

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D4.2 Design of Security Framework II

Date: 2018-02-27

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 2 of 41 Submission date: 2018-02-27

Document control page

Document file: D4.2 Security Framework II-V010-FINAL.docx
Document version: 1.0
Document owner: ATOS

Work package: WP4 – Secure Data Management and Exchange in Manufacturing
Task: T4.1 – Security by design for cloud-based data exchange

T4.3 – Knowledge Protection, IPR Protection and Trust for Collaborative
Manufacturing Environments

 T4.4 – Cyber Security for Factories
Deliverable type: R

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Javier Romero (ATOS) 2018-02-16 Deliverable structure

0.2 Javier Romero (ATOS) 2018-02-21 Main content

0.3 Mario Faiella (ATOS) 2018-02-21 Reputation Model content

0.4 Javier Romero (ATOS) 2018-02-22 Integration

0.5 Javier Romero (ATOS) 2018-02-22 Final changes and updates

0.6 Javier Romero (ATOS) 2018-02-22 Version for internal review

0.9 Javier Romero (ATOS) 2018-02-26 Addressed internal review comments

1.0 Javier Romero (ATOS) 2018-02-27 Final version

Internal review history:

Reviewed by Date Summary of comments

Vagia Rousopoulou (CERTH) 2018-02-23 Approved with comments: The content of
document is comprehensive. Correct template
has been used. The structure is good and
mandatory sections are included. Most of
D4.1 next steps have been accomplished.
The template references style should be used.
The language used could be more formal. The
tables could be styled as shown in the
template.

Ifigeneia Metaxa (ATL) 2018-02-23 Approved with comments: Minor typos, please
take care of subscripts and superscripts in
equations and explanations of symbols.
Address comments within the document.
Good structure and quality, level of details
allows the reader to understand the approach
in COMPOSITION. Might be valuable to
consider a paragraph in the introduction on
why this is necessary from the user’s point of
view.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 3 of 41 Submission date: 2018-02-27

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 4 of 41 Submission date: 2018-02-27

Index:
1 Executive Summary ... 6

2 Introduction .. 7
2.1 Purpose, context and scope of this deliverable ... 7
2.2 Content and structure of this deliverable ... 7

3 Security Framework Architecture .. 8
3.1 Security Framework Components ... 9

3.1.1 Authentication service – Keycloak ... 9
3.1.2 Authorization service – EPICA ... 9
3.1.3 RAAS (RabbitMQ authentication and authorization service) 9
3.1.4 XL-SIEM ...10
3.1.5 Reverse proxy – Nginx...10
3.1.6 Blockchain – Multichain ...11

3.2 RAAS Deployments ...12
3.2.1 Default ..12
3.2.2 Alternative ..15

4 Security Framework Components – Configuration, Development, Integration17
4.1 RAAS (RabbitMQ Authentication/Authorization Service) ..17

4.1.1 RAAS – Mode: Username and Password..18
4.1.2 RAAS – Mode: Token ..21

4.2 Authentication Service – Keycloak ..24
4.2.1 Deployment and Configuration ..24
4.2.2 Customization ..26

4.3 Authorization Service – EPICA ..28
4.4 XL-SIEM ...28
4.5 Reverse proxy – Nginx ..30

5 Integrity and trust of information ...30
5.1 Reputation Model ...30

5.1.1 COMPOSITION Reputation Model ..31
5.1.2 Blockchain, Trust and Reputation ..33

5.2 Digital signature ...34
5.3 Cryptographic Hash ...36

6 Transport security ..37

7 Next Steps ...37

8 Summary ...37

9 List of Figures and Tables ...39
9.1 Figures ...39
9.2 Tables ..39

10 References ..40

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 5 of 41 Submission date: 2018-02-27

Abbreviations

Acronym Meaning

AMQP Advanced Message Queuing Protocol

DRPC Distributed Remote Procedure Call

DSS Decision Support System

EPL Event Processing Language

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

IPR Intellectual Property Rights

JSON JavaScript Object Notation

JWS JSON Web Signature

JWT JSON Web Token

MB Message Broker

OAuth Open Authorization

OIDC Open ID Connect

OSSIM Open Source Security Information Management

PAP Policy Administration Point

PEP Policy Enforcement Point

PDP Policy Decision Point

PIP Policy Information Point

PRP Policy Retrieval Point

REST Representational State Transfer

SAML Security Assertion Mark-up Language

SHA Secure Hashing Algorithms

SIEM Security Information and Event Management

SPI Service Provider Interface

SQL Structured Query Language

SSL Secure Sockets Layer

STIX Structured Threat Information eXpression

TLS Transport Layer Security

UDP User Datagram Protocol

XACML eXtensible Access Control Mark-up Language

XML eXtensible Markup Language

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 6 of 41 Submission date: 2018-02-27

1 Executive Summary

The aim of this deliverable is to update and complement what was reported on D4.1 Design of Security
framework I due on M12. This deliverable takes as starting point the information contained in the
aforementioned deliverable D4.1.

This deliverable reports the outcome of the following tasks: T4.1 – Security by design for cloud-based data
exchange, T4.3 – Knowledge Protection, IPR Protection and Trust for Collaborative Manufacturing
Environments and T4.4 – Cyber Security for Factories from M12 until M18. The purpose of these tasks is to
define, propose a design and develop a core set of security measures that will be part of the COMPOSITION
Security Framework, whose task will be to guarantee security, confidentiality, integrity and availability of
managed information for all authorized stakeholders in the supply chain.

Some of the components and technologies reported in this deliverable ensure trusted and secure
collaboration; and at the same time they guarantee confidentiality and integrity of the information transmitted
by addressing end-to-end security across all layers of the system integrating in a seamless manner three
major groups of security mechanisms: authentication, access control and transport security. Other
components ensure protection against cyber-attacks and provide security monitoring.

The architecture is based on well established guidelines and best practices, as well as proven technologies;
but also includes innovative and experimental solutions that will guard the COMPOSITION system against
unknown threats.

The first prototype of the COMPOSITION Security Framework will be based on the architecture, components
and technologies proposed on this deliverable and will be reported in D4.4 Prototype of the Security
Framework I due on M20.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 7 of 41 Submission date: 2018-02-27

2 Introduction

Deliverable D4.2 Design of Security Framework II reports the results in the context of tasks T4.1 – Security
by design for cloud-based data exchange, T4.3 – Knowledge Protection, IPR Protection and Trust for
Collaborative Manufacturing Environments and T4.4 – Cyber Security for Factories from M12 until M18. It
updates and complements the results reported on D4.1 Design of Security Framework I due on M12.

This deliverable describes the architecture design of the COMPOSITION Security Framework as well as the
components and technologies that are part of it. It also reports on the developments that have taken place in
this period of time. Some descriptions of components that make use of the blockchain technology are also
given, although this subject is out of the scope of this deliverable and will be reported on D4.3 The
Composition Blockchain due on M30. The proposal for a Reputation Model to be implemented in the
COMPOSITION platform it is also provided.

This deliverable gives detailed information on some technologies proposed to be part of the COMPOSITION
Security Framework, as these technologies will be an indispensable part of the platform and of mandatory
use by most COMPOSITION components to be able to offer a high level of security, integrity of data and
trust to the users of COMPOSITION platform.

2.1 Purpose, context and scope of this deliverable

The purpose of this deliverable is to update the proposal done on D4.1 Design of Security Framework I due
on M12 for a design of a security framework that will ensure trusted and secure cooperation providing
protection and monitoring against cyber-attacks. The set of components proposed are based on the following
needs and requirements:

- Well-established authentication mechanism along with a multi-stakeholder attribute based access
control mechanism. This combination should provide fine-grained access control to the data, based on a
security token included within a submitted request and the evaluation of security policies.

- Guarantee the confidentiality and integrity of data in motion with the use of cryptographic
mechanisms at transport layer

- Εnsure the security monitoring and protection against potential threats identified in collaborative
manufacturing and logistics ecosystems

2.2 Content and structure of this deliverable

This deliverable is composed of the following sections:

Section 2 - Introduction: serves as introduction and identifies the purpose, scope and context of this
deliverable.

Section 3 - Security Framework Architecture: focuses on the architecture general overview as well as going
in detail with different alternatives to the default architecture for some components. It also gives an overview
of the components that take part in the architecture.

Section 4 - Security Framework Components – Configuration, Development, Integration: provides a view on
the work done related to the components of the framework regarding to the development, integration,
deployment and customization of components.

Section 5 - Integrity and trust of information: focuses on technologies proposed to bring integrity and trust on
information to COMPOSITION

Section 6 - Transport security: provides information on the technology used to secure communication in
COMPOSITION platform

Section 7 - Next Steps: provides an overview of the future work.

Section 8 - Summary: offers an overview of all reported in this deliverable

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 8 of 41 Submission date: 2018-02-27

3 Security Framework Architecture

The purpose of the COMPOSITION Security Framework will be to guarantee security, confidentiality,
integrity and availability of managed information for all authorized stakeholders within COMPOSITION
platform. In Section 3.1, a brief description is given of each of the components that make up the Security
Framework.

The following diagram shown in Figure 1 presents a very general overview of the COMPOSITION Security
Framework and briefly describes the interactions with some other components in the COMPOSITION
platform architecture.

Figure 1 - Security Framework general architecture overview

COMPOSITION Security Framework will be composed of the following components to cover Inter-Factory
and Intra-Factory scenarios:

 One Authentication Service (Keycloak1)

 One Authorization Service (EPICA)

 Two RAAS services: One for Intra-Factory scenarios and one for Inter-Factory scenarios

 One XL-SIEM

 One or more cyber-agents

 Multiple blockchain nodes

1 http://www.keycloak.org/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 9 of 41 Submission date: 2018-02-27

Due to the versatility on the platform proposed and focusing mainly on the deployment of RAAS services
Section 3.2 will cover two possible deployments for these components and the interaction with the
COMPOSITION Message Brokers (RabbitMQ) as well as with the rest of the Security Framework
components involved.

3.1 Security Framework Components

COMPOSITION Security Framework consist of the following main components, each with a task to fulfil: an
Authentication service (Keycloak), an Authorization service (EPICA), an Authentication and Authorization
service for COMPOSITION message broker (RAAS), XL-SIEM which is a Security Information and Event
Management system (SIEM) with additional functionalities and a Reverse proxy (Nginx). Each component is
briefly described below and a more detailed description of each of them can be found in D4.1 Security
Framework I due on M12.

3.1.1 Authentication service – Keycloak

The main task of this service is providing the authentication mechanisms for users, applications, services
and devices. The following standard authentication protocols are supported by Keycloak:

 OAuth 2.0: Industry-standard protocol for authorization. Makes heavy use of the JSON Web Token
(JWT) set of standards.

 Open ID Connect (OIDC): Authentication protocol based on OAuth 2.0. Unlike OAuth 2.0 OIDC is an
authentication and authorization protocol.

 SAML 2.0: Authentication protocol similar to OIDC. It relies on the exchange of XML documents
between the authentication server and the application.

From the available authentication protocols described above COMPOSITION makes use of the default one
in Keycloak, which is OIDC (Open ID Connect). [1]

Custom mapper is in development to extend Keycloak´s capabilities, by enabling the possibility to add
custom external information to the tokens provided by Keycloak. More information on this topic on Section
4.1

For more detailed information related to this component on Section 4.1 of D4.1 Design of the Security
Framework I due on M12

3.1.2 Authorization service – EPICA

This component is responsible for providing authorization mechanisms to other COMPOSITION
components. It is based on XACML v3.0 which provides an attribute-based access control mechanism and
provides the means to define authorization policies used to protect resources. Any request to access a
protected resource will first be evaluated against the defined policies and the evaluation result will be
enforced depending on the outcome. EPICA is divided into two main subcomponents: the Authorization
engine and the Policy Administration Point (PAP). [1]

Detailed information about this component can be found Section 4.2 of D4.1 Design of the Security
Framework I due on M12.

3.1.3 RAAS (RabbitMQ2 authentication and authorization service)

This component in development is an http service whose main task is enabling the use of the Authentication
(Keycloak) and Authorization (EPICA) services by the Message Broker (RabbitMQ).

RAAS will be able to work in two modes:

1. RAAS will be the responsible to request and manage tokens from Authentication service (Keycloak)
and perform authorization request to Authorization service (EPICA) with the obtained tokens. The
clients make login in the message broker with username and password.

2. RAAS will be only responsible to verify the validity of tokens from Authentication service (Keycloak)
and perform authorization request to Authorization service (EPICA) with the provided tokens. The

2 https://www.rabbitmq.com/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 10 of 41 Submission date: 2018-02-27

clients are responsible to obtain and manage the authentication tokens and provide them to RAAS.
The clients make login in the message broker with the token from Authentication service, no
password involved in this mode.

Detailed information on this component can be found on Section 4.1 of this deliverable and in Section 4.3 of
D4.1 Design of Security Framework I due on M12.

3.1.4 XL-SIEM

This component, with the help of the SIEM Agents responsible for data collection and deployed within the
monitored infrastructure, provides capabilities of a SIEM solution with the advantage of being able to handle
large volumes of data and raise security alerts from a business perspective, thanks to analysis and event
processing in Storm cluster. The main functionalities of the XL-SIEM can be summarized in the next points:

 Real-time collection and analysis of security events.

 Prioritization, filtering and normalization of the data gathered from different sources.

 Consolidation and correlation of security events to carry out a risk assessment and generation of
alarms and reports [1].

Detailed information about XL-SIEM can be found in Section 4.4 of D4.1 Design of Security Framework I due
on M12.

3.1.5 Reverse proxy – Nginx3

This component is responsible for directing client requests to the appropriate backend server and also
securing communication by enabling the use of TLS4 (Transport Layer Security) cryptographic protocol. TLS
provides security over a computer network, and aims primarily to provide privacy and data integrity between
two communicating applications. The use of a reverse proxy also provides an additional defence layer
against security attacks by protecting identities of servers and services. [1]

A high level diagram on how a reverse proxy works can be seen in Figure 2 below.

Figure 2 - Reverse proxy diagram

More information in deliverable Design of Security Framework I, Section 4.5, due on M12.

3 https://nginx.org/en/
4 https://tools.ietf.org/html/rfc5246

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 11 of 41 Submission date: 2018-02-27

3.1.6 Blockchain – Multichain

It is not the purpose of this deliverable to cover in depth the blockchain components that form part of the
COMPOSITION Security Framework, which will be done in the future deliverable D4.3 The COMPOSITION
blockchain planned for M30; but just give a hint on some uses proposed for the blockchain technology within
the Security Framework scope. The COMPOSITION blockchain is based on Multichain5.

3.1.6.1 Public Key Infrastructure (PKI)

Since it is proposed that all messages flowing in the COMPOSITION platform through the COMPOSITION
Message Broker (RabbitMQ6) must be signed using JWS7 (JSON Web Signature) standard proposed by
IETF8 (see Section 5.2), there is the need to make available to the subscribers of messages the public keys
so it is possible for them to verify the digital signature. Instead of using the common approach of publishing
the public keys through a web site or a web service, in COMPOSITION we plan to use blockchain
technology to make these public keys available.

The idea in the beginning is simple; the message publishers put in their blockchain node their public key
while maintaining the private key locally and secret. The public keys published will be replicated on all
blockchain nodes connected and keeping a copy of them making it accessible to all subscribers that have
the rights to read them.

3.1.6.2 Message Logging

Along with message digital signature (see Section 3.1.6.1 and Section 5.2) COMPOSITION is going to log all
the messages sent through the platform. To keep this log blockchain technology is going to be used too. The
idea is that the publisher of a message should calculate the hash of the message using a hash cryptographic
function (to be decided) and store the result hash value in the blockchain along with some metadata. Upon
receiving a message, a subscriber can calculate the hash of the received data and can look for it in the
blockchain, ensuring this way the integrity of the data received. This together with the digital signature of the
message is going to give the subscriber security to trust on the message received. More information about
hashing cryptographic functions on Section 5.3

The following diagram (Figure 3) gives a high-level overview on the signing and logging procedures and how
data flow between the components involved.

Figure 3 - Overview of signing and logging of messages

A more detailed view on the whole process of publishing and subscribing in COMPOSITION taking into
account the use of the methods of signing messages and keep log of them, proposed in COMPOSITION

5 https://www.multichain.com/
6 https://www.rabbitmq.com/
7 https://tools.ietf.org/html/rfc7515
8 https://www.ietf.org/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 12 of 41 Submission date: 2018-02-27

Security Framework, as well as the steps to validate the signature and the content of the message can be
seen in the flowchart diagram below (Figure 4).

Figure 4 - Flowchart diagram publish-subscribe procedure in COMPOSITION

3.1.6.3 Reputation Model

COMPOSITION is going to define a reputation model adding another level on trust. The reputation model
definition itself is not covered in this section but in Section 5.1. Blockchain is also the technology to be used
to store the reputation of the stakeholders and the way to share it with other stakeholders. It will also keep
track of the reputation over time due to the immutability nature of the blockchain technology. For more
information about Reputation Model and blockchain refer to Section 5.1.2.

3.2 RAAS Deployments

Since COMPOSITION will have at least two Message Brokers (RabbitMQ9), one for the Inter-Factory
scenarios and another for the Intra-Factory scenarios, the same number of RAAS services need to be
deployed. The following sections will cover two recommended ways to deploy the RAAS services, one with
the RAAS services in the same premises as the rest of the Security Framework components (Section 3.2.1)
and another with the RAAS services deployed along with the COMPOSITION Message Brokers in the same
premises (Section 0).

3.2.1 Default

The default architecture requires the RAAS services deployed along with the Authentication Service
(Keycloak10) and the Authorization Service (EPICA) and all of them behind a reverse proxy in our case
Nginx11. The default architecture can be seen in the diagram below (Figure 5) and shows apart how the
components involved interact but also if the communications are encrypted using TLS12 or not. There is no

9 https://www.rabbitmq.com/
10 http://www.keycloak.org/
11 https://nginx.org/en/
12 https://tools.ietf.org/html/rfc5246

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 13 of 41 Submission date: 2018-02-27

need to encrypt all communication using TLS for services and components that are not exposed directly to
Internet, as TLS encrypted communication comes with an overhead on the network traffic.

Figure 5 - Security Framework default architecture

The following diagram (Figure 6) shows a real-life deployment using Docker13 containers of the default
architecture shown before. The only port exposed to Internet it´s the one used by the reverse proxy to enable
the encrypted communication; and it´s the default for TLS14 communication, 443.

13 https://www.docker.com/what-docker
14 https://tools.ietf.org/html/rfc5246

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 14 of 41 Submission date: 2018-02-27

Figure 6 - Docker deployment for default architecture

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 15 of 41 Submission date: 2018-02-27

3.2.2 Alternative

There is an alternative architecture to use RAAS services. This alternative requires RAAS services to be
deployed along with the message brokers in the same local network. This architecture can be seen in the
following diagram (Figure 7).

Figure 7 - Security Framework alternative architecture

The following diagram (Figure 8) shows a real-life deployment using Docker15 containers of the alternative
architecture shown before. As with the default architecture the only port exposed to Internet is the one used
by the reverse proxy to enable the encrypted communication; and it is the default for TLS communication,
443. In this case, the communication of RAAS with the Authentication Service and the Authorization Service
is encrypted, since it happens through Internet and not in local network as the default architecture.

15 https://www.docker.com/what-docker

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 16 of 41 Submission date: 2018-02-27

Figure 8 - Docker deployment for alternative architecture

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 17 of 41 Submission date: 2018-02-27

4 Security Framework Components – Configuration, Development, Integration

This section will cover the work done since M12 in the Security Framework related with the configuration of
services, development of components, and customization and integration of services. A brief list of the work
done below and detailed information on each of the following sub-sections:

 Development of RAAS (see Section 4.1)

 Deployment, configuration and customization of Keycloak16 (see Section 4.2)

 Deployment and integration of EPICA with Keycloak (see Section 4.3)

 Development of cyber-agent for XL-SIEM (see Section 4.4)

 Deployment and configuration of Nginx17 reverse proxy (see Section 4.5)

4.1 RAAS (RabbitMQ18 Authentication/Authorization Service)

RAAS is an http service in development and part of the Security Framework that enables the use of
COMPOSITION Authentication Service (Keycloak) and Authorization Service (EPICA) with COMPOSiTION
Message Broker (RabbitMQ). Itis not the scope of this deliverable to describe the configuration of the
message broker to use RAAS, information on this topic can be found on Section 6 of D5.9 Intrafactory
interoperability layer I due on M18.

As RAAS is in development the information detailed in this deliverable may change as the development
progresses, the information about this component will be updated accordingly on the upcoming deliverables.

The endpoints RAAS shall expose to communicate with COMPOSITION Message Broker (RabbitMQ) are
described below on Table 1

Table 1 - RAAS exposed endpoints

Path Method Parameters Response

/auth/user POST
username allow [list of tags],

deny password

/auth/vhost POST

username

allow, deny vhost: name of the virtual host being accessed

ip: client ip address

/auth/resource POST

username

allow, deny

vhost: name of the virtual host containing the resource

resource: type of resource (exchange, queue, topic)

name: name of the resource

permission: access level to the resource (configure, write,
read)

/auth/topic POST

username

allow, deny

vhost: the name of the virtual host containing the resource

resource: the type of resource (topic in this case)

name: name of the exchange

permission: access level to the resource (write or read)

routing_key: routing key of a published message (when the
permission is write) or routing key of the queue binding

16 http://www.keycloak.org/
17 https://nginx.org/en/
18 https://www.rabbitmq.com/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 18 of 41 Submission date: 2018-02-27

(when the permission is read)

The Authentication Service (Keycloak) endpoints RAAS shall use to perform authentication actions are
described on Table 2 below:

Table 2 - Authentication Service (Keycloak) endpoints used by RAAS

/auth/realms/composition/protocol/openid-connect/token

Action Parameters

login
(authenticate user and get set of tokens)

grant_type=password

client_id=rabbitmq

username=xxx

password=xxx

client_secret=xxx

response_type=token

refresh-token
(obtain new set of tokens when current
expired)

grant_type=refresh_token

client_id=rabbitmq

client_secret=xxx

refresh_token=xxx

/auth/realms/composition/protocol/openid-connect/logout

logout
(close session)

client_id=rabbitmq

client_secret=xxx

refresh_token=xxx

RAAS will be able to work in two modes explained in detail in the next sections Username and Password
Mode (Section 4.1.1) and Token Mode (Section 4.1.2).

4.1.1 RAAS – Mode: Username and Password

In this mode RAAS will be the responsible to request and manage tokens from Authentication Service
(Keycloak) and perform authorization request to Authorization Service (EPICA) with the obtained tokens. The
clients make login in the message broker with username and password.

On a high level view the authentication process on this mode follows the following steps:

1. Credentials, username and password, are entered by user (or message broker client, publisher or
subscriber)

2. Credentials are passed from message broker to RAAS

3. RAAS performs authentication against Authentication Service (Keycloak)

4. RAAS allow or deny the authentication request

The diagram below (Figure 9) describes on a very high level the authentication process and the components
involved.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 19 of 41 Submission date: 2018-02-27

Figure 9 - RAAS: Authentication in mode Username and Password

A detailed description of the authentication procedure in this mode can be seen in the flowchart diagram
below (Figure 10)

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 20 of 41 Submission date: 2018-02-27

Figure 10 - Flowchart RAAS Authentication and Authorization in mode Username and Password

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 21 of 41 Submission date: 2018-02-27

The process of authorization in this mode -unlike the authentication one- does not involve the password by
the resource information to be accessed.
In this case the following steps take place:

1. Message broker request access to a resource

2. Request is passed to RAAS

3. RAAS look for token of already authenticated user

4. RAAS request Authorization Service (EPICA) access to the resource using token and resource info.

5. RAAS allow or deny based on the response from Authorization Service (EPICA)

The diagram below (Figure 11) describes on a very high level the authorization process:

Figure 11 - RAAS Authorization in mode Username and Password

4.1.2 RAAS – Mode: Token

In this mode RAAS will be only responsible to verify the validity of tokens from Authentication Service
(Keycloak19) and perform authorization request to Authorization Service (EPICA) with the provided tokens.
The clients are responsible to obtain and manage the authentication tokens and provide them to RAAS. The
clients make login in the message broker with the token from Authentication Service (Keycloak), no
password involved in this mode.

On a high level view the authentication process on this mode follows the following steps:

1. Client (publisher or subscriber) authenticate against COMPOSITION Authentication Service
(Keycloak).

2. Token obtained from Authentication Service (Keycloak) is used to authenticate against message
broker. No password involved, the token is passed as username.

3. Token is passed from message broker to RAAS

4. RAAS verify the token

5. RAAS allow or deny the authentication request based on the token verification

19 http://www.keycloak.org/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 22 of 41 Submission date: 2018-02-27

The diagram below (Figure 12) describes on a very high level the process of authentication and the
components involved.

Figure 12 - RAAS Authentication in mode Token

A detailed description of the authentication procedure in this mode can be seen in the flowchart diagram
below (Figure 13).

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 23 of 41 Submission date: 2018-02-27

Figure 13 - Flowchart RAAS Authentication and Authorization in mode Token

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 24 of 41 Submission date: 2018-02-27

The process of authorization in this mode has the following steps:

1. Message broker request access to a resource but unlike the previous mode where username was
used in this case the username is the token obtained by the client when authenticated directly to the
Authentication Service (Keycloak).

2. Request is passed to RAAS

3. RAAS verify token.

4. RAAS request Authorization Service (EPICA) access to the resource using token and resource info.

5. RAAS allow or deny based on the response from Authorization Service (EPICA)

The diagram below (Figure 11) describes on a very high level the authorization process:

Figure 14 - RAAS Authorization in mode Token

4.2 Authentication Service – Keycloak20

This section will cover the work done in Keycloak related to deployment, configuration and customization.

4.2.1 Deployment and Configuration

Keycloak has been deployed as a docker container in Atos premises. Details of the docker container on the
screenshot below (Figure 15)

20 http://www.keycloak.org/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 25 of 41 Submission date: 2018-02-27

Figure 15 - Keycloak docker container details

To give support to both Inter-Factory and Intra-Factory scenarios, two different realms have been created in
Keycloak one realm for Inter-Factory named composition-inter and one for Intra-Factory named composition-
intra (see Figure 16). The use of two different realms will allow the management of clients and users
independently for each Inter-Factory and Intra-Factory scenarios.

Figure 16 - Keycloak realms

Into each realm a client named rabbitmq has been created (see Figure 17) as well as a role named rabbitmq.
Into each client the following roles have been created: administrator, management, monitoring and
policymaker (see Figure 18). These roles will be used to authorize users and clients accessing RabbitMQ
message broker.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 26 of 41 Submission date: 2018-02-27

Figure 17 - Keycloak rabbitmq client

Figure 18 - Keycloak rabbitmq client roles

4.2.2 Customization

Although Keycloak is designed to cover most use-cases without requiring custom code, it has a number of
Service Provider Interfaces (SPI) for which own providers can be implemented (Keycloak Service Provider
Interfaces (SPI), n.d.). From the available list of SPI, COMPOSITION is implementing the Protocol-Mapper
SPI to create a Custom-Mapper which will enable the ability to add into tokens additional information from
external sources, like databases.

One scenario where Custom-Mapper can be very useful is the one where COMPOSITION users are able to
assign roles to other COMPOSTION users; so the latter are granted access to resources from the former,
without the need of administration rights in Keycloak.

The next screenshot (Figure 19) shows the list of installed mappers in Keycloak where is listed atos-custom-
mapper, which is a prototype of the Custom-Mapper.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 27 of 41 Submission date: 2018-02-27

Figure 19 - Custom-mapper in protocol-mappers list installed

Screenshot below (Figure 20) shows atos-custom-mapper prototype assigned to rabbitmq client.

Figure 20 - Custom-mapper used in client

The next screenshot (Figure 21) shows the details of atos-custom-mapper prototype installed on Keycloak
and used by rabbitmq client.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 28 of 41 Submission date: 2018-02-27

Figure 21 - Custom-mapper details

4.3 Authorization Service – EPICA

Authorization Service (EPICA) is currently being integrated with Authentication Service (Keycloak). The API
exposed by EPICA is being modified to be able to deal with tokens from Keycloak. Once integration is
completed and tested a first set of authorization policies will be created, involving COMPOSITION partners in
this task.

4.4 XL-SIEM

A new cyberagent named l-ads is in development for XL-SIEM. This new agent makes use of neural
networks to determine if an alert should be raised or not. The agent analyses the network traffic of the
monitored interface and raises an alert based on the train done to the neural network.

Agent l-ads make use of NetFlow21 network protocol to be used as source to analyse the network traffic and
Softflowd22 as the NetFlow exporter which aggregates packets into flows and exports flow records towards l-
ads to be analysed.

 NetFlow is a network protocol developed by Cisco used in their routers for collecting IP traffic
information and monitoring network traffic. NetFlow exports flow information in UDP23 datagrams in
one of the following formats: v1, v5, v7, v8 and v9.

Agent l-ads supports v5 datagram format; each UDP datagram is composed of a header (see Table
3) and N flow records (see Table 4), being 1 <= N <= 30 and is specified by the count field in the
header.

Table 3 - NetFlow v5 flow header format

bytes content description

0-1 version NetFlow export format version number

2-3 count Number of flows exported in this packet (1-30)

4-7 sys_uptime Current time in milliseconds since the export device booted

8-11 unix_secs Current count of seconds since 0000 UTC 1970

12-15 unix_nsecs Residual nanoseconds since 0000 UTC 1970

21 https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-6/user/guide/format.html
22 https://www.mindrot.org/projects/softflowd/
23 https://tools.ietf.org/html/rfc768

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 29 of 41 Submission date: 2018-02-27

16-19 flow_sequence Sequence counter of total flows seen

20 engine_type Type of flow-switching engine

21 engine_id Slot number of the flow-switching engine

22-23 sampling_interval
First two bits hold the sampling mode; remaining 14 bits hold value of sampling
interval

Table 4 - NetFlow v5 flow record format

bytes content description

0-3 srcaddr Source IP address

4-7 dstaddr Destination IP address

8-11 nexthop IP address of next hop router

12-13 input SNMP index of input interface

14-15 output SNMP index of output interface

16-19 dPkts Packets in the flow

20-23 dOctets Total number of Layer 3 bytes in the packets of the flow

24-27 first SysUptime at start of flow

28-31 last SysUptime at the time the last packet of the flow was received

32-33 srcport TCP/UDP source port number or equivalent

34-35 dstport TCP/UDP destination port number or equivalent

36 pad1 Unused (zero) bytes

37 tcp_flags Cumulative OR of TCP flags

38 prot IP protocol type (for example, TCP = 6; UDP = 17)

39 tos IP type of service (ToS)

40-41 src_as Autonomous system number of the source, either origin or peer

42-43 dst_as Autonomous system number of the destination, either origin or peer

44 src_mask Source address prefix mask bits

45 dst_mask Destination address prefix mask bits

46-47 pad2 Unused (zero) bytes

 Softlowd is a flow-based network traffic analyser capable of Cisco Netflow data export. It aggregates
packets into flows and exports flow records towards one or more flow collectors.

Instead of analysing all packets flowing across the monitored network interface the agent will instead analyse
NetFlow v5 datagrams collected by Softflowd.on the monitored network interface and exported to an IP and
a port as UDP datagrams.

The diagram below (Figure 22) gives an overview of l-ads architecture with the components involved and the
interaction between them.

Figure 22 - l-ads architecture overview

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 30 of 41 Submission date: 2018-02-27

4.5 Reverse proxy – Nginx24

Nginx has been deployed as a Docker25 container in Atos premises. Nginx configuration files as well as
certificates used for providing TLS support are stored outside the container for better management and
maintenance. Current Nginx configuration enables only encrypted TLS connections through port 443.

The screenshot below (Figure 23) shows the details of the Docker container deployment.

Figure 23 - Nginx docker container details

5 Integrity and trust of information

5.1 Reputation Model

Before talking about the COMPOSITION Reputation Model, it is necessary to point out some typical
characteristics of these models. First of all, they are based on the concept of “reputation”, often
misunderstood with the one related to “trust”, as explained in (Jaydip Sen, 2010) and (Ramana et al, 2010).
In (Hoffman et al, 2009) and (Moyano et al, 2012), reputation is considered as a means for computing trust,
together with other context-dependent factors. Always in (Moyano et al, 2012), as well as in (Artz et al,
2007), a more detailed explanation is provided, associating a completely objective nature to the concept of
reputation, differently from trust.

Considering (Jøsang et al, 2007), reputation is defined as “what is generally said or believed about a
person’s or thing’s character or standing”. In this survey, also a very interesting connection between the two
concepts is expressed, through the following statements: “I trust you because of your good reputation” and “I
don’t trust you despite your bad reputation”. These two statements express clearly the different nature
between the two concepts.

This differentiation is essential in order to design a Reputation Model. Reputation must be computed taking
into account the specific scenario where the model is applied: considering an online marketplace scenario,
for instance, every time an interaction takes place, a local reputation score must be computed by the trustor
(the agent who makes the request) and aggregated with the other scores related to the previous interactions,
with the same trustee: in this case the obtained score will be updated when a new interaction occurs, but, at
the same time, it will represent also a global view of trustee’s historical behaviour, from the trustor point of
view. Each new value can be seen as a feedback representing the trustor “satisfaction” for the received
service, in that specific interaction. Then, the updated global reputation could be used by the trustor or by

24 https://nginx.org/en/
25 https://www.docker.com/what-docker

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 31 of 41 Submission date: 2018-02-27

other agents as well, for taking future trust-based decisions related to the same trustee, for possible future
interactions.

This happens, for instance, in the main, and simple, scenario of e-commerce marketplaces, the eBay26
Reputation Model (Resnick et al, 2002): in this case the trustor requests a service from a provider (the
trustee), and gives a positive (+1) or negative (-1) feedback, after the service has been received. All the
scores related to the same trustee are aggregated by a centralised unit, using a basic summation operator,
which provides the global reputation score for that trustee. This schema is very basic, and suffers from
several issues, such as the ballot stuffing (e.g., ratings repeated many times) and unfair ratings problems, as
stated in (Jøsang et al, 2007).

Another common solution, related to online marketplace scenarios, is the REGRET model (Sabater et al,
2001), where reputation is defined as “the opinion or view of one about something”. In this model, individual
reputation inferred from direct interaction, is aggregated, locally by the trustor, with other social and
ontological factors (e.g., social relationships among involved entities, combination of different reputation
values related to different aspects), as well as with reputation scores provided by other entities about their
past interactions with the same trustee, for obtaining the final trust value.

Depending on how reputation is evaluated, the model could be centralised (e.g., eBay model), if a single
entity is in charge of computing it for every involved parties, or decentralised (e.g., REGRET model), where
each entity compute their local reputation values referred to others, before disseminating them.

In (Vavilis et al, 2014), some guidelines for designing Reputation Models are provided, in terms of
requirements and features that they should implement for fulfilling them, as well as a comparison among
most known models.

For a more detailed summary on Reputation Models, many surveys can be consulted, such as (Ruohomaa
et al, 2007) (Hoffman et al, 2009) (Sabater et al, 2005) (Jøsang et al, 2007) and (Gomez et al, 2011).

5.1.1 COMPOSITION Reputation Model

Regarding the COMPOSITION Reputation Model, the basic idea is to follow the reference model described
in (Vavilis et al, 2014), in order to infer the basic requirements that should be satisfied, depending on the
specific context of the project. Each agent of the marketplace must be able to provide a rating related to
each single transaction, when they act as the requestor (trustor): these ratings could be integer values within
a predefined interval, for expressing different level of “satisfaction”, for example:

 Not satisfied  1

 Partially satisfied  2

 Satisfied  3

 Very Satisfied  4

 Completely Satisfied  5

Each single rating will be aggregated with the previous ratings associated to the same provider (trustee),
through an aggregator operator, and the result could be a real number belonging to the interval [1, 5] (if the
above mentioned values would be used). Considering (Torra et al, 2007), (Ravana et al, 2009), (Torra,
2017), (Derakhshandeh et al, 2011) and (Cornelis et al, 2010), there are many of them that could be
checked, such as:

 Arithmetic Mean (AM): It consists in the sum of a certain number of values, which is then divided for

the total number of values themselves (Torra et al, 2007), (Ravana et al, 2009). The formula is
shown in Equation 1.

𝐀𝐌 =
∑ 𝑿𝒊𝒕

𝒊=𝟏

𝒕
 (𝟏)

26 https://www.ebay.com/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 32 of 41 Submission date: 2018-02-27

 Geometric Mean (GM): It indicates the central tendency, called also typical value, of a set of
numbers by using their product. The geometric mean is defined as the tth root product of the t
numbers (Ravana et al, 2009) and the formula is expressed in Equation 2. It is more stable than the
arithmetic mean.

 𝐆𝐌 = (∏ 𝑿𝒊

𝒕

𝒊=𝟏

)

𝟏
𝒕

 (𝟐)

 Weighted Mean (WM): It has many similarities with the arithmetic mean. However each single value
of the sum is weighted accordingly to its “importance” for the computation of the final result. The
formula can be seen in Equation 3, where Xi is the ith value, while W i the ith weight (Torra, 2017).

𝐖𝐌 = ∑ 𝑿𝒊 . 𝑷𝒊

𝒕

𝒊=𝟏

(𝟑)

 Ordered Weighted Mean (OWA): It is an operator similar to the previous one, with the difference
that the set of values (a1, … , an) is ordered decreasingly and, then each value is weighted
considering its position, taking into account a weighting vector (w1, … , wn), as can be seen in
Equation 4. In this way, weights allow expressing whether the importance is given to low, high or
central data (Torra et al, 2007), (Derakhshandeh et al, 2011), (Cornelis et al, 2010).

𝐎𝐖𝐀 (𝐚𝟏, … , 𝐚𝐧) = ∑ 𝑷𝒊 . 𝑩𝒊

𝒏

𝒊=𝟏

 (𝟒)

Where:
Pi is the weight associated to the ith data after ordering them.
Bi corresponds to a permutation of the ai, in such a way that the ordering goes from the largest value
to the lowest one.

The chosen operator should be used in the two following cases:

1. When computing/updating local reputation value about a single trustee. Each trustor would be in
charge of this operation every time an interaction with a specific trustee occurs. The new rating will
be properly aggregated with the older ones. However, as stated in (Gutowska et al, 2009), reputation
lifetime should be considered, and this implies assigning a lower importance (weight) to older value
(ratings), associated to older interactions.

2. When other agent’s opinions about a specific trustee are considered: this factor is known as rater’s
credibility (Gutowska et al, 2009). Before initiating an interaction with an agent, the trustor should
have the possibility to check other reputation values given by the other agents belonging to the
marketplace to the chosen trustee. However, in order to avoid considering false, or misleading,
reputation scores, all the values should be weighted accordingly to the reputation given by the trustor
to the one who is providing the score, and finally aggregated. Then, the final result will be, in turn,
aggregated with the actual reputation value computed by the trustor for the considered trustee.
Finally, the result, a sort of global reputation value about the trustee, evaluated by the trustor, will be
used for making the final trust-based decision about initiating or not the interaction with the
counterpart.

It is easy to point out that both the weighted mean and the ordered weighted mean operators could be used
as a starting point, considering that they allow weighting all the single values of the formula, for the
computation of the final result. The weights will be computed accordingly to the peculiarity of each case, and
the aggregator which fits better will be chosen (other aggregators which also allow weighting each value
could be considered).

As explained in the previous section, reputation is just a means for computing trust. Other factors could be
taken into account for making the final decision, which have a more subjective nature than reputation, as
described in (Moyano et al, 2012) and (Sabater et al, 2001), such as psychological, sociological and
ontological factors (i.e., competitors usually tend to avoid interactions among each other despite good

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 33 of 41 Submission date: 2018-02-27

reputation values), as well as other contextual information which can be extracted from the message
exchanged by the involved agents.

However, they should not be considered for the dynamic computation of the reputation. They could be used,
together with the final reputation value, for making the trust-based decision, and aggregated using a specific
trust metric (Moyano et al, 2012). However, the final reputation value alone could already enough as an
indicator of trustworthiness, for the purpose of COMPOSITION, for each agent of the marketplace.

In Table 5 the requirements of the COMPOSITION Reputation Model are listed.

Table 5 - COMPOSITION Reputation Model Requirements

ID REQUIREMENT

R1 Reputation and ratings should discriminate agents behaviour

R2 Incorrect reputation values should be detected (raters credibility), when used

R3 Local reputations should be available to all the agents belonging to the marketplace, if needed

R4 Reputation lifetime must be taken into account

R5 Agents should not be able to compute, or modify, their own reputation value

R6 Involved agents must use the same aggregator operator

R7 Reputation values must represent the evolution of the agent’s behaviour

R8 New agents should not be penalized

R9 “Bad” agents should not be able to leave the marketplace, and re-join as different agents

Some of these requirements (R1, R5, R7 and R8) have been stated considering (Vavilis et al, 2014).

R1 will be fulfilled considering that each rating allows expressing a specific level of “satisfaction” for a
particular interaction, while each local reputation score will be an indicator about the agent behaviour over
time, from the trustor point of view. Regarding R2, it is necessary that each origin of reputation score can be
identified (Vavilis et al, 2014), in order to check the reliability of their feedback, for including it or not in the
final decision, and this will be more clear in section 5.1.2.

R4 has already been discussed previously, while for R6, the usage of the same aggregator operators by all
the agents must be guaranteed, in order to provide coherency among different reputation values computed
by different entities. When updating a certain local reputation value, the older ones are considered, in order
to meet R7.

R8 is a very challenging requirement: a global default reputation value should be associated to a new user,
allowing him to be trusted by other entities; however, this value should not be too high, because otherwise
he could take advantage from this situation, and, obviously, “old” agents that built their reputation over time
should not be penalized. R3, R5 and R9 will be discussed in section 5.1.2.

5.1.2 Blockchain, Trust and Reputation

COMPOSITION is relying on blockchain technologies as the central component of its log-oriented
architecture. This technology will be used for implementing a secure, trusted and automated information
exchange related to supply chain data. Considering the distributed nature of blockchain [Nak08] and, more in
general, of the COMPOSITION infrastructure, it makes sense to rely on a distributed Reputation Model: each
agent will compute his own reputation values, and will be in charge to provide these values to the other
entities.

Actually, in the literature, there are some academic papers related to the usage of blockchain in trust
management and authentication (Alexopoulos et al, 2017), (Moinet et al, 2017). However, considering the
dynamic and distributed nature of blockchain, some interesting scenarios could be explored.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 34 of 41 Submission date: 2018-02-27

In (Hoffman et al, 2009), the three fundamental dimension of a generic Reputation Model have been
identified: formulation, calculation and dissemination. So far, the last dimension, which includes also how
reputation values are stored, has not been taken into account.

Blockchain could be really helpful in this case: the idea is to exploit this technology for storing local
reputation values (R2, R3): in this way each agent would be aware when a reputation value given by a
specific agent A to another agent B has been updated (R5). Then, he can choose if consider or not this new
value, basing on his local reputation value related to agent A, when he should interact with agent B. The
usage of blockchain will also help recognizing possible cheating behaviours, for instance a “bad” agent who
tries to submit misleading reputation values on behalf of other agents, or re-join the marketplace for resetting
his low reputation (R9). With the adoption of the blockchain, all the agents will have a global view of every
interaction related to each agent of the marketplace.

For concluding this section, the one presented in this deliverable was a first idea about how we are planning
to design the COMPOSITION Reputation Model and why it will be helpful in the context of the project.

As future plans, the choice of the most suitable aggregator operator will be done. It will be adapted for
meeting all the requirements, especially reputation lifetime and feedback credibility, stated in section 5.1.1
and the first tests will be performed.

5.2 Digital signature

One of the cornerstones to increase trust in the content of the messages flowing in COMPOSITION is the
inclusion of the digital signature on all messages. For that reason messages will be digitally signed using
JWS27 (JSON Web Signature) which is an IETF28 proposed standard for signing arbitrary data.

JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication
Codes (MACs) using JavaScript Object Notation (JSON) based data structures and base64url encoding. [3]

Terminology: (RFC-7515, 2015)

- JWS Header: A JSON Text Object (or JSON Text Objects, when using the JWS JSON Serialization)
that describes the digital signature or MAC operation applied to create the JWS Signature value. The
members of the JWS Header object(s) are Header Parameters.

- JWS Payload: The sequence of octets to be secured – a.k.a., the message. The payload can
contain an arbitrary sequence of octets.

- JWS Signature: A sequence of octets containing the cryptographic material that ensures the
integrity of the JWS Protected Header and the JWS Payload. The JWS Signature value is a digital
signature or MAC value calculated over the JWS Signing Input using the parameters specified in the
JWS Header.

- Base64url encoding: Similar to base64 encoding except for the use of non-reserved URL
characters (e.g. – is used instead of + and _ is used instead of /) and the omission of padding
characters.

- Encoded JWS Header: Base64url encoding of the JWS Protected Header.

- Encoded JWS Payload: Base64url encoding of the JWS Payload.

- Encoded JWS Signature: Base64url encoding of the JWS Signature.

- JWS Signing Input: The concatenation of the Encoded JWS Header, a period (‘.’) character, and
the Encoded JWS Payload.

- JWS Compact Serialization: A representation of the JWS as the concatenation of the Encoded
JWS Header, the Encoded JWS Payload, and the Encoded JWS Signature in that order, with the
three strings being separated by two period (‘.’) characters. This representation is compact and URL-
safe.

The representation consists of three parts: the JWS Header, the JWS Payload, and the JWS Signature. In
the Compact Serialization, the three parts are base64url-encoded for transmission, and represented as the

27 https://tools.ietf.org/html/rfc7515
28 https://www.ietf.org/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 35 of 41 Submission date: 2018-02-27

concatenation of the encoded strings in that order, with the three strings being separated by two period (‘.’)
characters (see Figure 24) (RFC-7515, 2015)

Figure 24 - JWS compact serialization

The JWS Header describes the signature or MAC method and parameters employed. The JWS Payload is
the message content to be secured. The JWS Signature ensures the integrity of both the JWS Header and
the JWS Payload. (RFC-7515, 2015)

Following an example of how to encode, decode and validate a JWS.

Encoding (RFC-7515, 2015)

The following example JWS Header declares that the encoded object is a JSON Web Token29 (JWT) and the
JWS Header and the JWS Payload are secured using the HMAC SHA-256 algorithm:

{
 "alg": "HS256",
 "typ": "JWT"
}

Base64url encoding the bytes of the UTF-8 representation of the JWS Header yields this Encoded JWS
Header value:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

The following is an example of a JSON object that can be used as a JWS Payload. (Note that the payload
can be any content, and need not be a representation of a JSON object.)

{
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true
}

Base64url encoding the bytes of the UTF-8 representation of the JSON object yields the following Encoded
JWS Payload:

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9

Computing the HMAC of the bytes of the ASCII representation of the JWS Secured Input (the concatenation
of the Encoded JWS Header, a period (‘.’) character and the Encoded JWS Payload) with the HMAC SHA-
256 algorithm using a key and base64url encoding the result yields this Encoded JWS Signature value:

TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

Concatenating these parts in the order Header.Payload.Signature with period (‘.’) characters between the
parts yields this complete JWS representation:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

The JWS example explained before can be summarized in table below (Table 6)

Table 6 - JWS example

JWS Header {
 "alg": "HS256",
 "typ": "JWT"
}

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

29 https://tools.ietf.org/html/rfc7519

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 36 of 41 Submission date: 2018-02-27

JWS Payload {
 "sub": "1234567890",
 "name": "John Doe",
 "admin": true
}

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG
9lIiwiYWRtaW4iOnRydWV9

JWS Signature TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

Decoding (RFC-7515, 2015)

Based on the previous example (Table 6) to decode JWS we need to follow the following steps:

1. Remove the base64url encoding from the Encoded JWS Header, the Encoded JWS Payload, and
the Encoded JWS Signature.

2. Base64url decode the inputs and turn them into the corresponding byte arrays.

3. Translate the header input byte array containing UTF-8 encoded characters into the JWS Header
string

Validation (RFC-7515, 2015)

After decoding JWS, the next logical step is the validation of the decoded JWS.

Since the alg parameter in the header is “HS256”, we validate the HMAC SHA-256 signature contained in
the JWS Signature. If any of the validation steps fail, the JWS must be rejected.

1. Validate that the JWS Header string is legal JSON.

2. To validate the HMAC value, we repeat the previous process of using the correct key and the UTF-8
representation of the JWS Secured Input (which is the same as the ASCII representation) as input to
the HMAC SHA-256 function and then taking the output and determining if it matches the JWS
Signature.

3. If it matches exactly, the HMAC has been validated.

To perform all three processes described above: encoding, decoding and validation, libraries for token
signing and verification can be found in: http://jwt.io/

5.3 Cryptographic Hash

Another level of trust will be added to the COMPOSITION platform with the calculation of the cryptographic
hash of the messages flowing in the platform. A cryptographic hash is like the fingerprint of the data being
hashed. A hash is a fixed length (length may vary depending on the hashing function used) string of
characters that uniquely identifies the data being hashed, and has the peculiarity that the same hash value is
obtained every time a hash is calculated over the same data and using the same cryptographic hash
function.

It has to be clear that hashing is not encrypting; encryption is a two way function where data is encrypted
with the purpose in mind of being decrypted in the future. Hashing, however, is not meant to be reversed. It
is not a way to store data secured, but a way to easily compare two pieces of data, as a hash uniquely
identifies pieces of data.

Hashing has an inherent problem, and that is collisions. A collision is when two different pieces of data
produce exactly the same hash result. To prevent (or at least minimise) the collision problem, hash functions
resulting on greater length hash values should be used. Some older hashing functions like MD5, which
produce 128-bit hash values, should be avoided; it’s preferred the use of 256-bit or greater hashing
functions.

http://jwt.io/

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 37 of 41 Submission date: 2018-02-27

One of the popular hashing functions nowadays is SHA which stands for Secure Hashing Algorithm. There
are different types of SHA, being SHA-256 one of the most often used for common purposes today.

SHA are a family of cryptographic functions designed to keep data secured. It works by transforming the
data using a hash function: an algorithm that consists of bitwise operations, modular additions, and
compression functions. The hash function then produces a fixed size string that looks nothing like the
original. These algorithms are designed to be one-way functions, meaning that once they’re transformed into
their respective hash values, it’s virtually impossible to transform them back into the original data. A few
algorithms of interest are SHA-1, SHA-2, and SHA-5, each of which was successively designed with
increasingly stronger encryption in response to hacker attacks. SHA-0, for instance, is now obsolete due to
the widely exposed vulnerabilities. (SHA, 2017)

6 Transport security

Internal communication between COMPOSITION components as well as external communication with other
systems and/or users connecting to COMPOSITION platform shall be encrypted by using Transport Layer
Security30 (TLS). TLS is a cryptographic protocol that allows and guarantees the privacy and data integrity in
the exchange of data between two communicating applications. (RCF-5246, 2008)

TLS is composed of two layers:

TLS Record Protocol (RCF-5246, 2008)

The TLS Record Protocol provides connection security that has two basic properties:

 The connection is private. Symmetric cryptography is used for data encryption.

 The connection is reliable.

TLS Handshake Protocol (RCF-5246, 2008)

TLS Handshake Protocol allows the server and client to authenticate each other and to negotiate an
encryption algorithm and cryptographic keys before the application protocol transmits or receives its first byte
of data. The TLS Handshake Protocol provides connection security that has three basic properties:

 The peer's identity can be authenticated using asymmetric, or public key, cryptography.

 The negotiation of a shared secret is secure.

 The negotiation is reliable.

Current version of TLS protocol is 1.2, although the TLS 1.3 is in the works. It has not been finalized yet and
is still a draft.

7 Next Steps

The next step will be to deploy the first prototype of the COMPOSITION Security Framework, which will
implement the architecture proposed, as well as make use of components and technologies reported on this
deliverable. The results of the Security Framework prototype will be reported in D4.4 Prototype of the
Security Framework I due on M20.

The Reputation Model proposed in this deliverable will be refined and the results will be reported in the
aforementioned deliverable D4.4.

8 Summary

This deliverable updates and complements what was reported back in M12 in D4.1 Design of Security
Framework I. It offers a general view of the architecture of the COMPOSITION Security Framework as well
as a description of the components and technologies that are part it.

It provides information on different alternatives to the architecture for some components of the Security
Framework and reports on the developments that are actually active to provide access to the different

30 https://www.ietf.org/rfc/rfc5246.txt

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 38 of 41 Submission date: 2018-02-27

Security Framework services to other COMPOSITION components; or to customize already available
services as is the case of the Authentication Service (Keycloak). It also reports on the different integration
and deployment tasks that have taken place in this time.

The deliverable also provides detailed information on the proposed technologies to bring Integrity of data and
Trust on data to COMPOSITION platform, as well as the proposed technology to secure communication
among the different COMPOSITION components and with the outside world. It also contains the proposal for
a Reputation Model to be implemented in the COMPOSITION platform. This Reputation Model will be refined
in the upcoming deliverable in D4.4 Prototype of the Security Framework I due on M20.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 39 of 41 Submission date: 2018-02-27

9 List of Figures and Tables

9.1 Figures

Figure 1 - Security Framework general architecture overview .. 8
Figure 2 - Reverse proxy diagram ... 10
Figure 3 - Overview of signing and logging of messages .. 11
Figure 4 - Flowchart diagram publish-subscribe procedure in COMPOSITION .. 12
Figure 5 - Security Framework default architecture .. 13
Figure 6 - Docker deployment for default architecture .. 14
Figure 7 - Security Framework alternative architecture ... 15
Figure 8 - Docker deployment for alternative architecture .. 16
Figure 9 - RAAS: Authentication in mode Username and Password .. 19
Figure 10 - Flowchart RAAS Authentication and Authorization in mode Username and Password 20
Figure 11 - RAAS Authorization in mode Username and Password ... 21
Figure 12 - RAAS Authentication in mode Token .. 22
Figure 13 - Flowchart RAAS Authentication and Authorization in mode Token .. 23
Figure 14 - RAAS Authorization in mode Token ... 24
Figure 15 - Keycloak docker container details .. 25
Figure 16 - Keycloak realms .. 25
Figure 17 - Keycloak rabbitmq client ... 26
Figure 18 - Keycloak rabbitmq client roles .. 26
Figure 19 - Custom-mapper in protocol-mappers list installed .. 27
Figure 20 - Custom-mapper used in client .. 27
Figure 21 - Custom-mapper details ... 28
Figure 22 - l-ads architecture overview ... 29
Figure 23 - Nginx docker container details .. 30
Figure 24 - JWS compact serialization .. 35

9.2 Tables

Table 1 - RAAS exposed endpoints .. 17
Table 2 - Authentication Service (Keycloak) endpoints used by RAAS .. 18
Table 3 - NetFlow v5 flow header format ... 28
Table 4 - NetFlow v5 flow record format .. 29
Table 5 - COMPOSITION Reputation Model Requirements ... 33
Table 6 - JWS example ... 35

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 40 of 41 Submission date: 2018-02-27

10 References

(Netflow, 2007) Netflow Export Datagram Format.
https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-
6/user/guide/format.html

(COMPOSITION D4.1, 2017) D4.1 Design of Security Framework I.

(RMQ-Auth-Http, 2017) HTTP-based authorisation and authentication for RabbitMQ.
https://github.com/rabbitmq/rabbitmq-auth-backend-http

(K-Mappers, 2018) Keycloak Protocol Mappers.
http://www.keycloak.org/docs/latest/server_admin/index.html#_protocol-
mappers

(K-SPI, 2018) Keycloak Service Provider Interfaces (SPI).
http://www.keycloak.org/docs/latest/server_development/index.html#_provider
s

(OIDC, 2014) OpenID Connect specification. http://openid.net/specs/openid-connect-core-
1_0-final.html

(RFC-1321, 1992) MD5 Message-Digest Algorithm. https://www.ietf.org/rfc/rfc1321.txt

(RFC-4634, 2006) US Secure Hash Algorithms (SHA and HMAC-SHA).
https://tools.ietf.org/html/rfc4634

(RCF-5246, 2008) RCF-5246 The Transport Layer Security (TLS) Protocol Version 1.2.
https://tools.ietf.org/html/rfc5246

(RFC-6151, 2011) Updated Security Considerations for the MD5 Message-Digest and the
HMAC-MD5 Algorithms. https://tools.ietf.org/html/rfc6151

(RFC-6234, 2011) US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF).
https://tools.ietf.org/html/rfc6234

(RFC-6749, 2012) RFC-6749 The OAuth 2.0 Authorization Framework.
https://tools.ietf.org/html/rfc6749

(RFC-7515, 2015) RFC-7515 JSON Web Signature (JWS). https://tools.ietf.org/html/rfc7515

(RFC-7519, 2015) RFC-7519 JSON Web Token (JWT). https://tools.ietf.org/html/rfc7519

(SAML 2.0, 2013) SAML V2.0 specification. http://saml.xml.org/saml-specifications

(SHA, 2017) Secure Hashing Algorithms. https://brilliant.org/wiki/secure-hashing-
algorithms/

(TLS 1.3, 2018) The Transport Layer Security (TLS) Protocol Version 1.3.
https://tools.ietf.org/html/draft-ietf-tls-tls13-23

(XACML 3.0, 2013) eXtensible Access Control Markup Language (XACML) Version 3.0.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

(Moyano et al, 2012) F. Moyano, C. Fernandez Gago and J. Lopez, “A Conceptual Framework for
Trust Models,” in Trust, Privacy and Security in Digital Business, 2012.

(Jaydip Sen, 2010) J. Sen, “A Survey on Reputation and Trust-Based Systems for Wireless
Communication Networks,” CoRR, vol. abs/1012.2529, 2010.

(Sabater et al, 2001) J. Sabater and C. Sierra, “Regret: A reputation model for gregarious
societies,” Fourth workshop on deception fraud and trust in agent societies,
vol. 70, pp. 61-69, 2001.

(Vavilis et al, 2014) S. Vavilis, M. Petković and N. Zannone, “A reference model for reputation
systems,” Decision Support Systems, vol. 61, pp. 147-154, 2014.

(Ruohomaa et al, 2007) S. Ruohomaa, L. Kutvonen and E. Koutrouli, “Reputation management
survey,” in Availability, Reliability and Security (ARES), 2007.

COMPOSITION D4.2 Design of Security Framework II

Document version: 1.0 Page 41 of 41 Submission date: 2018-02-27

(Sabater et al, 2005) J. Sabater and C. Sierra, “Review on computational trust and reputation
models,” Artificial intelligence review, vol. 24, no. 1, pp. 33-60, 2005.

(Gomez et al, 2011) F. Gomez Mármol and G. M. Pérez, “Trust and reputation models
comparison,” Internet research, vol. 21, no. 2, pp. 138-153, 2011.

(Gutowska et al, 2009) A. Gutowska and A. Sloane, “Modelling the B2C Marketplace: Evaluation of a
Reputation Metric for e-commerce,” in International Conference on Web
Information Systems and Technologies, 2009.

(Nakamoto, 2008) S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

(Alexopoulos et al, 2017) N. Alexopoulos, J. Daubert, M. Mühlhäuser and S. M. Habib, “Beyond the
Hype: On Using Blockchains in Trust Management for Authentication,” in
Trustcom/BigDataSE/ICESS, 2017.

(Moinet et al, 2017) A. Moinet, B. Darties and J.-L. Baril, “Moinet, Axel, Benoît Darties, and Jean-
Luc Baril,” in arXiv preprint arXiv:1706.01730, 2017.

(Hoffman et al, 2009) K. Hoffman, D. Zage and C. Nita-Rotaru, “A survey of attack and defense
techniques for reputation systems,” ACM Computing Surveys (CSUR), vol.
42, no. 1, 2009.

(Jøsang et al, 2007) A. Jøsang, R. Ismail and C. Boyd, “A survey of trust and reputation systems
for online service provision,” Decision Support Systems, vol. 43, no. 2, pp.
618-644, 2007.

(Artz et al, 2007) D. Artz and Y. Gil, “A survey of trust in computer science and the Semantic
Web,” Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 5, no. 2, pp. 58-71, 2007.

(Sloman et al, 2000) T. Sloman and M. Grandison, “A survey of trust in internet applications,” IEEE
Communications Surveys & Tutorials, vol. 3, no. 4, pp. 2-16, 2000.

(Ramana et al, 2010) K. Ramana, A. Chari and N.Kasiviswanth, “A Survey on Trust Management
for Mobile ad Hoc Network,” International Journal of Network Security & Its
Applications (IJNSA), vol. 2, no. 2, 2010.

(Torra, 2017) V. Torra, “Aggregation functions and information fusion. Modeling decisions,”
2017. http://www.mdai.cat/ifao/slides/transparencies.SFLA.2017.pdf

(Derakhshandeh et al, 2011) S. Derakhshandeh and N. Mikaeilvand, “Fuzzy Method for Identification of
Aggregate Weights in Ordered Weighted Averaging Operators,” Middle-East
Journal of Scientific Research, vol. 7(3), pp. 293-295, 2011.

(Torra et al, 2007) V. Torra and Y. Narukawa, Modeling Decisions: Information Fusion and
Aggregation Operators, Springer-Verlag Berlin Heidelberg, 2007.

(Cornelis et al, 2010) C. Cornelis, P. Victor and E. Herrera-Viedma, “Ordered Weighted Averaging
Approaches for Aggregating Gradual Trust and Distrust,” in XV Spanish
Congress on Technologys and Fuzzy Logic ESTYLF, 2010.

(Ravana et al, 2009) S. D. Ravana and A. Moffat, “Score Aggregation Techniques in Retrieval
Experimentation,” in Twentieth Australasian Database Conference, 2009.

(Resnick et al, 2002) P. Resnick and R. Zeckhouser, “Trust among strangers in internet
transactions: Empirical analysis of eBay' s reputation system,” in The
Economics of the Internet and E-commerce, Emerald Group Publishing
Limited, 2002, pp. 127-157.

(Yan et al, 2008) Z. Yan and S. Holtmanns, “Trust Modeling and Management: from Social
Trust to Digital Trust,” in Computer Security, Privacy and Politics: Current
Issues, Challenges and Solutions, 2008.

