

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D6.5 Connectors for Inter-factory
Interoperability and Logistics I

Date: 2018-01-08

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 2 of 38 Submission date: 2018-02-26

Document control page

Document file: D6.5_Connectors_for_Inter-factory_Interoperability_and_Logistics_I_v1.0
Document version: 1.0
Document owner: ISMB

Work package: WP6 – COMPOSITION Collaborative Ecosystem
Task: T6.3 - Connectors for Inter-Factory Interoperability and Logistics
Deliverable type: [OTHER]

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Giuseppe Pacelli (ISMB) 2018-01-08 TOC, Initial content

0.2 Alexandros Nizamis (CERTH) 2018-02-06 Description of Matchmaker

0.3 Javier Romero (ATOS) 2018-02-14 Security sections

0.4 Giuseppe Pacelli, Michele Ligios
(ISMB)

2018-02-20 Finalized ISMB sections

0.5 Mathias Axling, Vivian Esquivias
(CNET), Giuseppe Pacelli
(ISMB)

2018-02-21 Cloud Service APIs, Contributions merging

0.9 Giuseppe Pacelli (ISMB) 2018-02-26 Integrated internal review suggestions, ready
for submission

1.0 Giuseppe Pacelli (ISMB) 2018-02-26 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Dimosthenis Ioannidis (CERTH) 2018-02-23 The document is good and almost ready for
final submission. Small changes in tables’
format, figures’ enumeration and wording are
needed. The conclusions should be extended.

Fabian Unkrig (FIT) 2018-02-23 Approved with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 3 of 38 Submission date: 2018-02-26

Index:
1 Executive Summary ... 4

2 Terminology .. 5

3 Introduction .. 6
3.1 Purpose, context and scope of this deliverable ... 6
3.2 Content and structure of this deliverable ... 6

4 Background .. 7
4.1 Multi-Agent System .. 7
4.2 Protocols .. 7

4.2.1 AMQP... 7
4.2.2 RESTful APIs ... 7
4.2.3 TLS/SSL ... 7

5 Agents ... 8
5.1 Requester Agent .. 9

5.1.1 APIs.. 9
5.2 Supplier Agent ...13

5.2.1 APIs..13
5.3 Agent Management Service ..15

5.3.1 White Pages service ..15
5.4 Matchmaker Agent ...20
5.5 Sample interaction protocol ...22
5.6 Informative messages ..24

6 Connectors ...25
6.1 COMPOSITION eXchange Language ...25
6.2 IIMS to marketplace ...26
6.3 Cloud service APIs ..26

6.3.1 Marketplace Data Sharing ...27
6.3.2 Marketplace Portal ...27

6.4 End-to-end security ..30
6.4.1 Marketplace ...30
6.4.2 RabbitMQ ...32

7 Conclusions and future work..36

8 List of Figures and Tables ...37
8.1 Figures ...37
8.2 Tables ..37

9 References ..38

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 4 of 38 Submission date: 2018-02-26

1 Executive Summary

This deliverable presents the first results of the Task 6.3 Connectors for Inter-Factory Interoperability and
Logistics. It aims to describe and analyse the COMPOSITION marketplace's first version.

COMPOSITION has two main goals:

1. The integration of data along the value chain from the inside of a factory into one integrated
information management system (IIMS).

2. The creation of a (semi-)automatic ecosystem that extends the local IIMS concept to a holistic and
collaborative system incorporating and interlinking both the supply and the value chains.

The purpose of this deliverable is to further describe the development process related to the generation of
the (semi-)automatic ecosystem.

Particularly, the analysis will focus on:

 The design of the different connectors between the various marketplace components:

o Marketplace Agents

o Stakeholder Agents

o Matchmaker Agent

o Security framework

 The implementation of the connectors described above.

 A short description of every component.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 5 of 38 Submission date: 2018-02-26

2 Terminology

The currently adopted domain-specific terminology used in the remainder of the document is presented in
Table 1 COMPOSITION-specific terminology below.

Table 1: Terminology

Term Definition

AMS Agent Management Service

UI User Interface

IIMS Integrated Information Management System

API Application Programming Interface

REST REpresentational State Transfer

AMQP Advanced Message Queueing Protocol

TLS Transport Layer Security

FIPA Foundations for Intelligent Physical Agents

CRUD Create Read Update Delete

HTTP HyperText Transfer Protocol

CXL COMPOSITION eXchange Language

SPARQL Simple Protocol and RDF Query Language

JSON JavaScript Object Notation

DCO Distributed Constraints Optimization

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 6 of 38 Submission date: 2018-02-26

3 Introduction

3.1 Purpose, context and scope of this deliverable

This deliverable presents the actions performed on the integration regarding the different components
involved in the COMPOSITION Marketplace. The work has been carried out mainly in Work Package 6
(WP6), “COMPOSITION Collaborative Ecosystem”. The main tasks involved are:

 Task 6.1 “Real-time event brokering for factory interoperability”

 Task 6.2 “Cloud Infrastructures for Inter-Factory Data Exchange”

 Task 6.3 “Connectors for Inter-Factory Interoperability and Logistics”

 Task 6.4 “Collaborative manufacturing services ontology and language”

 Task 6.5 “Brokering and Matchmaking for Efficient Management of Manufacturing Processes”

This deliverable will be followed by D6.6 “Connectors for Inter-Factory Interoperability and Logistics II”, which
will provide an updated description at M34 of the project.

The communication design is tightly integrated with the Security Framework, reported in D4.1 “Design of the
Security Framework I”. This report will include an overview of this integration.

3.2 Content and structure of this deliverable

The structure of this deliverable is as follows:

Section 4 – Provides an overview of the protocols used in the current implementation.

Section 5 – Describes the development status of the Agents, together with the interaction protocol.

Section 6 – Describes, from a high-level perspective, the connections between the different systems.

Section 7 –Presents a summary of the current development state with conclusions and provides an overview
on how future work will proceed.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 7 of 38 Submission date: 2018-02-26

4 Background

4.1 Multi-Agent System

Multi-Agent Systems (MAS) have been widely investigated in research, their application domains range from
Distributed Constraints Optimization (DCO) problems to coordination and delegation of computational tasks.
While the adoption of agent systems in automatic negotiation, i.e., for DCO problems, is not new, as
witnessed by the huge amount of literature available, the application of such techniques in real-industrial
environments, in a fully decentralized set-up still presents some research challenge and offers possibilities
for advancing the state of the art. The COMPOSITION marketplace can be seen as a particular variation of a
Multi-Agent System.

4.2 Protocols

In this section we will perform a high-level analysis of the most important protocols used for the
communication between the different marketplace components.

4.2.1 AMQP

The Advanced Message Queuing Protocol (AMQP), ISO/IEC 19464:2014, is an open standard application
layer protocol for message-oriented middleware. While not a light-weight protocol like MQTT, AMQP allows
for a variety of message queuing and routing patterns (including publish-and-subscribe) while stressing
reliability and security. AMQP declares a model, protocol methods, format (application payload is opaque to
the broker, however) and type system that broker and client implementations must conform to for different
implementations to be interoperable. Both versions 0-9-1 and 1.0 are supported by several software
vendors.

4.2.2 RESTful APIs

REST (REpresentional State Transfer) is an architectural style for developing web services. It is neither an
architecture nor a standard, but a set of guidelines allowing the realization of system architecture. Resources
can be identified by URIs, that might allow CRUD (Create, Read, Update, Delete) operation on such
resource. In fact, CRUD operations can be mapped on HTTP methods as shown in Table 2:

Table 2: Mapping between CRUD and HTTP methods

CRUD method HTTP method

Create POST

Read GET

Update PUT

Delete DELETE

One of the main advantages in using RESTful APIs is that client and server can be completely independent,
therefore allowing easy communication between systems developed on different platforms and written in
different programming languages.

4.2.3 TLS/SSL

TLS/SSL are cryptographic protocols that provide communication security over a computer network. They
provide a secure means of communication between two entities, preventing data tampering, data forgery and
man-in-the-middle attacks.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 8 of 38 Submission date: 2018-02-26

5 Agents

The COMPOSITION marketplace is a fully distributed multi-agent system designed to support industry 4.0
exchanges between involved stakeholders. It is particularly aimed at supporting automatic
supply chain formation and negotiation of goods/data exchanges. The COMPOSITION
marketplace exploits a microservice architecture (based on Docker) and relies upon a scalable messaging
infrastructure. Trust and security are granted in every negotiation step undertaken by automated agents
on behalf of involved stakeholders.
The marketplace includes the following elements: (a) a Marketplace management portal; (b) an easy to
deploy Marketplace core based on Docker; (c) a set of "default" agent implementations ready to be
adopted by interested stakeholders.

The main building blocks of the Marketplace are displayed in Figure 1 below.

Figure 1: Marketplace Components

As stated in previous deliverable D2.3 there are two main categories of agents that can be defined a priori,
depending on the kind of services provided:

 Marketplace agents

 Stakeholder agents

The former category groups all the agents providing services that are crucial for the marketplace to operate.
The latter category, instead, groups agents developed and deployed by the marketplace stakeholders to take
part in chain formation rounds.

Stakeholder agents can be divided in two different categories, Requester and Supplier. From an
implementation point of view, they are very similar and share a large set of features, especially the
communication protocols used for the interaction with stakeholders and other agents.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 9 of 38 Submission date: 2018-02-26

Figure 2: Simplified agents' communication logic

The communication protocols used by the agent for the interaction with the stakeholder on left side and with
other agents on the marketplace on the right side are shown in Figure 2.
Any agent can be controlled by the stakeholder via RESTful APIs which will be listed and explained in the
following sections. Agents on the marketplace can exchange messages using AMQP as transport layer.

5.1 Requester Agent

The Requester Agent is the agent used by a factory to request the execution of an existing supply chain or to
initiate a new supply chain. Due to the dynamics of exchanges pursued in COMPOSITION, there is no actual
distinction between the two processes, i.e., for any supply need a new chain is formed and a new execution
of the chain is triggered. The Requester agent may act according to several negotiation protocols, which can
possibly be supported by only a subset of the agents active on a specific marketplace instance. The baseline
protocol, which must be supported by any COMPOSITION agent, is the so-called CONTRACT-NET. In such
a protocol, a Requester agent plays the role of “Initiator”.

The communication between UI and corresponding agent(s) on the marketplace happens via a set of
RESTful APIs, described in the following section.

5.1.1 APIs

5.1.1.1 Start bidding

This API is exposed on:
<Agent_IP_address>/agent/messages/iims/startbidding

It accepts the following methods: POST, PUT
This API is triggered by the IIMS whenever an installed sensor in the intra-factory system reaches a critical
level, meaning that a new negotiation session (namely bidding process) should start.

The schema of the message accepted by the API is the following:

{
 "description":"Trigger message sent by IIMS to the Requester agent",
 "type":"object",
 "properties":{
 "action":{
 "type":"string"
 },
 "bid":{
 "type":"object",
 "properties":{
 "good":{
 "type":"string"
 },
 "quantity":{
 "type":"number",
 “required”:”true”
 },

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 10 of 38 Submission date: 2018-02-26

 "quantity_uom":{
 "type":"string",
 “required”:”true”
 },
 "timeout":{
 "type":"string",
 "format":"date-time"
 },
 "min_price":{
 "type":"number"
 },
 "max_price":{
 "type":"number"
 },
 "currency":{
 "type":"string",
 "enum":["EUR","USD"]
 },
 "pickup_details":{
 "type":"array",
 "items": {
 "type":"object",
 "properties": {

 "date": {
 "type": "string",

 "format": "date-time"
 },
 "supplier": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 },
 "additionalProperties": false
}

Except from the fields ‘quantity’ and ‘quantity_uom’ which are critical for the bidding process, no other field is
mandatory. In fact, should any of them be missing, the negotiation will start with the default value for the
agent.

5.1.1.2 Start action

This API is exposed on:
<Agent_IP_address>/agent/messages/ui/action

It accepts the following methods: POST, PUT
This API is triggered whenever the stakeholder wants the agent to perform a certain action. This API
supports several actions that are described below.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 11 of 38 Submission date: 2018-02-26

The schema of the message accepted by the API is the following:

{
 "description":"An action request sent by a UI to the associated agent",
 "type":"object",
 "properties":{
 "session_id":{
 "type":"string"
 },
 "agent_role":{
 "type":"string",
 "enum":["requester"]
 },
 "action":{
 "type":"string",
 "enum":["withdraw","selected_option" ,"start_bid"]
 },
 "payload":{
 "selected_option":{
 "type":"object",
 "properties":{
 "price":{
 "type":"number"
 },
 "currency":{
 "type":"string",
 "enum":["EUR","USD"]
 },
 "company":{
 "type":"string"
 },
 "rating":{
 "type":"number",
 "minimum":0,
 "maximum":5
 },
 "quantity":{
 "type":"number"
 },
 "quantity_uom":{
 "type":"string"
 },
 "good":{
 "type":"string"
 }
 }
 }
 }
 },
 "additionalProperties": false
}

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 12 of 38 Submission date: 2018-02-26

Two different actions are defined at the moment:

 Selected_option: This action is required when, at the end of the negotiation protocol, the winning

bid must be selected.

 Withdraw: This action is required when a bidding process must be stopped before reaching any

agreement.

5.1.1.3 Deregister

This API is exposed on:
<Agent_IP_address>/agent/messages/ui/deregister

It accepts the following methods: POST, PUT

This API is triggered whenever the stakeholder wants to deregister an agent from the current marketplace.
The agent will, in turn, send an HTTP POST request to the AMS’s API to be removed from the shared agents
database residing on the AMS. (as described in 5.3.1.1.2).

5.1.1.4 Send Information

The API is exposed on:

<Agent_IP_address>/agent/messages/ui/info

It accepts the following methods: POST, PUT.

This API is triggered when an agent needs to communicate information to other agents (such as the fill-level
of a container for a certain good) without requiring a protocol interaction.

The data format accepted is the following:

{
 "description": "An informative message sent from UI to agent",
 "type": "object",
 "properties": {
 "informative": {
 "type": "string",
 "enum": [
 "fill_level"
],
 "optional": false
 },
 "fill_level": {
 "type": "object",
 "properties": {
 "good": {
 "type": "string"
 },
 "fill_level": {
 "type": "string"
 },
 "timestamp": {
 "type": "string"
 },

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 13 of 38 Submission date: 2018-02-26

 "quantity": {
 "type": "number"
 },
 "quantity_uom": {
 "type": "string"
 }
 }
 }
 }
}

Currently, the only information exchanged is the one regarding the fill-level. This schema will be enriched as
the project goes on.

5.2 Supplier Agent

The Supplier agent is the counterpart of the Requester agent on the COMPOSITION Marketplace. It is
usually adopted by actual suppliers to respond to supply requests coming from other stakeholders in the
marketplace. Factories transforming goods typically employ at least one Requester agent, to get prime
goods and one Supplier agent to sell intermediate products to other factories.

The communication between UI and corresponding agent(s) on the Marketplace happens via a set of
RESTful APIs, described in the following section.

5.2.1 APIs

5.2.1.1 Start action

This API is exposed on:
<Agent_IP_address>/agent/messages/ui/action

It accepts the following methods: POST, PUT
This API is triggered whenever the stakeholder wants the agent to perform a certain action. This API
supports several actions that are descripted below.

The schema of the message accepted by the API is the following:

{
 "description":"An action request sent by a UI to the associated agent",
 "type":"object",
 "properties":{
 "session_id":{
 "type":"string"
 },
 "agent_role":{
 "type":"string",
 "enum":["supplier"]
 },
 "action":{
 "type":"string",
 "enum":["withdraw","confirmed","rejected"]
 },
 "payload":{
 "selected_option":{

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 14 of 38 Submission date: 2018-02-26

 "type":"object",
 "properties":{
 "price":{
 "type":"number"
 },
 "currency":{
 "type":"string",
 "enum":["EUR","USD"]
 },
 "company":{
 "type":"string"
 },
 "rating":{
 "type":"number",
 "minimum":0,
 "maximum":5
 },
 "quantity":{
 "type":"number"
 },
 "quantity_uom":{
 "type":"string"
 },
 "good":{
 "type":"string"
 }
 }
 }
 }
 },
 "additionalProperties": false
}

Three different actions are supported:

 Confirmed: This action is required when an offer must be accepted.

 Rejected: It is used when an offer must be rejected.

 Withdraw: It is used when an offer must be rejected. It differs from rejected since it happens before
the call for proposal ends.

5.2.1.2 Deregister

This API is exposed on:
<Agent_IP_address>/agent/messages/ui/deregister

It accepts the following methods: POST, PUT

This API is triggered whenever the stakeholder wants to deregister an agent from the current marketplace.
The agent will, in turn, send a POST request to the AMS’s API for being deregistered (as described in
5.3.1.1.2).

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 15 of 38 Submission date: 2018-02-26

5.3 Agent Management Service

According to FIPA specifications,1 an Agent Management System (AMS) is a mandatory component of every
agent platform, and only one AMS should exist in every platform. It offers the white pages service to other
agents on the platform by maintaining a directory of the agent identifiers currently active on the platform.
Prior to any operation, every agent should register to the AMS to get a valid agent identifier, which will be
unique within the agent platform.

In COMPOSITION the marketplace is the platform where agents operate.

5.3.1 White Pages service

A White Pages service is a mandatory component of any MAS system. It is required to locate and name
agents on the system, making it possible for one agent to connect with one another. In the current
implementation of the Agent Management Service, the agent identifiers are stored in a MySQL Database.
MySQL has been chosen because it offers relevant features for the project such as on-demand scalability,
high availability and reliability. Other agent platforms, like SPADE2, use MySQL as well for offering the White
Pages service.

The table storing the agents has the following schema:

Table 3: Table schema

Agent_id Agent_owner Agent_role

They are, respectively:

 agent_id: the unique identifier for the agent. It is the primary key for the table, since it has
 the constraint of being unique.

 agent_owner: The name of the company owning the agent.

 agent_role: The role of the agent on the Marketplace, can be either ‘requester’ or ‘supplier’.

Since the directory service is offered by the AMS, it is the only agent allowed to directly interact with the
database. When the AMS is executed, it needs the following configurations:

 IP address of the host running the MySQL instance.

 Username and password for CRUD operations on the database.

 Name of the database to operate on, since the same instance may run different databases.

5.3.1.1 APIs

The AMS exposes the White Pages service with a set of RESTful APIs.

In order to exploit current standards provided by the state of the art, COMPOSITION adopts the Foundation
for Intelligent Physical Agents (FIPA) definition of AMS and the corresponding set of offered services,
summarized in Table 4.

Table 4: AMS services.

Service Description

Register Allows registering an agent, it will be considered as
"active" on the marketplace

Deregister Removes an agent from the list of agents currently
active on the market

Modify Modifies the registration information about a certain
agent

Search Allows searching for active agents, given a set of
search constraints

1 http://www.fipa.org/specs/fipa00023/SC00023K.pdf
2 https://pypi.python.org/pypi/SPADE

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 16 of 38 Submission date: 2018-02-26

The current implementation of these services is detailed in the following sections.

5.3.1.1.1 Register a new agent

This API is exposed on:
<AMS_IP_address>/register/agent

It accepts the following methods: POST, PUT
This API is called by the agent willing to join a certain marketplace, upon its first activation. It is, in fact,
required to obtain the unique agent identifier within the marketplace.
The schema of the message accepted by the API is the following:

{
 "description" : "A message used by user to register an agent",
 "type" : "object",
 "properties" : {
 "agent_id" : {
 "description" : "The unique identifier of the agent, empty",
 "type" : "string"
 },
 "agent_owner" : {
 "description" : "Identifier for agent's owner",
 "type" : "string"
 },
 "agent_role" : {
 "description" : "An agent can be either requester or supplier",
 "type" : "string",
 "enum" : ["requester", "supplier"]
 }
 }
}

Since the agent does not have an identifier when the call is performed, the field is left empty.
It will be filled in by the AMS, with an identifier that will be unique within the marketplace and sent back to the
agent requiring registration.

5.3.1.1.2 Deregister an agent

This API is exposed on:
<AMS_IP_address>/deregister/agent

It accepts the following methods: POST, PUT
This API is called when an agent asks to be deregistered from the marketplace.
The schema of the message accepted by the API is the following:

{
 "description" : "A message used by user to deregister an agent",
 "type" : "object",
 "properties" : {
 "agent_id" : {
 "description" : "The unique identifier of the agent",
 "type" : "string"
 }

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 17 of 38 Submission date: 2018-02-26

 }
}

The AMS removes the entry associated with the ‘agent_id’ from the database storing all the registered
agents.

5.3.1.1.3 Deregister all the agents

This API is exposed on:
<AMS_IP_address>/deregister/agent/all

It accepts the following methods: POST, PUT
The API is called in case all the agents have to be removed from the marketplace. Since this operation is
very critical, it can only be called by the AMS itself.

5.3.1.1.4 Update agent

This API is exposed on:
<AMS_IP_address>/update/agent

It accepts the following methods: POST, PUT
This API is triggered when an agent asks for the update of its details within the marketplace.
The schema of the message accepted by the API is the following:

{
 "description" : "A message used by user to register an agent",
 "type" : "object",
 "properties" : {
 "agent_id" : {
 "description" : "The unique identifier of the agent",
 "type" : "string"
 },
 "agent_owner" : {
 "description" : "Identifier for agent's owner",
 "type" : "string"
 },
 "agent_role" : {
 "description" : "An agent can be either requester or supplier",
 "type" : "string",
 "enum" : ["requester", "supplier"]
 }
 }
}

The AMS updates the fields that need to be changed. The field ‘agent_id’ cannot be changed.

5.3.1.1.5 Get registered agents

This API is exposed on:
<AMS_IP_address>/agents/registered

It accepts the following methods: GET

This API returns the list of all the agents currently registered (active) on the marketplace.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 18 of 38 Submission date: 2018-02-26

5.3.1.1.6 Perform matching on agents

This API is exposed on:
<AMS_IP_address>/performMatching

It accepts the following methods: POST, PUT

The schema of the message accepted by the API is the following:

{
 "description":"Trigger message sent by IIMS to the Requester agent",
 "type":"object",
 "properties":{
 "agent_id" : {
 "description" : "The unique identifier of the agent",
 "type" : "string"
 },
 "agent_owner" : {
 "description" : "Identifier for agent's owner",
 "type" : "string"
 },
 "bid":{
 "type":"object",
 "properties":{
 "good":{
 "type":"string"
 },
 "quantity":{
 "type":"number",
 “required”:”true”
 },
 "quantity_uom":{
 "type":"string",
 “required”:”true”
 },
 "timeout":{
 "type":"string",
 "format":"date-time"
 },
 "min_price":{
 "type":"number"
 },
 "max_price":{
 "type":"number"
 },
 "currency":{
 "type":"string",
 "enum":["EUR","USD"]
 },
 "pickup_details":{
 "type":"array",
 "items": {

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 19 of 38 Submission date: 2018-02-26

 "type":"object",
 "properties": {

 "date": {
 "type": "string",

 "format": "date-time"
 },
 "supplier": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 },
 "additionalProperties": false
}

This API receives a request from a Requester agent willing to obtain the list of matching Supplier agents for
a certain offer. The AMS forwards the request to the Matchmaker, which will return the list of potential
Supplier agents in a compatible data-format understandable by the AMS and return it to the Requester
agent.

5.3.1.1.7 Evaluate offer

This API is exposed on:
<AMS_IP_address>/ offerEval

It accepts the following methods: POST, PUT

{
 "type": "array",
 "description": "The list of the offers to be evaluated",
 "items": {
 "description": "A message for making an offer regarding a certain negotiation request",
 "type": "object",
 "properties": {
 "conversation_id": {
 "description": "The unique id of the conversation allows to track request / reply sequences",
 "type": "string"
 },
 "sender_id": {
 "description": "The unique identifier of the agent generating the message",
 "type": "string"
 },
 "sender_owner": {
 "description": "The name of the agent generating the message",
 "type": "string"
 },
 "type": "OFFER",
 "offer_details": {
 "type": "object",
 "properties": {

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 20 of 38 Submission date: 2018-02-26

 "good": {
 "type": "string"
 },
 "expiration": {
 "type": "string"
 },
 "price": {
 "type": "number"
 },
 "currency": {
 "type": "string",
 "enum": [
 "EUR",
 "USD"
]
 },
 "participants": {
 "type": "number"
 },
 "quantity": {
 "type": "number"
 },
 "quantity_uom": {
 "type": "string"
 }
 }
 },
 "pickup_details": {
 "type": "object",
 "properties": {
 "date": {
 "type": "string",
 "format": "date-time"
 },
 "supplier": {
 "type": "string"
 }
 }
 }
 },
 "additionalProperties": false
 }
}

This API receives a request from a Requester agent willing to evaluate the received offers through the
matchmaker. The AMS forwards the request to the Matchmaker and returns the selected offer(s) to the
Requester agent.

5.4 Matchmaker Agent

The COMPOSITION Matchmaker is designed to be the core component of the COMPOSITION Broker. It
supports semantic matching in terms of manufacturing capabilities, in order to find the best possible supplier

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 21 of 38 Submission date: 2018-02-26

to fulfill a request for a service with raw materials or products involved in the supply chain. Different decision
criteria for supplier selection are considered by the Matchmaker according to several qualitative and
quantitative factors.

The Matchmaker component acts as a kind of special agent in the Marketplace. The matchmaking
component is connected with the rest agents using REST protocol. The Matchmaker receives requests from
the Agents, infers new knowledge by applying semantic rules to Collaborative Manufacturing Services
Ontology and then responses back to agents.

The matchmaking module which is described at D2.3 - The COMPOSITION architecture specification I,
comprises a complete semantic framework which offers to the Marketplace agents a high-performance
ontology store with querying capabilities and a matchmaking engine which provides efficient matching in
both agent and offer level.

The agents can access the ontology store using the Ontology API and its querying interfaces. The API
provides to marketplace participants a catalogue of services for data access and management using
SPARQL queries. This component is able to query the whole dataset with a satisfactory level of efficiency.
Every marketplace agent is able to send a request for a service using HTTP protocol and the agent
exchange language from the marketplace, which is described in JSON format. Every service translates the
request into a SPARQL query and applies it to the ontology model in the store. The requests’ types are GET
and POST for retrieve, store or delete data.

The matchmaking services are available to Marketplace agents by the Rule-Based Matchmaker component.
It is developed in Java language and it is offered through RESTful web services. The Rule-Based
Matchmaker will be used by Marketplace’s agents in order to match requests and offers between the agents.
The Matchmaker’s functionalities are exclusively depended on the Collaborative Manufacturing Ontology.
The Matchmaker offers to the agents the following functionalities:

 Semantic Matchmaking between Marketplace agents – Agent Level matchmaking: The engine
provides the matching of an agent who sends a request for a service to the agents who provide
services related to the request. The matchmaking is performed by using a generic terms dictionary.
which matches every vendor specific process to a common term in the ontology. Furthermore, the
matchmaker is able to match an agent who offers e.g. raw materials with possible customers by
applying reasoning at the customers’ manufacturing services and perform matching to resources or
material level, which were using these services.

 Offers Evaluation – Offer Level Matchmaking: A marketplace requester agent is able to send a list of
provided offers by the possible service providers to the matchmaker for evaluation. The Rule-based
Matchmaking Engine applies set of rules in order to match the request with the best provided offer.
Based on some predefined criteria, i.e. the requester prefers the cheapest solution over the quickest
one, the matchmaker reorganize the list of applied rules and offers different results for each request.

The figure below presents the information flow between the agents of the collaborative manufacturing eco-
system and the Matchmaker:

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 22 of 38 Submission date: 2018-02-26

Figure 3: High Level Information Model of Matchmaker and Agents Collaboration

5.5 Sample interaction protocol

In order to provide a better and clear explanation about how the different components interact with each
other, a brief explanation of a sample protocol (CONTRACT-NET) interaction is provided in this section.
Technical details about the schema of the exchanged messages between the components is not provided
here, since it is already covered by the remaining sections of this deliverable.

In Figure 4 a sample protocol interaction is shown as an example.

Figure 4: Successful CONTRACT-NET protocol interaction

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 23 of 38 Submission date: 2018-02-26

The first mandatory step allowing an agent to operate on the Marketplace is the registration to the AMS,
which provides the agent with a unique identifier. After the registration has taken place the agents remain
silent waiting for a protocol interaction to start, which happens when a Requester agent has to introduce a
good on the market.

The IIMS sends a notification to its connected Requester agent when a certain good is available to be sold,
and the stakeholder is in turn notified via UI. Autonomously, the Requester agent prepares the call for
proposal to be forwarded to potential suppliers.

The IIMS sends the “start bid” command to the Requester agent which:

1. Asks the Matchmaker for the list of all the Supplier agents capable and interested in replying to the
proposal;

2. Forwards the proposal to all the Supplier agents retrieved from the Matchmaker.

Supplier agents receive the offer, evaluate the received proposal and send back an offer before the
expiration. In case a supplier is not interested in a certain negotiation it can just avoid responding with an
offer.

When expiration time is reached, Requester agent forwards the offers to the Matchmaker for receiving an
evaluation. Matchmaker selects the best three offers, sending them back to the Requester agent which will in
turn forward them to the UI, so that the stakeholder can choose the winning one. In the meantime, reject
messages are automatically sent to the other Supplier agents participating on the bid.
When the Requester agent receives the instruction from the stakeholder via UI about the offer that has to be
accepted, it sends the remaining reject and accept messages.

At this point the winner Supplier agent notifies its UI and waits for the confirmation of acceptance, before
sending the final accept message to the Requester.

As described by Shoham in (Agent-oriented programming, 1993), any agent can pass through a different set
of states, the state of an agent consisting of components such as beliefs, decisions, capabilities and
obligations. In CONTRACT-NET protocol Requester and Supplier agents go through different sets of states,
performing different actions upon receipt of a message (either from the UI or from other agents) according to
their current state. In the following figures (Figure 5 and Figure 6), the states for Requester and Supplier
agents are shown with arrows indicating the allowed transitions between one state and another.

Figure 5: Requester states.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 24 of 38 Submission date: 2018-02-26

Figure 6: Supplier states.

5.6 Informative messages

Alongside with agents’ interaction within the Contract-NET protocol, shortly described in Section 5.5, agents
can exchange informative messages with each other. As a first implementation for this feature, the fill-level is
propagated from a Requester agent to all the agents registered on the marketplace. In future development,
such information will be made available only to a set of authorized agents, through a tight integration with the
security framework.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 25 of 38 Submission date: 2018-02-26

6 Connectors

6.1 COMPOSITION eXchange Language

Agents communicate through messages encoded in a dedicated language named COMPOSITION
eXchange Language (CXL). Rather than defining yet another agent communication language, the
consortium decided to stick to existing standards and to extend them wherever needed. CXL has therefore
been designed as a dialect of the well-known FIPA ACL language specification3, with a dedicated syntax
(“codec” in the FIPA jargon) and with reference to a well-defined set of ontologies for representing the
message payload data.

The message schema has not been changed compared to what had been defined in previous deliverable
D2.3. It is, however, listed here for clarification purposes.

{
 "description":"A message for requesting a proposal regarding a certain negotiation request",
 "type":"object",
 "properties":{
 "conversation_id":{
 "description":"The unique id of the conversation allows to track request / reply sequences",
 "type":"string"
 },
 "sender_id":{
 "description":"The unique identifier of the agent generating the message",
 "type":"string"
 },
 "sender_owner":{
 "description":"The name of the agent generating the message",
 "type":"string"
 },
 "type":{
 "description":"The type of message, either ACCEPT, REJECT, WITHDRAW, OFFER, CFP",
 "type":"string",
 "enum":["ACCEPT","REJECT","WITHDRAW","OFFER","CFP"]
 },
 "offer_details":{
 "type":"object",
 "properties":{
 "good":{
 "type":"string"
 },
 "expiration":{
 "type":"string"
 },
 "price":{
 "type":"number"
 },
 "currency":{
 "type":"string",
 "enum":["EUR","USD"]
 },

3 http://www.fipa.org/specs/fipa00061/SC00061G.pdf

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 26 of 38 Submission date: 2018-02-26

 "participants":{
 "type":"number"
 },
 "quantity":{
 "type":"number"
 },
 "quantity_uom":{
 "type":"string"
 }
 }
 },
 "pickup_details":{
 "type":"object",
 "properties":{
 "date":{
 "type":"string",
 "format":"date-time"
 },
 "supplier":{
 "type":"string"
 }
 }
 }
 },
 "additionalProperties":false
}

6.2 IIMS to marketplace

The connection between IIMS and Requester Agent on the marketplace is the only point of contact between
the Intra-Factory and Inter-Factory systems. The IIMS sends a notification to the Requester Agent whenever
a new bidding process should start because certain conditions have been met. A high-level overview of such
interaction is shown in Figure 7.

Figure 7: Interaction between IIMS and Requester Agent

The IIMS propagates the message through the Learning Agent, using a format described in 5.1.1.1, to the
Requester agent on the marketplace by using the Requester agent’s API located at:

<Agent_IP_address>/agent/messages/iims/startbidding.

6.3 Cloud service APIs

Inter-factory interaction and data exchange are achieved through CXL messages exchanged between
agents (via the Message Broker) or the Marketplace Management Services APIs: Agent Management API,
Reputation Management API and Marketplace Configuration API. The Marketplace Portal builds on the full
set of Marketplace Management Services. However, these may also be exposed for access by stakeholder

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 27 of 38 Submission date: 2018-02-26

systems for automation of tasks such as receiving agent credentials and configuration parameters. The
Security Framework manages authentication, authorization and access control for the entire marketplace
including cloud services and the Message Broker.

6.3.1 Marketplace Data Sharing

COMPOSITION will provide mechanisms to share data from the intra-factory IIMS with other stakeholders in
the marketplace. A factory may choose to share certain data with partners across the supply chain on a
permanent basis or a single interaction. The Big Data Analytics (BDA) component may be set up by the
agent system to route certain data streams for delivery to the Marketplace Broker. These could be e.g.
sensor data, inventory alerts or analysis results from Simulation and Forecasting Toolkit (SFT) or Deep
Learning Toolkit (DLT). The BDA may also filter messages for sensitive data, transform them to another
format (CXL INFORM messages) or annotate them for easier integration on the recipient side. The
negotiation between agents using CXL to set up the data exchange is described in D2.3 COMPOSITION
architecture specification 1.1.

Figure 8: Simplified model of the marketplace data exchange

The integration of Message Broker access control with the Security Framework identity provider makes it
possible to set up an exclusive message queue for a business partner at the Marketplace Broker. All
marketplace actors are identified The Marketplace management Services and the Marketplace Portal can be
used to set up the agreement to exchange data, or the dynamic approach using CXL SUBCRIBE messages
between agents may be applied. Only the approved actors in the marketplace may publish and/or read data
from the queue. The messages sent can also be secured by the possibility to store a hash of each message
in the distributed blockchain ledger. As with all CXL messages, the agreement to share data itself may also
be stored in the ledger to keep a non-repudiable audit trail of agreements.

6.3.2 Marketplace Portal

The first version of the Marketplace Portal is mainly centred around two use cases described in D2.1:
INTRA-Factory-3 Material Management and INTER-Factory-1 Scrap Metal Management. This section will
describe the graphical user interface (GUI) developed to handle these use cases. The GUI is built in Angular
following the Material Design guidelines. As mentioned in the previous section, the Marketplace portal
interacts with the Marketplace Management Services to retrieve information (e.g. container details), get
notifications (e.g. bidding status) and execute actions (e.g. withdraw from bidding, select contractor).

Starting from the INTRA-Factory-3 use case, Figure 9 shows the Material Management Containers view
where the users can see their containers, current prices and historic container emptying. Clicking the down-
arrow on a container component reveals detail information on the container such as filling prediction,
location, model and battery status (see Figure 10).

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 28 of 38 Submission date: 2018-02-26

Figure 9: Intra - Material Management Containers

Figure 10: Intra - Material container details

Continuing to the INTER-factory-1 use case Figure 11 shows the Bidding Process Management view where
the users can see current bidding processes including status, contractor, quantity, final price offer, number of
participants in bidding and history of the process. Depending on the status of the process, the users might be
requested to perform an action in order to proceed or cancel the bidding process e.g. select a contractor,
withdraw, confirm deal or reject deal. These actions are visualized as buttons in the Action column together
with the details button (grey with ‘i’ symbol) where the users can get more detailed information on the bid and
where the action buttons are accessible as well (see Figure 13). Once the user selects an action e.g.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 29 of 38 Submission date: 2018-02-26

withdraw (blue button) a confirmation window appears (see Figure 12). The same goes if the withdraw button
in the information window is clicked.

If the user is requested to select a contractor, a dropdown list is shown with the best option pre-selected and
at most the top three best options with ratings available to select (see Figure 14).

Figure 11: Inter - Bidding Process Management

Figure 12: Bidding process withdraw confirmation

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 30 of 38 Submission date: 2018-02-26

Figure 13: Bidding process details

Figure 14: Bidding process contractor selection

6.4 End-to-end security

This section will cover security aspects of both Marketplace and RabbitMQ; Mainly authentication and
communication encryption, as well as the digital signing of messages transmitted through RabbitMQ.

6.4.1 Marketplace

6.4.1.1 Authentication

User authentication in COMPOSITION Marketplace will be done through COMPOSITION Security
Framework Authentication service (Keycloak4), which among others also is responsible for user storage and
management.

The following steps need to be done to secure marketplace UI:

1. Create and configure client on Keycloak

4 http://www.keycloak.org/

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 31 of 38 Submission date: 2018-02-26

Figure 15: Keycloak client creation interface

Figure 16: Keycloak client configuration interface

2. Create needed role(s) and users

3. Configure Marketplace to make use of Keycloak as its login provider. This step will depend on the
final target platform of the Marketplace. Keycloak has a wide range of adapters:

a. Java adapters (for Tomcat, Jetty, JBOSS web servers)

b. Javascript adapters (for HTML5/Javascript apps)

c. Node.js (for Node.js web applications using Express)

If no adapter is available, the generic OpenID Connect Resource Provider (RP) library can be used.

Once everything is configured, users accessing Marketplace will be redirected to a Keycloak login page
where upon entering user credentials, these will be validated. If credentials supplied are valid users they will
be redirected back to Marketplace where they will be allowed to enter, otherwise they will remain on the login
page.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 32 of 38 Submission date: 2018-02-26

Very similar is the process to secure a RESTful API. In this case no login page or redirections are involved.
Users need to obtain a token using their credentials by making a request to the following endpoint:

 /auth/realms/composition/protocol/openid-connect/token

The token obtained is then used to access the RESTful API.

6.4.1.2 Communication Encryption

As the rest of COMPOSITION services, Marketplace should be configured to use TLS5 (Transport Layer
Security) cryptographic protocol to secure all communication with it. In case this is not possible due to the
technologies used, an external reverse proxy (e.g. Nginx6) should be deployed and configured to provide
TLS support.

6.4.2 RabbitMQ

6.4.2.1 Authentication

To be able to use COMPOSITION Security Framework authentication and authorization services an http
service, RAAS, is under development and two RabbitMQ plugins, rabbitmq-auth-backend-http and
rabbitmq_auth_backend_cache, need to be deployed and configured.

The following figure (Figure 17) depicts a high-level view of the RabbitMQ and the COMPOSITION Security
framework architecture:

Figure 17: RabbitMQ - COMPOSITION Security Framework architecture overview

6.4.2.1.1 RabbitMQ Authentication and Authorization Service - RAAS

This http service is under development as part of the COMPOSITION Security Framework component. It
enables the use of the Authentication (Keycloak) and Authorization (EPICA) services by RabbitMQ. More
information on these services on D4.1 Design of the Security Framework I delivered on M12.

This http service exposes the following end-points needed by the rabbitmq-auth-backend-http (see section
6.4.2.1.2) RabbitMQ plugin:

 /auth/user: user authentication

 /auth/vhost: virtual host authorization

5 https://tools.ietf.org/html/rfc5246
6 https://nginx.org/en/

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 33 of 38 Submission date: 2018-02-26

 /auth/resource: resource authorization

 /auth/topic: topic authorization

RAAS will support two ways of dealing with user credentials:

1. Clients will authenticate in RabbitMQ with username and password. In this case RAAS will be the
responsible to request and manage tokens from COMPOSITION Security Framework Authentication
service (Keycloak) and to perform authorization request to COMPOSITION Security Framework
Authorization service (EPICA) with the obtained tokens.

2. Clients will authenticate in RabbitMQ with a COMPOSITION Security Framework Authentication
service (Keycloak) token. In this mode RAAS will be responsible to verify the validity of tokens
received and will perform authorization request to COMPOSITION Security Framework Authorization
service (EPICA) with the provided tokens. The clients are responsible to obtain and manage the
authentication tokens and provide them to RAAS. In this mode no password is passed to RAAS.

6.4.2.1.2 rabbitmq-auth-backend-http

This plugin provides the ability to RabbitMQ to perform authentication and authorisation by making requests
to an external http service, in our case RAAS (see Section 6.4.2.1.1). The plugin need to be configured with
the following URIs:

 user_path: user authentication

 vhost_path: virtual host authorization

 resource_path: resource authorization

 topic_path: topic authorization

The plugin expects from the external http service the values allow or deny as an answer to a request.

The following snippet shows an example of the plugin configuration:

[

 {rabbit,[{auth_backends, [rabbit_auth_backend_http]}]},

 {rabbitmq_auth_backend_http,

 [{http_method, post},

 {user_path, "http(s)://server:port/auth/user"},

 {vhost_path, "http(s)://server:port/auth/vhost"},

 {resource_path, "http(s)://server:port/auth/resource"},

 {topic_path, "http(s)://server:port/auth/topic"}]}

].

6.4.2.1.3 rabbitmq_auth_backend_cache

This RabbitMQ plugin provides the ability to cache authentication and authorization results obtained from an
external authentication and/or authorization service for a configurable amount of time reducing the amount of
load on the external server providing authentication and/or authorization. The following snippet shows how to
configure message broker to use cache plugin. In this case authentication and authorization backend results
are cached for 1 minute:

[{rabbitmq_auth_backend_cache,

[{cached_backend, rabbit_auth_backend_http}, {cache_ttl, 60000}]

}].

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 34 of 38 Submission date: 2018-02-26

6.4.2.2 Communication Encryption

RabbitMQ has been configured to make use of TLS encryption protocol on both AMPQ7 and MQTT8
communication protocols and non-secured communications over these protocols have been disabled.
Access to RabbitMQ management UI is also configured to use TLS only.

Below is exposed the MQTT configuration snippet allowing TLS connections only:

{rabbitmq_mqtt, [

 {allow_anonymous, false},

 {vhost, <<"/">>},

 {exchange, <<"amq.topic">>},

 {subscription_ttl, 1800000},

 {prefetch, 10},

 {ssl_listeners, [65183]},

 {tcp_listeners, []},

 {tcp_listen_options, [{backlog, 128},

 {nodelay, true}]}

]}

And below the configuration for AMPQ TLS connections only:

{ rabbit, [

 { tcp_listeners, [] },

 { ssl_listeners, [65182] },

 {ssl_options, [{cacertfile,"/etc/rabbitmq/certs/testca/cacert.pem"},

 {certfile,"/etc/rabbitmq/certs/server/cert.pem"},

 {keyfile," /etc/rabbitmq/certs/server/key.pem"}]},

] }

6.4.2.3 Message signature

All messages transmitted over RabbitMQ should be signed using JWS9 (JSON Web Signature) standard,
which represents signed content using JSON data structures and base64-url-encoding. JWS representation
consists of three parts:

 Header: describes the signature method and parameters employed.

 Payload: message content to be secured.

 Signature: ensures the integrity of both the Header and the Payload.

All three parts are base64-url-encoded for transmission and these are typically represented by the
concatenation of the encoded strings in that order, with the three strings separated by period ('.') characters
(see Figure 18)

7 https://www.amqp.org/
8 https://mqtt.org/
9 https://tools.ietf.org/html/rfc7515

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 35 of 38 Submission date: 2018-02-26

Figure 18: JWS representation

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 36 of 38 Submission date: 2018-02-26

7 Conclusions and future work

The work that has been carried out in Task 6.3: “Connectors for Inter-Factory Interoperability and Logistics”
has been extensively described in this document. The activities that have taken place have been divided
between the implementation of the different components and the actual interconnections between them.

Several achievements have been obtained. The ones worth mentioning are:

 Interconnection between the AMS, Requester and Supplier agent with the security framework.

 Integrated the support of the Matchmaker in the bidding process, being exploited by AMS and
Requester agent.

The work has particularly focused on the format of the data exchanged between the different components, a
first but very important step for any integration process. In fact, it has undergone a heavy phase of design
prior to any integration and testing. The communication models between the different agents (AMS,
Requester, Supplier, Matchmaker) have been thoroughly investigated in this deliverable, showing how the
integration of the different actors composing the COMPOSITION Marketplace has been performed.
The integration with the security framework has been very important to secure every communication,
allowing only authenticated users to participate in the marketplace operations, while keeping every message
encrypted.

The future work will focus on:

- A continuous integration of different components, according to the improvements carried on in any of
them.

- Design and implementation of the integration with the Blockchain storage system.

- Design and implementation of the interaction between the deep learning toolkit and the agents.

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 37 of 38 Submission date: 2018-02-26

8 List of Figures and Tables

8.1 Figures

Figure 1: Marketplace Components .. 8
Figure 2: Simplified agents' communication logic .. 9
Figure 3: High Level Information Model of Matchmaker and Agents Collaboration .. 22
Figure 4: Successful CONTRACT-NET protocol interaction ... 22
Figure 5: Requester states. ... 23
Figure 6: Supplier states. ... 24
Figure 7: Interaction between IIMS and Requester Agent .. 26
Figure 8: Simplified model of the marketplace data exchange.. 27
Figure 9: Intra - Material Management Containers .. 28
Figure 10: Intra - Material container details ... 28
Figure 11: Inter - Bidding Process Management ... 29
Figure 12: Bidding process withdraw confirmation .. 29
Figure 13: Bidding process details .. 30
Figure 14: Bidding process contractor selection ... 30
Figure 15: Keycloak client creation interface ... 31
Figure 16: Keycloak client configuration interface ... 31
Figure 17: RabbitMQ - COMPOSITION Security Framework architecture overview 32
Figure 18: JWS representation .. 35

8.2 Tables

Table 1: Terminology ... 5
Table 2: Mapping between CRUD and HTTP methods .. 7
Table 3: Table schema .. 15
Table 4: AMS services. .. 15

COMPOSITION D6.5 Connectors for Inter-Factory Interoperability and Logistics I

Document version: 1.0 Page 38 of 38 Submission date: 2018-02-26

9 References

(Shoham Y., 1993) Shoham Y., 1993. Agent-oriented programming, Artificial intelligence.

