

Regarding the technical deployment of the different components, at the moment of writing this document
testing instances have been deployed on Atos’ servers, planned to be moved to production environments in
the later phases of the project in order to assure the integration and seamless aspects of the proposed solution
for the securitization.

6.1.2 Blockchain Uses

Other areas where COMPOSITION aims to offer a high level of security are:

• IPR, Confidentiality and Data integrity

• Log and Traceability

For that it has been considered the use of a blockchain implementation; in this case Multichain, which is a
private blockchain based on Bitcoin with interesting new features implemented like data streams and managed
permissions. Since it´s a private blockchain there is no need for mining which is an important aspect to have
into account, as transactions will have no cost if desired.

 IPR, Confidentiality and Data integrity

In the case of protecting IPR, COMPOSITION proposal is to use the blockchain to get a digital certificate of
authentication for any kind of digital document without storing the document itself in anyway in the blockchain.
The next figure is an overview of the architecture.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 96 of 134 Submission date: 2018-09-18

Figure 52: IPR Service

The method to obtain a certificate for a document is pretty simple:

1. Upload document

2. IPR service calculate hash and store in blockchain

3. Return hash

The following figure depicts the process in detail:

Figure 53: IPR Service sequence diagram

The method to check if a document existed at any given time is fairly simple also. The steps are the following:

1. Upload document

2. IPR service calculate hash

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 97 of 134 Submission date: 2018-09-18

3. IPR service checks hash in block chain

4. Return date if found

To ensure Confidentiality, Data Integrity and also IPR of the messages/data sent across the platform using
RabbitMQ message broker Multichain will be used in a similar way as with the certificate of authentication
explained before. It´s important to note that, as in the previous case the message or data itself it´s not stored
in the blockchain. The architecture can be depicted in the following figure:

Figure 54: Blockchain used for distributed trust in messaging

Before sending any message/data a publisher must first sign the message/data using a service created for
that purpose. Afterwards it can send the message using RabbitMQ message broker. Any subscriber receiving
the message can check if the data has been modified in any way and ensure that is coming from where it is
assumed. This is done by uploading the message/data in the service which will calculate the hash and will
check if the same hash it´s already in the blockchain. The following figure depicts the whole procedure in detail:

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 98 of 134 Submission date: 2018-09-18

Figure 55: Sequence diagram of integrating blockchain in message sending

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 99 of 134 Submission date: 2018-09-18

 Log and Traceability

Multichain will also be used to provide an audit trail for manufacturing and supply chain data enabling both
product data traceability and secure access for stakeholders. An approach of the architecture to be used is
shown in the following figure.

Figure 56: Blockchain in manufacturing process

The idea is to have multiple blockchain nodes along the whole manufacturing process with a central node.
Each node in the chain will make a transaction to the next node with the data available at each stage of the
process. Each node will add its own data to the one received from the previous node. As each transaction is
stored in the blockchain by the end of the manufacturing process it will be possible to have a clear overview
of what happened on each of the steps.

An advantage of this approach is that since the blockchain acts like a network of replicated databases, this
means all nodes have exactly the same information it’s very difficult that a problem in the system may cause
the loss of data. The failure of a node it´s not a big problem either, as replacing a node it´s really easy and as
soon as it is connected to the network all data will be replicated on it.

It should be also considered only to store relevant data in each transaction while all other data is stored on an
external database and linked to the data in the blockchain.

6.1.3 Cyber-Security

Following the approach stated in the previous deliverable D2.3 The COMPOSITION architecture specification
I, the cybersecurity aspects of the Security Framework will be managed by Atos SIEM and the Cyber-Agents.
This solution will monitor and protect the system against different kind of threads such as privileges abuse or
DoS attacks.

Basically, XL-SIEM consists of a cross-layer security information and event management tool. The reason why
it has been chosen is because of its main features that will provide a seamless protection against a wide set
of threads:

• High-performance correlation engine

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 100 of 134 Submission date: 2018-09-18

• Event collection, normalization and data transfer, managed by a set of distributed agents

Starting from the cybersecurity components described in the figure 62 of the previous deliverable D2.3 The
COMPOSITION architecture specification I, the component in the top (SIEM) can be depicted in its
architectural side in the diagram below, extracted from the XL-SIEM architecture paper (Gustavo González-
Granadillo, 2017)

Figure 57: XL-SIEM Architecture

• XL-SIEM Agent

The XL-SIEM Agent gathers all the events available in the network area where the XL-SIEM is
deployed, then it transfers them to the XL-SIEM Engine for its processing.

• XL-SIEM Engine

This component has two main purposes: analyze and process the events provided by the XL-SIEM
Agents and the generation of alarms due to a predefined set of correlation rules and security directives.

• XL-SIEM Database

Using some of the OSSIM database features and sharing key concepts as storage capabilities,
provides persistent data storage assets. For example, data is stored in MySQL relational databases,
the historical data is located in a separate database, does not support integration with cloud storage
services, and the data storage can be in a different machine where the event processing is running.

• XL-SIEM Dashboard

Is a web graphical interface with very useful visualization features: graphical charts reporting an
overview of the monitored system status, alarms, security events and raw logs visualization.

For further information, see the Atos XL-SIEM paper (Gustavo González-Granadillo, 2017).

6.1.4 Transport Layer

All communication between COMPOSITION components should be encrypted using TLS/SSL where possible.
In case of web applications and services its planned to use Nginx as a reverse proxy, with this approach all
applications and services can run their own web servers and do not need to implement TLS/SSL on their own
ad Nginx will take care of it. In the case of RabbitMQ message broker it needs to be configured to allow
encrypted message transactions.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 101 of 134 Submission date: 2018-09-18

6.2 Scalability Perspective

This section describes scalability concerns for COMPOSITION and how the chosen design decisions and
mechanisms can adopt measures to address these concerns. Basic concepts are introduced and scenarios
that affect scalability in COMPOSITION are described. An overview of common design patterns that enhance
scalability is followed by scalability design decisions for the individual components. Experience from the pilot
installations is expected to further refine scalability design after the publication of this deliverable.

6.2.1 Basic Concepts and Terminology

 Nodes, Resources and Scalability

As described in the Deployment View, each component will run in a Docker container; a virtual computational
resource (node) with a certain specified computing and/or storage capacity. Other examples of nodes are
physical servers, cloud services and execution containers in the cloud.

Computational resources are thus constrained by the amount allocated to the node with the limitations of the
docker host being the upper limit, which means the physical specification of the hardware if this is a locally
hosted deployment or in the case of cloud-based provisioning by the corresponding SLAs (Service Level
Agreements).

For the sake of clarity, we would like to differentiate between performance and scalability. By performance we
refer to the capability of a system to provide a certain response time with a given set of nodes and resources,
e.g., to serve a defined number of users or processes a certain amount of data from a server with a certain
capacity specification. Although no standard definition is available for these terms (Lehrig, Eikerling, & Becker,
2015), most of the available literature uses a similar definition for performance, e.g. (Wilder, 2012) where it is
defined as “… an indication of the responsiveness of a system to execute any action within a given time
interval”.

Scalability we would like to define in analogous to the definition in (Lehrig, Eikerling, & Becker, 2015) as the
ability of a system to increase the maximum workload it can handle by expanding its quantity of consumed
resources. Similar definitions are “the ability of a system either to handle increases in load without impact on
performance or for the available resources to be readily increased” (Wilder, 2012) or “the capability of a system,
network, or process to handle a growing amount of work, or its potential to be enlarged in order to
accommodate that growth” (Bondi, 2000).

Scaling is thus about allocating more resources for an application, i.e., resource provisioning. In this
discussion, we assume that the system has been designed to use the available resources as efficiently as
possible i.e., by maximizing the performance with a given set of resources. Examples of resources needed by
an application usually include CPU, memory, disk (capacity and throughput), and network bandwidth. An
application or service is said to be scalable if when we increase the resources in a system, it results in
increased performance in a manner proportional to resources added. Resources can be handled in scalability
units, i.e., groups of resources that could be scaled together.

 Vertical/Horizontal scaling

The scaling discussed here concerns the steps that may be taken when the available resources run out and
the application does not fulfil its functional or non-functional requirements - the maximum workload of the
system with the given resources is reached. We may then scale the system to increase the maximum workload
it can handle by expanding its quantity of available resources. We can increase the quantity of consumed
resources by increasing the amount of resources within existing nodes, or by adding more nodes.

To scale up (or scale vertically) is to increase overall application capacity by increasing the resources within
existing nodes. In COMPOSITION, e.g., increasing the capacity of the node running the message broker in
the IIMS. (For a Docker container, this can be achieved by using options such as “--cpus” and “--memory-
reservation”.).

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 102 of 134 Submission date: 2018-09-18

Figure 58: Boost capacity of node, scale up

Scaling up is usually the simplest and cheapest solution, as is does not require any changes to the design,
code details or deployment of the application. While less complex (and sometimes cheaper compared to re-
design or code improvements to increase performance) there are limitations to this approach compared to
scaling out.

To scale out (or scale horizontally) is to increase overall application capacity by adding nodes, e.g., adding an
additional message broker to the IIMS. (For Docker, this can be achieved by using options such as “--scale”
or using docker swarm.)

Figure 59: Scale out by adding nodes for component

Scaling out increases the overall application capacity by adding entire new computational nodes. Scaling out
tends to be more complex than scaling up, and has more impact on the application architecture. We may scale
out a COMPOSITION system instance by adding nodes for specific components (e.g., a Match Maker) and
implement support for this at the component level. In the case of horizontal scaling, the system should also be
able to adapt to shrinking demand for resources, to scale in. This property is often referred to as elasticity
(Lehrig, Eikerling, & Becker, 2015).

When all the nodes supporting a specific function are configured identically - same hardware resources, same
operating system, same function-specific software - we say these nodes are homogeneous66. We would add
that components executing on different nodes may be homogenous with regards to functionality – all nodes
support the same functions – and data or state – all nodes share the same data. This has implications on the
design of horizontal scaling.

An autonomous node does not know about other nodes of the same type, similarly the same term can also be
used for components.

In COMPOSITION, we have chosen is not to test scalability by creating a model of the system and performing
simulations. The approach we have taken is to identify the scalability issues by analysis of deployed capacity,

66 Wilder, Bill. Cloud Architecture Patterns: Using Microsoft Azure. Sebastapol, CA: O'Reilly Media, Inc., 2012

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 103 of 134 Submission date: 2018-09-18

against application performance requirements, identifying scenarios where the maximum workload may
exceed the capability of the system or components, investigate common design patterns for how these
scenarios may be addressed, and, determine how the design of components deals with scaling up and out.

6.2.2 Issue identification and analysis

In this section, we list a number of scalability quality attribute scenarios where a high value of the attribute may
cause the workload to exceed the maximum that the system or individual components can handle. Common
design patterns to address these problems are described. The component designs and architectural decisions
are described from a scalability viewpoint; the possible bottlenecks of each component, the possibility of
scaling up or out, and the design implications.

6.2.3 Scenarios for scalability requirements of the system

 Attributes that may affect workload of system or components

• Factory IIMS

o The number of concurrently reporting sensors/field devices

o The number of concurrently reporting BDA and ANN generated data streams

o The number of generated data that should be persistently stored in the system (for future deep
learning network training or in the blockchain

▪ Number of generated data streams

▪ Number of observations

o The number of concurrent queries for stored data

o The number of queries against the DFM for factory information

o The number of concurrent users of the IIMS user interface

• Marketplace

o The number of concurrent agent negotiations

o The number of concurrent requests for Matchmaker services

o The number of data sharing agreements between marketplace stakeholders

o The number of concurrent requests for block chain storage

o The number of users of marketplace user interfaces

 Performance attributes affected

• Response time

o Service time - how long it takes to do the work requested

o Wait time - how long the request has to wait for requests queued ahead of it before it gets
to run

o Transmission time – How long it takes to move the request to the computer doing the work
and the response back to the requestor

• Throughput

o The amount of work accomplished in a given amount of time

• Resource usage

o CPU usage

o Memory usage

o Storage usage

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 104 of 134 Submission date: 2018-09-18

o Network usage - data sent and received

6.2.4 Performance and Scalability Design

Some examples of common design patterns used for performance and scalability are summarized here for
convenience so that they may be referenced in the component scalability design section. More comprehensive
descriptions may be found in e.g. (Wilder, 2012), (Homer, Sharp, Brader, & Swanson, 2014) or (Fowler, 2002).

 Caching

When certain sets of data are frequently accessed, these may be copied to fast storage located close to the
requesting application. E.g. since REST interfaces are employed for request response communication, HTTP
caching may be used to avoid unnecessary load on the system by caching data at the HTTP client. Caching
can also be performed in the Intra-factory Interoperability Layer or the Broker.

 Materialized Views

HMI and other components may have need for views on data that is not stored or formatted in a way optimal
for the query required to produce this view. The system may then generate prepopulated views over the data,
possibly cached locally at the requesting node.

 Throttling

To avoid that a single application or input source degrades the entire system, the services provided by the
system may be temporarily limited. E.g. an agent sending a lot of requests may get a “503 Service Unavailable”
response telling it to wait, or some functionality of the Marketplace or IIMS may be prioritized in case of
insufficient resources.

6.2.4.3.1 Data partitioning

Data stored or processed in the system may be physically divided into separate nodes, so that they are not
homogenous with respect to the data they manage. Using horizontal partitioning, the nodes may use the same
schema but hold different parts of the data (e.g. different big data analytics nodes may process the same type
of data but from different sources). With vertical partitioning, nodes will hold different parts of the schema, e.g.
a broker instance may process only request-response type messaging or a storage node may only hold
observation data. When different parts of the schema are handled by different nodes based on business or
usage context, the term functional partitioning is sometimes used.

 Load balancing

When the maximum workload of a single component is reached, redundant deployments of the component
are created and a load balancing system dynamically distributes workloads. If the component works without
state between calls and function calls are idempotent, this strategy is easier to implement.

 Queue based load levelling and competing consumers

Instead of passing requests directly on to other components, a message queue can be used to implement the
communication channel between the components. The sender component(s) post requests in the form of
messages to the queue, and the consumer component(s) receive messages from the queue and process
them, each at its own pace. This way, fluctuations in workload and differences in throughput between various
parts of the system can be balanced, and individual components can be scaled out to optimize throughput.

 Local hosting vs cloud hosting

The COMPOSITION system may be hosted, in whole or in parts, on physical or virtual hardware, in an
environment owned and operated by a business (e.g. for a private marketplace) or in a cloud environment (e.g.
Amazon, Azure).

Depending of the choice of hosting it may be possible to scale up or out automatically. In any case and at the
very least, the components need to be able to indicate, when queried or by events, that the capacity limit is
being reached. The systems administrator or an auto-scale component may use this information to start
provisioning new resources. The design of components should be such that it is possible to scale them out by
adding more nodes, and support able scaling elastically in if there is less demand for resources.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 105 of 134 Submission date: 2018-09-18

6.2.5 COMPOSITION Scalability Design

COMPOSITION addresses the scalability issues by scalable design of the components and of the architecture.
Each instance, or deployment, of the intra factory system will face different scalability requirements.

A COMPOSITION component is deployed a docker container exposing a service, subscribing to data from the
Message Broker and calling the services of other components. Docker supports control of both horizontal and
vertical scaling of the services offered by a component. It also makes migration of containers to more capable
hardware and re-configuration components to implement strategies such as queue-based load levelling or
load-balancing easy compared to installations on virtual machines.

Docker Swarm, which is supported by the chosen Docker management tool Portainer, supports load-balancing
and scaling up to 30000 containers67.

 Market Event Broker and Real-time Multi-Protocol Event Broker

The Message Broker is the central communication hub in both the intra- and inter-factory scenarios. This
section builds on the scalability design reported in D6.3 “The COMPOSITION Marketplace I”. Choosing a
scalability design for the message broker requires analysis of the usage pattern and how messages are
distributed and utilizes on the design of the AMQP protocol. The message broker consists of one or several
brokers distributed on one or more nodes. In a broker, exchanges receive and route messages to queues
based on bindings with different filters. There is no fixed limit to the number of exchanges and queues in a
broker. We have identified are two types of configuration which can be used to address scalability for the
broker, which are referred to as routing topology and broker topology.

Broker topology deals with the distribution of logical brokers on nodes, by the built-in support for clustering
(one logical broker on separate nodes) or federation (different logical brokers on separate nodes).

A RabbitMQ cluster connects multiple distributed nodes (all running the same version of RabbitMQ) together
to form a single logical broker. Exchanges (and bindings) are replicated to all nodes in the cluster, while queues
by default only exist only on the node where they are declared. It is possible to configure queues as mirrored,
in which case publishing and deleting of messages is replicated on all mirrored queues. Thus, creating a queue
for an agent will only create a new process in one broker in the cluster. A cluster - without mirrored queues -
will have greater throughput than a single broker node. Queues are implemented as processes, whereas
exchanges are just database entries. A cluster setup increases throughput and provides high availability and
is the preferred setup of a logical broker for any full-scale installation of COMPOSITION and is the primary
scalability strategy for the intra-factory system.

In a RabbitMQ federation, an exchange or queue on one broker can be set up to receive messages published
to an exchange or queue on another, logically separate, broker. (Any federated logical broker may
simultaneously be set up a cluster.) The brokers may use different versions of RabbitMQ and be otherwise
unsynchronized. The integrated security provided by COMPOSITION Security Framework will facilitate the
set-up of federated message brokers with shared user management. Unlike clusters, federations do not require
all brokers in the federation to have direct connections. Only messages that need to be copied between
federated brokers (due to declared bindings) will be copied over a link between federated brokers. In the Open
marketplace, federations between brokers belonging to different stakeholders is a viable way to scale out the
system and cater for differences in infrastructure.

Routing topology deals with the connections of exchanges and queues by bindings and the distribution of
these on brokers. This topology can be set up dynamically on existing brokers by the AMQP protocol (and
RabbitMQ extensions).

A RabbitMQ mechanism called “the shovel” moves messages from an exchange or queue in one logical broker
to a destination exchange or queue in another logical broker.

RabbitMQ allows exchange-to-exchange bindings, routing messages from one exchange directly to a
secondary exchange. Clients would then only bind to the secondary exchange, and the number of client
queues and number of connects and disconnects at the secondary exchange would not affect the primary
exchange. This is a viable way to scale out the system for a large number of agents in the marketplace. (A
closed marketplace could require that stakeholders provide the resources for running a broker node.)

67 https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 106 of 134 Submission date: 2018-09-18

Routing topology design could e.g. favour many fanout exchanges or fewer exchanges and more use of
routing. Fanout exchanges are slightly faster than the other types of exchanges for multiple recipients, e.g.
topic and header exchanges. However, the difference is not a deciding factor in the choice of topology.

 Inter-factory

This section will discuss examples of possible scaling strategies for the marketplace. As the Message Broker
manages agent CXL communication the design of broker topology is the primary way to ensure scalability for
the marketplace.

Growth in the number of marketplaces is typically handled by adding nodes to the broker topology. A Closed
Marketplace typically has a separate infrastructure from the Open Marketplace, whereas a Virtual Marketplace
shares the infrastructure of the Open Marketplace. Marketplaces are logically separated; no messages are
exchanged between marketplaces. Virtual marketplaces are set up by actors already in the Open Marketplace.
Each Closed marketplace will be handled by a separate Message Broker. Open Marketplace and Virtual
Marketplaces will use clustering.

In the cluster, load-balancing techniques may be used to distribute agents among the nodes so that the (non-
mirrored) queues created by the agents is evenly distributed on the nodes,

Growth in the number of stakeholders in a marketplace may be handled by a routing topology which creates a
secondary exchange for each specific stakeholder (Figure 60). The secondary exchange has an exchange
binding to the primary exchange, which can be a fanout exchange. The consumers and producers (Agents)
connected to the secondary exchange only create bindings and queues on one broker in the cluster when they
connect. The secondary exchange may be a topic or header exchange.

The secondary stakeholder exchange will always exist, whether the stakeholder agents connect or
disconnects. It will receive messages from all exchanges that the stakeholder has an interest in. Whenever a
consumer (agent) connects it simply has to declare its queue and bind that queue to the stakeholder exchange
using the desired topic filter.

A similar topology may be created by using either the shovel or federation with an upstream broker (primary)
and a federated broker (secondary). These may be two separate broker nodes using different infrastructure.
The messages to a queue declared in the federated broker are buffered in a queue created in broker the
upstream exchange. If each connected stakeholder provides the infrastructure for the broker where the
secondary exchange resides, the system can scale very well.

Figure 60: Primary and secondary exchange routing topology

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 107 of 134 Submission date: 2018-09-18

The number of concurrent agent negotiations taking place will increase the number of messages being sent.
In the above topology, the queues will be at the secondary exchanges and messages published to the
exchange will be propagated to the primary and to all secondary exchanges. The primary/secondary broker
topology deployed in a RabbitMQ cluster will handle a very large number of concurrent negotiations. Should
the message flow require even more resources, a broker topology using a federation in a connected graph
(each one a cluster), where an exchange for the negotiation will exist on one broker node in the federation only
for the duration of the negotiation (Figure 61). The number of participants in each negotiation will likely not be
a limiting factor for the described topology.

Figure 61: Federated exchanges broker topology

An exchange that only the involved parties can access can be set up for each data sharing agreement (Figure
62). At most this will result in a number of exchanges on the scale of O(n2) to the number of stakeholders. If
one exchange is created for a stakeholder to publish to, and exchange to exchange bindings (or shovels) are
defined for each recipient of data to the secondary exchanges described above (Figure 63), the number of
exchanges will relate to the number of data sharing agreements by O(n). The sender will control the exchange
to exchange bindings or shovels. The data sharing may need to use a separate logical broker (cluster) in the
marketplace depending on the load.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 108 of 134 Submission date: 2018-09-18

Figure 62: Data sharing using one exchange per data sharing agreement

Figure 63: Data sharing using sender and recipient exchanges

6.2.5.2.1 Matchmaker

The COMPOSITION Matchmaker has been designed in order to offer high performance and support large
Marketplaces with numerous of participants and services. It is designed after a thorough research for available
tools, technologies, related works and methodologies.

As the Matchmaker component is packaged and deployed in an Apache Tomcat server, the maximum number
of connections that this component can access and process depends on Tomcat web server configuration.
Based on official Apache Tomcat 8 Configuration 68 the server is able to support over than 8000 connections.

68 http://tomcat.apache.org/tomcat-8.5-doc/config/http.html

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 109 of 134 Submission date: 2018-09-18

Furthermore, a RDF-triple store is used as the data store of the Marketplace. Based on the COMPOSITION
project’s pilot partners and use cases there was no need for a big data store for the Marketplace. However, in
order to create a Marketplace that can be used beyond the project, triple-store was used. Two cases were
examined based on Jena API. The first was the usage of SDB store which is a SQL database store. The
second was the usage of TDB component for storing. The second approach was selected. As native triple
store the TDB is faster, more scalable and better supported than SDB store. The SDB store is backed by SQL,
so queries from SPARQL have to “turn” into SQL queries. This adds complexity and it is not as efficient as a
native triple store. A native triple store is faster and supports the storage of millions of individuals. Using TDB
every change at the ontology takes place at an ontology model stored in the file system leaving the original
ontology immutable. This means that the original version of the ontology can be used in order to initialize new
Marketplaces.

The performance of the Matchmaker and its included components was tested for the COMPOSITION use
cases such as UC KLE-4 and the online bidding process. The Matchmaker responses in a reasonable
time(less than 5 seconds). However, in order to examine the performance of some sub-components in large
Marketplaces, automated JUnit tests were created and applied. Over 20.000 companies and services created
and added to the Marketplace Ontology Store. Then some queries were applied and the responses were still
in reasonable time (near 5 seconds). Only in the case that the instances were created simultaneously the
required response were some minutes. But this is not consider as a serious problem as the Marketplaces was
initialized ones and after that every new instance is added as soon as a new company arrives at the
Marketplace or offers a new service etc.

 Requester and Supplier Agent

The current implementation of the Requester and Supplier Agents is such that 1 single negotiation at a time is
handled, due to its nature based on dynamic behaviour according to the current agent status. Different
solutions are being studied and will be defined in D6.6 (M34).

 Marketplace Management

The current deployment is capable of handling 1024 parallel connections to the interfaces exposed through
the Agent Service. This can be increased either by vertically scaling the component to handle more
simultaneous requests or by adding additional copies of it, properly tuning the routes towards the replicas.

Benchmarks for MySQL Cluster are available at the official page i, some of them are shown in Figure 64,
showing that the current deployment is capable of handling about 25.000.000 asynchronous reads.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 110 of 134 Submission date: 2018-09-18

Figure 64: Async reads for MySQL Cluster

 Intra-factory

6.2.5.5.1 BMS

Symphony BMS is a complex system that requires specific configurations to be put in place before running on
a shop-floor. Internal mechanisms are implemented to ensure scalability functionality with respect on the
number of sensors installed and the amount of data transmitted by these devices. Nevertheless, the system is
targeted on building and factory environments, that can be big scopes, but somehow bounded on predictable
scales. On the other hand, if a single instance (such as it is currently set up COMPOSITION demonstration)
would not be enough for the intended purposes, there is no limit to the number of BMS instances that could
be deployed, also because in a real application each factory has its own BMS instance. In this latter case, the
usage of MQTT for streaming the data towards the other COMPOSITION components allows this change to
be completely transparent to the rest of the system, since the broker itself decouples senders and receivers.

The Big Data Analytics and Deep Learning Toolkit components are deployed as a unit and only the Big Data
Analytics communicate externally during runtime. It builds on a highly scalable CEP infrastructure but will
manage scalability by internal configuration rather than by scaling out docker nodes.

The Decision Support System is easily scalable for the COMPOSITION project. It is stream process based on
MQTT topics for communication and data retrieval from other components allows the program to scale up
easily. Topics can be easily added for additional data sources, without further computational cost.

On the other hand, DSS Rule Engine is more difficult to scale up due to its complexity. When the rules increase,
they create an exponential growth to the needed computational resources. Application of non – deterministic
logic also increases the complexity of each rule and makes scalability tasks more complex to design. Though,
taking into consideration, today’s computational capabilities, the Rule Engine scale up problem would affect
the system when the simultaneously applied rules where tens of thousands. This order of magnitude applies
only when there is only one application for different shop floors and approaches.

Concerning the docker capabilities, DSS is easily scaled up both horizontally and vertically. The application is
not expected to exceed certain levels of coding capabilities and limited data base requirements. Overall, the
DSS applications can be dockerized without any concerns about scaling issues.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 111 of 134 Submission date: 2018-09-18

6.2.5.5.2 Simulation and Forecasting

The Simulation and Forecasting component should return its output to the Digital Factory Model and Visual
Analytics in a reasonable time (e.g. less than 5 sec). Moreover, in this reasonable time Digital Factory Model
and Visual Analytics will also provide input to Decision Support System. This is primarily a matter of increasing
the performance of the component. This will be pursued by by conducting research and study related works
for available tools, algorithms and best practices while optimizing the current design, e.g. by repeated
processing and prioritized processing. The component can be scaled for a large number of requests by load-
balancing identical instances.

 HMI Framework

The design of the HMI framework with a single interface comprised of several micro frontends for independent
components is suitable for load-balancing and scaling out on several levels, from back-end to data stores. It
will also be able to be responsive even when individual parts experience high workload that affect performance.

The DSS HMI is designed to be independent of the data sources and the incoming data that the application
should be able to visualise and show on the dashboard. As a result, DSS HMI is easily scalable to include
various kinds of data sources, such as a new sensor network, different graphs for visualisation elements. Also,
HMI can accommodate more than one instance on different shop floors for customised use. Since DSS is a
web – based application, it is hosted on a server and can be easily reconfigured when new data sources are
added on the application. Adding new data sources does not increase complexity of the application. One thing
that maybe should be taken into consideration is that when dedicating different IP ports to different shop floor
instances. Ports are a type of resource that is limited on a server. Concluding, the hosting capabilities of a
server should be considered when deploying the application.

 Security Framework

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 112 of 134 Submission date: 2018-09-18

7 Summary and future work

No major changes to the architecture have been introduced since D2.3 and milestone MS2. There has been
no reason to revise the major elements of the architecture laid out in the project description and the initial
architecture workshops. Some components have been more tightly integrated, e.g. the BDA and DLT, and the
Matchmaker and Marketplace Ontology. The design and development work have progressed from the bottom-
up design laid out in the DOA and has been focused on a prioritized list of use cases and the design of common
interoperability mechanisms.

The standards and interfaces that a COMPOSITION component need to adhere to has been specified. The
components brought into the project have implemented the necessary adapters to comply with the common
infrastructure (i.e. the ones that did not already have them) and the standards used in the Security Framework.

The design has focused on the selection and adoption of standards in each system perspective and providing
interoperability between these. When new interfaces for existing components and adapters have been
developed, standards from RAMI4.0 and FIWARE such as OPC-UA and FIWARE-NGSI v2 Specification API
have been applied.

 The HMI framework has adopted a modular micro frontend design using web components that will seamless
integration of new functionality in the HMI. Menu and login are shared, but any language, framework or platform
can be used to build additional functionality for the marketplace or factory user interfaces.

The Operational viewpoint has been of lower priority relative to other viewpoints and has at the time of writing
not yet been addressed for all parts of the system. This is however of importance to the exploitation of the
COMPOSITION system and the current description will be complemented when this work is completed.

Scalability design for the system has been laid out and delegated to individual components. The components
implement internal saleability strategies for potential bottlenecks The dockerized component nodes can be
managed by tools like Docker Swarm or Kubernetes. It is expected that the full-scale pilot deployment will
provide further feedback to the scalability design and serve as a pointer to which scalability design patters are
most relevant to COMPOSITION.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 113 of 134 Submission date: 2018-09-18

8 Appendix 1: The RAMI4.0 Model

8.1 IT Layers

The six layers on the vertical axis represent a layered IT system structure, with loose coupling between the
layers and high cohesion within each layer. The layering is strict; i.e. components in a layer may only
communicate internally or with adjacent layers.

Figure 65: The IT Layers of RAMI 4.0

8.1.1 Asset Layer

The asset layer spans primarily the physical components of a system; physical things in the real world. E.g.
production lines, manufacturing machinery, field devices, products and also the humans involved. However,
other business assets e.g. software or information may also be regarded as assets. An asset is “a physical or
logical object which is owned or managed by an organisation and which has an actual or perceived value for
the organisation” (Plattform Industrie 4.0, 2016). In COMPOSITION, the trained artificial neural networks may
be regarded as an asset.

8.1.2 Integration Layer

The mapping from the physical world to the digital is performed by the Integration layer, which performs
provisioning of information on the assets in a form which can be processed by computer. This involves all
digitization of assets, such as connected sensors and other field devices, but also Human Machine
Interfaces (HMI).

8.1.3 Communication Layer

The Communication Layer performs transmission of data and files. It standardizes the communication from
the Integration Layer, providing uniform data formats, protocols and interfaces in the direction of the
Information Layer. It also provisions the services for controlling the Integration Layer.

8.1.4 Information Layer

In the Information Layer, data and events are processed, integrated and persisted. This layer ensures the
integrity of data, performs message translation and annotation and manages data persistence. It provides
the service interfaces to access structured data from the Functional Layer and also applies event rules and
transformation of event to the models and formats used in that layer. This is the run-time environment for
Complex Event Processing (CEP), data APIs and data persistence mechanisms.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 114 of 134 Submission date: 2018-09-18

8.1.5 Function Layer

The Function Layer is the primary location of rules and decision-making logic and contains the formal
descriptions of functions and service models. It is the run time environment for applications and services that
support the business processes.

8.1.6 Business Layer

The services provided by the Functional Layer are orchestrated by the Business Layer. It maps the services
to the business (domain) model and the business process models. It also models the business rules, legal
and regulatory constraints of the system. The Business Layers receives events that advance, link and
integrate the business processes.

8.1.7 Hierarchy Levels

Figure 66: Hierarchy Levels of RAMI 4.0 (Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0),
2015)

The right horizontal axis represents a hierarchy of different functionalities within factories or facilities. The
ones shown in the pyramid in Figure 66, from "Field device" to "Enterprise" are derived from the IEC 62264
(IEC62264, 2013) international standards series for enterprise IT and control systems. The standard
originated by modelling "wired" connections between functions performed by hardware in the factory, but
today the functions are implemented in software. To represent the Industry 4.0 environment, the
functionalities of IEC 62264 have been expanded to include workpieces, labelled “Product” (both the type
and the instance, through the entire lifecycle), and the connection to the Internet of Things and Services,
labelled “Connected orld”. The Connected orld involves the manufacturing ecosystem: groups of
factories, collaborations with external engineering firms, component suppliers and customers.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 115 of 134 Submission date: 2018-09-18

8.2 Life Cycle and Value Stream

Figure 67: Type and instance lifecycles in RAMI 4.0 (Status Report Reference Architecture Model Industrie 4.0
(RAMI4.0), 2015)

The left horizontal axis in RAMI 4.0 represents the life cycle of facilities and products, based on the IEC
62890 (IEC, 2013). Distinction is made between types and instances; design and prototyping involve types,
and each actual product being manufactured is an instance of this type.

As illustrated by Figure 67, this life cycle and value stream does not only cover the planning, design,
production and maintenance of parts and products, but also types and instances of production equipment
and factories. RAMI4.0 spans both processes and workflows internal to the company and the services and
products offered to clients.

8.3 Industrie 4.0 Component Administrative shell

An I4.0 component is the digitization of assets in the manufacturing process: it can be a factory, a production
system, an individual station, or an assembly inside a machine. It consists of one or more assets and an
administrative shell. The administrative shell is the virtual representation of an asset. The manifest of the
administration shell describes the data provided by the asset and the resource manager provides access to
the data and functionality of the asset. The I4.0 component is located within the layers of RAMI 4.0, up to the
Functional Layer. It can adopt various positions in the life cycle and value stream, and occupy various
hierarchical levels.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 116 of 134 Submission date: 2018-09-18

Figure 68: The I4.0 component (Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0), 2015)

An asset may have several administration shells for different purposes and aspects of the manufacturing
process. I4.0 components may be nested and accessed directly of as part of the implementation of the
services of another I4.0 component. The administrative shell may be deployed in the run-time environment of
the asset – if it possesses the necessary computational capabilities – or remotely, e.g. in a cloud
environment.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 117 of 134 Submission date: 2018-09-18

9 Appendix 2: Deep Learning Toolkit REST service interface

{

 "info": {

 "description": "Deep Learning Toolkit Inter-factory interfaces",

 "version": "1.0.0",

 "title": "Deep Learning Toolkit",

 "contact": {

 "email": [

 "vergori@ismb.it",

 "raimondo@ismb.it"

]

 }

 },

 "host": "not.defined.yet",

 "basePath": "/goods",

 "schemes": [

 "http"

],

 "paths": {

 "/goods": {

 "get": {

 "tags": [

 "good"

],

 "summary": "Get the list of all the available goods",

 "responses": {

 "200": {

 "description": "List of goods",

 "schema": {

 "$ref": "#/definitions/GoodId"

 }

 }

 }

 },

 "post": {

 "tags": [

 "good"

],

 "summary": "Add a new good to the store. If the good doesn't exist a new ANN will be created",

 "consumes": [

 "application/json"

],

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 118 of 134 Submission date: 2018-09-18

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "in": "body",

 "name": "body",

 "description": "Good object that needs to be added to the store",

 "required": true,

 "schema": {

 "$ref": "#/definitions/Good"

 }

 }

],

 "responses": {

 "201": {

 "description": "Created"

 },

 "400": {

 "description": "Bad request",

 "schema": {

 "$ref": "#/definitions/Error"

 }

 },

 "503": {

 "description": "Service unavailable when the ANNs number limit has been reached (server overloaded)"

 }

 }

 }

 },

 "/goods/{id}": {

 "get": {

 "tags": [

 "good"

],

 "summary": "Get good by type",

 "description": "",

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "name": "id",

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 119 of 134 Submission date: 2018-09-18

 "in": "path",

 "description": "The id of the good to be fetched.",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Successful operation",

 "schema": {

 "$ref": "#/definitions/Details"

 }

 },

 "404": {

 "description": "Good not found"

 }

 }

 },

 "delete": {

 "tags": [

 "good"

],

 "summary": "Delete good by id. The related ANN will also be deleted",

 "description": "",

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "name": "id",

 "in": "path",

 "description": "The name of the good that needs to be deleted",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Successful operation"

 },

 "404": {

 "description": "Good not found"

 }

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 120 of 134 Submission date: 2018-09-18

 }

 }

 },

 "/goods/{id}/predictions": {

 "get": {

 "tags": [

 "good"

],

 "summary": "Get predictions for a specific good",

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "name": "id",

 "in": "path",

 "description": "The name that good to be fetched.",

 "required": true,

 "type": "string"

 },

 {

 "in": "query",

 "name": "from",

 "type": "integer",

 "description": "Query start epoch"

 },

 {

 "in": "query",

 "name": "to",

 "type": "integer",

 "description": "Query end epoch"

 }

],

 "responses": {

 "200": {

 "description": "Successful operation",

 "schema": {

 "$ref": "#/definitions/PredictionArray"

 }

 },

 "404": {

 "description": "Good not found"

 }

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 121 of 134 Submission date: 2018-09-18

 }

 }

 },

 "/goods/{id}/predictions/last": {

 "get": {

 "tags": [

 "good"

],

 "summary": "Get the last prediction for a specific good",

 "produces": [

 "application/json"

],

 "parameters": [

 {

 "name": "id",

 "in": "path",

 "description": "The name that good to be fetched.",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Successful operation",

 "schema": {

 "$ref": "#/definitions/Prediction"

 }

 },

 "404": {

 "description": "Good not found"

 }

 }

 }

 },

 "/goods/{id}/values": {

 "get": {

 "tags": [

 "good"

],

 "summary": "Get the values uploaded for a specific good",

 "produces": [

 "application/json"

],

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 122 of 134 Submission date: 2018-09-18

 "parameters": [

 {

 "name": "id",

 "in": "path",

 "description": "The name that good to be fetched.",

 "required": true,

 "type": "string"

 },

 {

 "in": "query",

 "name": "from",

 "type": "integer",

 "description": "Query start epoch"

 },

 {

 "in": "query",

 "name": "to",

 "type": "integer",

 "description": "Query end epoch"

 }

],

 "responses": {

 "200": {

 "description": "Successful operation",

 "schema": {

 "$ref": "#/definitions/ValueArray"

 }

 },

 "404": {

 "description": "Good not found"

 }

 }

 },

 "post": {

 "tags": [

 "good"

],

 "summary": "Add a new value to the good store",

 "description": "",

 "consumes": [

 "application/json"

],

 "produces": [

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 123 of 134 Submission date: 2018-09-18

 "application/json"

],

 "parameters": [

 {

 "name": "id",

 "in": "path",

 "description": "The id of the good",

 "required": true,

 "type": "string"

 },

 {

 "in": "body",

 "name": "body",

 "description": "Good object that needs to be added to the store",

 "required": true,

 "schema": {

 "$ref": "#/definitions/Value"

 }

 }

],

 "responses": {

 "201": {

 "description": "Created"

 },

 "400": {

 "description": "Bad request",

 "schema": {

 "$ref": "#/definitions/Error"

 }

 }

 }

 }

 }

 },

 "definitions": {

 "Error": {

 "type": "object",

 "required": [

 "code"

],

 "properties": {

 "code": {

 "type": "integer",

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 124 of 134 Submission date: 2018-09-18

 "format": "int32",

 "example": 4

 },

 "message": {

 "type": "string",

 "example": "Invalid input data"

 }

 }

 },

 "GoodId": {

 "type": "array",

 "items": {

 "type": "string"

 },

 "example": [

 "paper",

 "scrap_metal"

]

 },

 "Value": {

 "type": "object",

 "required": [

 "price",

 "quantity",

 "start_date",

 "end_date"

],

 "properties": {

 "price": {

 "type": "number",

 "description": "The price to be updated, in floating point",

 "example": 25.8

 },

 "quantity": {

 "type": "number",

 "description": "The quantity to be updated, in floating point",

 "example": 30.4

 },

 "start_date": {

 "type": "integer",

 "description": "The start date quantity and price refer to, in epoch time",

 "example": 1524491482

 },

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 125 of 134 Submission date: 2018-09-18

 "end_date": {

 "type": "integer",

 "description": "The end date quantity and price refer to, in epoch time",

 "example": 1524494482

 }

 }

 },

 "Details": {

 "type": "object",

 "required": [

 "id_good",

 "values",

 "predictions"

],

 "properties": {

 "id_good": {

 "type": "string",

 "description": "good type",

 "example": "paper"

 },

 "values": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Value"

 }

 },

 "predictions": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Prediction"

 }

 }

 }

 },

 "Good": {

 "type": "object",

 "required": [

 "id_good"

],

 "properties": {

 "id_good": {

 "type": "string",

 "description": "good type",

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 126 of 134 Submission date: 2018-09-18

 "example": "paper"

 },

 "price": {

 "type": "number",

 "description": "The price to be updated",

 "example": 25.8

 },

 "quantity": {

 "type": "number",

 "description": "The quantity to be updated",

 "example": 30.4

 },

 "start_date": {

 "type": "integer",

 "description": "The start date quantity and price refer to, in epoch time",

 "example": 1524491482

 },

 "end_date": {

 "type": "integer",

 "description": "The end date quantity and price refer to, in epoch time",

 "example": 1524494482

 }

 }

 },

 "Prediction": {

 "type": "object",

 "required": [

 "value",

 "date",

 "accuracy"

],

 "properties": {

 "value": {

 "type": "number",

 "description": "The price prediction",

 "example": 120.3

 },

 "date": {

 "type": "integer",

 "description": "The date prediction refer to, in epoch time",

 "example": 1524491482

 },

 "accuracy": {

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 127 of 134 Submission date: 2018-09-18

 "type": "number",

 "description": "The accuracy of the prediction, from 0 to 1"

 }

 }

 },

 "PredictionArray": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Prediction"

 }

 },

 "ValueArray": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/Value"

 }

 }

 }

}

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 128 of 134 Submission date: 2018-09-18

10 Appendix 3: CXL JSON Schema

{
 "description": "The JSON syntax specification of the COMPOSITION CXL language, mainly focus on the
message envelope",
 "type": "object",
 "properties": {
 "act": {
 "type": "string",
 "enum": [
 "accept-proposal",
 "agree",
 "cancel",
 "cfp",
 "confirm",
 "disconfirm",
 "failure",
 "inform",
 "inform-if",
 "inform-ref",
 "not-understood",
 "propagate",
 "propose",
 "proxy",
 "query-if",
 "query-ref",
 "refuse",
 "reject-proposal",
 "request",
 "request-when",
 "request-whenever",
 "subscribe"
]
 },
 "sender": {
 "type": "object",
 "description": "the message originator",
 "properties": {
 "name": {
 "type": "string"
 },
 "addresses": {
 "type": "array",
 "items": {
 "type": "object"
 }
 },
 "user-defined": {
 "type": "object"
 }
 }

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 129 of 134 Submission date: 2018-09-18

 },
 "receiver": {
 "type": "array",
 "description": "The set of recipients for this message",
 "items": {
 "type": "object",
 "description": "the message recipient",
 "properties": {
 "name": {
 "type": "string"
 },
 "addresses": {
 "type": "array",
 "items": {
 "type": "object"
 }
 },
 "user-defined": {
 "type": "object"
 }
 }
 }
 },
 "reply-to": {
 "type": "object",
 "description": "The agent to which replies for this message shall be sent",
 "properties": {
 "name": {
 "type": "string"
 },
 "addresses": {
 "type": "array",
 "items": {
 "type": "object"
 }
 },
 "user-defined": {
 "type": "object"
 }
 }
 },
 "language": {
 "type": "string",
 "description": "The language used for encoding the message content"
 },
 "encoding": {
 "type": "string",
 "description": "The specific encoding used for language expressions, typically a mime type"
 },
 "ontology": {
 "type": "array",

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 130 of 134 Submission date: 2018-09-18

 "description": "The set of ontologies defining the primitives that are valid within the message content",
 "items": {
 "type": "string",
 "format": "url"
 }
 },
 "protocol": {
 "type": "string",
 "description": "Identifies the agent communication protocol to which the message adheres"
 },
 "content": {
 "type": "object",
 "description": "The actual payload of the message"
 },
 "conversation-id": {
 "type": "string",
 "description": "Provides an identifier for the sequence of communicative acts (messages) that together
form a conversation"
 },
 "reply-with": {
 "type": "string",
 "description": "Provides an expression that the message recipient shall include in the answer, exploiting
the in-reply-to field. This allows following a conversation when multiple dialogues occur simultaneously."
 },
 "in-reply-to": {
 "type": "string",
 "description": "Denotes an expression that references and earlier action to which this message is a
reply"
 },
 "reply-by": {
 "type": "string",
 "format": "date-time"
 }
 },
 "additionalProperties": false
}

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 131 of 134 Submission date: 2018-09-18

11 References

(den 19 07 2018). Hämtat från The Hydra Project: https://linksmart.in-jet.dk/news.php
(2018). Hämtat från Portainer: https://portainer.io/
(2018). Hämtat från PMD: https://pmd.github.io/
(2018). Hämtat från Keycloak: https://www.keycloak.org/
(2018). Hämtat från IMPACT: https://www.cs.umd.edu/projects/impact/
(2018). Hämtat från GoodRelations Language: http://www.heppnetz.de/projects/goodrelations
(2018). Hämtat från FIWARE: http://www._ware4industry.com/
(2018). Hämtat från Docker: https://www.docker.com/
(2018). Hämtat från Apache Tomcat: http://tomcat.apache.org/
(2018). Hämtat från Apache Jena: https://jena.apache.org/documentation/inference/
Ameri. (2006). Manufacturing Service Description Language. Hämtat från

https://www.researchgate.net/publication/267486591_An_Upper_Ontology_for_Manufacturing_Servi
ce_Description

Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine
learning. Machine learning, 5-43.

Apache Maven. (2018). Hämtat från Apache Maven: https://maven.apache.org/
Axling, M., Bonino, D., Ioannidis, D., Kaklanis, N., Nizamis, A., Vergori, P., . . . Rosengren, P. (2017). D2.3

The COMPOSITION Architecture Specification I. COMPOSITION Consortium.
Bondi, A. (2000). Characteristics of scalability and their impact on performance. Proceedings of the second

international workshop on Software and performance - WOSP '00.
Bonino, D., Carvajal Soto, J. A., Delgado Alizo, M. T., Alapetite, A., Gilbert, T., Axling, M., . . . Spirito, M.

(2015). Almanac: Internet of things for smart cities. 2015 3rd IEEE International Conference on
Future Internet of Things and Cloud (FiCloud), 309-316.

Carvajal Soto, J. Á., Jentsch, M., Preuveneers, D., & Ilie-Zudor, E. (2016). CEML: Mixing and Moving
Complex Event Processing and Machine Learning to the Edge of the Network for IoT Applications.
Proceedings of the 6th International Conference on the Internet of Things, 103-110.

COMPOSITION. (2016). GRANT AGREEMENT 723145 — COMPOSITION: Annex 1 Research and
innovation action.

Cugola, G., & Margara, A. (2012). Processing flows of information: From data stream to complex event
processing. ACM Computing Surveys (CSUR), 15.

Dawid, A. P. (1984). Present position and potential developments: Some personal views: Statistical theory:
The prequential approach. Journal of the Royal Statistical Society. Series A (General), 278-292.

ECLIPSE EGit. (2018). Hämtat från ECLIPSE: http://www.eclipse.org/egit/
ECLIPSE IDE. (2018). Hämtat från ECLIPSE: https://www.eclipse.org/ide/
Fernandes, J. L. (2013). FernPerformance evaluation of RESTful web services and AMQP protocol.

Ubiquitous and Future Networks (ICUFN), 2013 Fifth International Conference on. IEEE.
FIPA. (2004). FIPA Agent Management Specification. Hämtat från Foundation for Intelligent Physical Agents

: http://www.fipa.org/specs/fipa00023/SC00023K.pdf
FITMAN-SeMa. (2018). Hämtat från http://www.ware4industry.com/?portfolio=metadata-and-ontologies-

semantic-matching-sema
Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison Wesley.
Gaber, M. M. (Advanced Methods for Knowledge Discovery from Complex Data). Gaber, Mohamed Medhat;

Krishnaswamy, Shonali; Zaslavsky, Arkady. On-board Mining of Data Streams in Sensor Networks,
307-335.

Gustavo González-Granadillo, S. G.-Z. (2017). Towards an Enhanced Security Data Analytic Platform. Atos
Research and Innovation, Cyber Security Department.

Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns. Addison-Wesley Professional.
Homer, A., Sharp, J., Brader, L. N., & Swanson, T. (2014). Cloud Design Patterns. Microsoft patterns &

practices.
IEC. (2013). IEC 62890: IEC Project: Life Cycle Management for Systems and Products used in Industrial-

Process Measurement, Control, and Automation. IEC.
IEC62264. (2013). IEC 62264-1: Enterprise-control system integration Part 1: Models and Terminology. IEC.
IEEE. (2000). IEEE 1471 Recommended Practice for Architectural Description for Software Intensive

Systems. IEEE.
ISO/IEC/IEEE42010. (2011). ISO/IEC 42010: Systems Engineering – Architecture description.

ISO/IEC/IEEE.
ISO19156. (2011). Geographic information -- Observations and measurements. ISO.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 132 of 134 Submission date: 2018-09-18

Kruchten, P. (2004). The Rational Unified Process: An Introduction. Addison-Wesley Professional.
Lehrig, S., Eikerling, H., & Becker, S. (2015). Scalability, Elasticity, and Efficiency in Cloud Computing: a

Systematic Literature Review of Definitions and Metrics. Proceedings of the 11th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA '15), Montreal, QC, Canada, May
4–7.

Lemaignan. (2006). Manufacturing’s Semantics Ontology or MASON is a manufacturing ontology, aimed to
provide a common semantic net in manufacturing domain. Hämtat från
http://ieeexplore.ieee.org/document/1633441/

Liang, S., Huang , C.-Y., & Khalafbeigi, T. (2016). OGC SensorThings API Part 1: Sensing. Open Geospatial
Consortium.

Maciej, R., Krzysztof, G., & Aleksander, S. (2014). Evaluation of highly available and fault-tolerant
middleware clustered architectures using RabbitMQ. Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. IEEE.

Milagro, F. A. (2008). SOAP tunnel through a P2P network of physical devices. Internet of Things Workshop.
Sophia Antopolis: Internet of Things Workshop, Sophia Antopolis.

OPC Foundation. (2018). OPC Foundation. Hämtat från https://opcfoundation.org/
Plattform Industrie 4.0. (2016). Structure of the Administration Shell - Continuation of the Development of the

Reference Model for the Industrie 4.0 Component. Federal Ministry for Economic Affairs and Energy
(BMWi).

Pyro - Python Remote Objects. (den 18 07 2018). Hämtat från https://pythonhosted.org/Pyro4/
Rozanski, N., & Woods, E. (2012). Software Systems Architecture,: working with stakeholders using

viewpoints and perspectives. Addison-Wesley.
(2015). Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0). Düsseldorf: VDI e.V.
Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote

Sensing of Environment, 77 - 89.
Suárez-Figueroa, M. C. (2010). NeOn Methodology for Building Ontology Networks: Specification,

Scheduling and Reuse. Hämtat från
https://www.researchgate.net/publication/47900862_NeOn_Methodology_for_Building_Ontology_Ne
tworksSpecification_Scheduling_and_Reuse

Syed, N. A., Huan, S., Kah, L., & Sung, K. (1999). Incremental learning with support vector machines.
Citeseer.

Wilder, B. (2012). Cloud Architecture Patterns. O'Reilly.
Y.2060, I.-T. (2012). ITU-T Y.2060 : Overview of the Internet of things. ITU.

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 133 of 134 Submission date: 2018-09-18

12 List of Figures and Tables

12.1 Figures

Figure 1: ISO/IEC/IEEE 42010 Architecture Description Conceptual Model .. 10
Figure 2: The three dimensions of the RAMI 4.0. (Status Report Reference Architecture Model Industrie 4.0
(RAMI4.0), 2015) ... 11
Figure 3: The strategical and technical objectives of COMPOSITION .. 14
Figure 4: COMPOSITION conceptual architecture ... 19
Figure 5: The COMPOSITION system context view ... 20
Figure 6: High-level functional view of COMPOSITION architecture .. 23
Figure 7: COMPOSITION Component dependencies ... 24
Figure 8: A mapping of COMPOSITION functional packages to the RAMI 4.0 Layers 25
Figure 9: RPC over AMQP .. 27
Figure 10: Intrafactory Interoperability Layer and Shop-floor .. 28
Figure 11: Components and interactions of the BMS: LinkSmart middleware, Configuration Shell, BMS
(Building Management System), RAMI Administration Shell .. 30
Figure 12: COMPOSITION OPC Connector ... 31
Figure 13: Common HMI Components .. 33
Figure 14: LinkSmart® Learning Service Architecture Sketch .. 34
Figure 15: DLT and LA integration .. 35
Figure 16: Deep Learning Toolkit in COMPOSITION architecture, before and after first implementation 38
Figure 17: REST service interfaces details ... 40
Figure 18: Component Diagram - Decision Support System .. 41
Figure 19: DSS Sequence Diagram .. 42
Figure 20: DSS HMI Screens: a) Log In Screen, b) Main Dashboard, c) KPIs tool and d) Rule Engine 43
Figure 21: The updated Simulation and Forecasting Tool and dependencies .. 44
Figure 22: Marketplace components ... 46
Figure 23: Design and dependencies of the Agent Management System: Matchmaker, Database for storing
agents’ data ... 47
Figure 24: Design and dependencies of the Supplier Agent: Agent Management System, Matchmaker, Deep
Learning Toolkit ... 49
Figure 25: Supplier Agent sequence diagram ... 50
Figure 26: Design and dependencies of the Requester Agent: Agent Management System, Matchmaker ... 51
Figure 27: Requester Agent sequence diagram. ... 52
Figure 28: Bidding Process management ... 53
Figure 29: Material Management GUI ... 53
Figure 30: Components of the Security Framework .. 54
Figure 31: Keycloak administration interface... 55
Figure 32: Functional view of COMPOSITION Matchmaker package .. 57
Figure 33: Dependencies of data models used in the system... 60
Figure 34: Initial BPMN diagram of BSL production line ... 61
Figure 35: State Diagram for FSM Rule in the Rule Engine .. 62
Figure 36: DFM Data Model .. 63
Figure 37: Collaborative Manufacturing Services Ontology Class Diagram ... 67
Figure 38: OGC SensorThings Data Model... 69
Figure 39: Example Intra-factory data flow .. 73
Figure 40: Sequence diagram of COMPOSITION Simulation and Forecasting Tool 74
Figure 41: Sequence diagram of main interactions of COMPOSITION Matchmaker 75
Figure 42: Data flow between AMS and underlying Database .. 76
Figure 43: Data flow between Requester/Supplier agent, AMS and Matchmaker .. 77
Figure 44: Internal Supplier Agent data flow ... 78
Figure 45: Internal Requester Agent data flow .. 81
Figure 46: Data routing information flow .. 85
Figure 47: Simplified model of the marketplace data exchange design .. 86
Figure 48: Current COMPOSITION production servers: all components are deployed as Docker containers,
external traffic is secured by TLS .. 88
Figure 49: White Pages Deployment View .. 90
Figure 50: The Authentication and Authorization framework. ... 94

COMPOSITION D2.4 The COMPOSITION architecture specification II

Document version: 1.1 Page 134 of 134 Submission date: 2018-09-18

Figure 51: Authorization and authentication schema for the Message Broker.. 95
Figure 52: IPR Service ... 96
Figure 53: IPR Service sequence diagram .. 96
Figure 54: Blockchain used for distributed trust in messaging .. 97
Figure 55: Sequence diagram of integrating blockchain in message sending .. 98
Figure 56: Blockchain in manufacturing process ... 99
Figure 57: XL-SIEM Architecture ... 100
Figure 58: Boost capacity of node, scale up.. 102
Figure 59: Scale out by adding nodes for component ... 102
Figure 60: Primary and secondary exchange routing topology ... 106
Figure 61: Federated exchanges broker topology ... 107
Figure 62: Data sharing using one exchange per data sharing agreement .. 108
Figure 63: Data sharing using sender and recipient exchanges ... 108
Figure 64: Async reads for MySQL Cluster ... 110
Figure 65: The IT Layers of RAMI 4.0 ... 113
Figure 66: Hierarchy Levels of RAMI 4.0 (Status Report Reference Architecture Model Industrie 4.0
(RAMI4.0), 2015) ... 114
Figure 67: Type and instance lifecycles in RAMI 4.0 (Status Report Reference Architecture Model Industrie
4.0 (RAMI4.0), 2015) ... 115
Figure 68: The I4.0 component (Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0), 2015)
 ... 116

12.2 Tables

Table 1: Acronyms and COMPOSITION-specific terminology. ... 6
Table 2: Prioritized Use Cases .. 13
Table 3: Matchmaker APIs .. 58
Table 4: Collaborative Manufacturing Services Ontology Main Classes ... 67
Table 5: DFM API Web Services ... 72
Table 6: Data sources for DSS by use case.. 73
Table 7: Specifications of AWS resources for Inter- and Intra-Factory servers. ... 89

i https://www.mysql.com/why-mysql/benchmarks/mysql-cluster/

