

Ecosystem for COllaborative Manufacturing PrOceSses – Intra- and
Interfactory Integration and AutomaTION

(Grant Agreement No 723145)

D6.7 Collaborative manufacturing services ontology and
language I

Date: 2017-10-30

Version 1.0

Published by the COMPOSITION Consortium

Dissemination Level: Public

Co-funded by the European Union’s Horizon2020 Framework Programme for Research and Innovation
under Grant Agreement No 723145

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 2 of 56 Submission date: 2017-10-30

Document control page

Document file: D6.7 Collaborative manufacturing services ontology and language I-v1
Document version: 1.0
Document owner: CERTH

Work package: WP6–COMPOSITION Collaborative Ecosystem
Task: T6.4 – Collaborative manufacturing services ontology and language
Deliverable type: OTHER

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Dimosthenis Ioannidis,
Alexandros Nizamis,
Pantelis Velanas (CERTH)

2017-05-31 Initial Document Structure and Preliminary
results

0.2 Alexandros Nizamis (CERTH) 2017-08-30 Content to Sections 4 and 5 is added

0.3 Alexandros Nizamis (CERTH) 2017-09-15 Content to Section 6 is added

0.4 Alexandros Nizamis (CERTH) 2017-10-10 Content to Section 6 is updated

0.5 Mathias Axling (CNET)
Jacopo Foglietti (ISMB)

2017-10-17 Content to Section 4 related to Marketplace
and Agents is added and updated

0.6 Dimosthenis Ioannidis,
Alexandros Nizamis (CERTH)

2017-10-20 Content to Sections 7, 8, 9 and 10.
Finalization for internal review

1.0 Alexandros Nizamis (CERTH) 2017-10-30 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Alexander Grass (FIT) 2017-10-24 No major remarks. Mostly minor syntax
suggestions

Willie Lawton (TNI-UCC) 2017-10-27 Very well constructed deliverable. Minor
changes.

Legal Notice

The information in this document is subject to change without notice.

The Members of the COMPOSITION Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the COMPOSITION Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of
the information contained therein.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 3 of 56 Submission date: 2017-10-30

Index:
1 Executive Summary ... 4

2 Abbreviations and Acronyms ... 5

3 Introduction .. 6
3.1 Purpose, Context and Scope of this Deliverable ... 6
3.2 Content and Structure of this Deliverable .. 6

4 Collaborative Manufacturing Services Ontology in COMPOSITION Overall Architecture7
4.1 Overview .. 7
4.2 COMPOSITION Marketplace ... 8
4.3 Ontology and Rule-based Matchmaker ... 8
4.4 Ontology and Agents ... 9

5 State Of The Art Analysis ..10
5.1 Semantic Modelling ...10

5.1.1 Definitions ..10
5.1.2 Components ...10

5.2 Ontology Languages ..11
5.2.1 Traditional Ontology Languages ..11
5.2.2 Ontology Mark-up Languages ...12

5.3 Methodologies for Building Ontologies ..13
5.4 Leading Tools for Building Ontologies ...14

6 COMPOSITION Collaborative Manufacturing Services Ontology16
6.1 Imported Ontologies ..16

6.1.1 MSDL ...16
6.1.2 MASON ..17
6.1.3 GoodRelations Language ..18

6.2 COMPOSITION Ontology ..19
6.2.1 Methodology ..19
6.2.2 Ontology Specifications ...26

7 COMPOSITION Ontology API ..40
7.1 Methodology and Implementation Technologies ...40

7.1.1 Apache Jena ..40
7.1.2 Implementation Details ..42

7.2 Supported Interfaces ...45

8 COMPOSITION Ontology’s Quality Control and Usage Instructions................................47
8.1 Quality Control ...47

8.1.1 Collaborative Manufacturing Services Ontology ..47
8.1.2 Ontology API ..48

8.2 Usage instructions for Collaborative Manufacturing Services Ontology50

9 Next Steps ...51

10 Conclusions ..52

11 List of Figures and Tables ...53
11.1 Figures ...53
11.2 Tables ..53

12 References ..55

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 4 of 56 Submission date: 2017-10-30

1 Executive Summary

This deliverable presents the first results of the Task 6.4 Collaborative Manufacturing Services Ontology and
Language. It aims to describe and analyse the COMPOSITION Ontology’s first version which is delivered as
software alongside with this report. Also, in this report the current state of the design of the Ontology API’s
first version is described. The ontology framework design is driven by COMPOSITION project use cases,
requirements and WP6 activities related to Marketplace.

COMPOSITION Collaborative Ecosystem needs a knowledge base in order to support flexible specification
and execution of manufacturing collaboration schemes. The knowledge base should enable the description
of supply and demand entities participating in the Ecosystem as well as the description of manufacturing
services’ capabilities and resources for participating entities. In order to cover these needs a Collaborative
Manufacturing Services Ontology is adopted and will be used as a common vocabulary to offer
interoperability and representation of both meanings and data.

As the knowledge store will keep information about business entities and their services, the Ecosystem
Agents will be able to make transactions based on this information. An agent who requests a service or a
product will be able to find matching agents who support this service or product based on the information of
COMPOSITION Marketplace Ontology. Moreover, the Marketplace will be able to match possible solutions
or services providers by inferring new knowledge from the Ontology store.

This document provides an analysis of COMPOSITION Ontology framework. Besides purpose, context, and
scope the first part of this document is devoted to the, content and structure of this Deliverable. The next
parts describe both general information about Ontologies as well as specific information about
COMPOSITON’s Ontology. The general information is a state-of-the-art analysis of Ontology languages,
methodologies and tools. The COMPOSITION specific parts describe in details the current versions of
Collaborative Manufacturing Services Ontology and its implementation process. Furthermore, the
COMPOSITION Ontology API which has been developed for the purposes of this project is described.
Details about the usage of the delivered Ontology and a plan about the next steps of Task 6.4 are also
provided.

The software components which are described in this report are just the first versions as the project is still in
an early stage. More precisely this document represents the research and the development that has been
done from month five (M5 – Task 6.4 starts) to month fourteen (M14 – date of first deliverable). The final
versions of the COMPOSITION’s Collaborative Manufacturing Services Ontology and of the corresponding
Ontology API will be delivered at month thirty (M30 – Task 6.4 ends) with the second part of this deliverable,
D6.8 Collaborative manufacturing services ontology and language II.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 5 of 56 Submission date: 2017-10-30

2 Abbreviations and Acronyms

Table 1: Abbreviations and acronyms are used in this deliverable

Acronym Meaning

API Application Programming Interface

CVS Concurrent Versions System

DAML DARPA Agent Markup Language

DoA Description of Action

FLogic Frame Logic

JSON JavaScript Object Notation

KIF Knowledge Interchange Format

MASON Manufacturing’s Semantics Ontology

MSDL Manufacturing Service Description Language

OCML Operational Conceptual Modeling Language

OIL Ontology Interchange Language/Ontology Inference
Layer

ORSD Ontology Requirements Specification Document

OKBC Open Knowledge Base Connectivity

OSF Open Semantic Framework

OWL Web Ontology Language

PAL Pedagogic Algorithmic Language

RDF Resource Description Framework

RDFa Resource Description Framework in Attributes

RDFS Resource Description Framework Schema

RDQL RDF Data Query Language

SMEs Small and medium-sized enterprises

SPARQL Simple Protocol and RDF Query Language

URI Uniform Resource Identifier

WP Working Package

XML eXtensible Markup Language

XOL XML-based Ontology Language

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 6 of 56 Submission date: 2017-10-30

3 Introduction

3.1 Purpose, Context and Scope of this Deliverable

The purpose of Task 6.4 Collaborative Manufacturing Services Ontology and Language and its
corresponding deliverables is the development of an Ontology framework as a part of COMPOSITION’s
Agent Marketplace. The scope of this deliverable is to describe the work that has been done for Task 6.4
and to present the first release of Collaborative Manufacturing Services Ontology. It further describes the first
release of an API which offers services for the manipulation of the Ontology.

Due to the early stage of the project, the current version of Ontology contains classes, properties and a small
number of instances. The creation of more individuals is an ongoing activity as the project is now in a full
development phase and the data of pilot partners becomes more concrete. Also, the Ontology API offers a
first basic set of services. Until the M14 the main focus of Task 6.4 was the research in the Ontology field
and the creation of a first version of Collaborative Manufacturing Services Ontology based on well-known
manufacturing and e-commerce domain ontologies. Furthermore technologies and APIs related to ontologies
were examined and in the context of COMPOSITION the most suited were used in software’s design.

3.2 Content and Structure of this Deliverable

In this deliverable the COMPOSITION’s Collaborative Manufacturing Services Ontology version 1 is
presented. A first version of COMPOSITION’s Ontology API and its supported services are described too. In
order to properly describe the specification of the Ontology component we decided to include the following
basic sections in this report:

Section 4 describes the integration of the Ontology component with the overall COMPOSITION architecture
and its interactions with other COMPOSITION components. Special attention is given to interactions with the
Marketplace Agents and the Matchmaker.

Section 5 includes a brief state-of-the-art analysis in the field of Ontologies and Semantic Modelling.
Ontology languages, methodologies and leading tools for building ontologies are presented.

Section 6 contains two main parts. In the first part the ontologies which are imported at COMPOSITION’s
Collaborative Manufacturing Services Ontology are analyzed. In the second part the current version of
Collaborative Manufacturing Services Ontology is presented and analysed.

Section 7 is about the first version of COMPOSITION’s Ontology API. Implementation and current supported
interfaces are presented. Actually, this section and Section 6 describe the basic components and results of
this deliverable.

Section 8 contains the quality plan and some instruction of usage for software which is described and
delivered alongside with this report. Instructions on how to download import and use the Collaborative
Manufacturing Services Ontology are provided.

Section 9 outlines the next steps of Task 6.4 which will be presented at the task’s end and deliverable D6.8
Collaborative manufacturing services ontology and language II in M30.

Section 10 is the conclusions section which sums up this deliverable’s outcomes.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 7 of 56 Submission date: 2017-10-30

4 Collaborative Manufacturing Services Ontology in COMPOSITION Overall Architecture

This section describes the position of Collaborative Manufacturing Services Ontology and the position of the
Ontology API in COMPOSITION project. The main interactions of the previous two components with the rest
of the project’s components are described too. Also we present a short description of the Marketplace in
order to be clearer the Ontology’s location and usage.

4.1 Overview

Task 6.4 Collaborative Manufacturing Services Ontology and Language and its corresponding software
deliverables are part of WP6 COMPOSITION Collaborative Ecosystem. The implemented Ontology is a core
part of Collaborative Ecosystem/ Marketplace as it constitutes the ecosystem’s knowledge base.

Figure 1: COMPOSITION Marketplace components

As depicted in Figure 1, the Collaborative Manufacturing Services Ontology and the Ontology API belong to
the Agents framework. More precisely they are parts of the Matchmaker package. Collaborative
Manufacturing Services Ontology is the Manufacturing Ontology Store component and the Ontology API is
the Ontology Query API interface. The Rule-based Matchmaker component uses the Ontology API in order
to get data from Ontology store and after that it will apply rules in order to infer new knowledge from
Ontology. Moreover, the Marketplace’s Agents are able to use the Ontology API and Ontology store via
Broker and AMQP Adapter components.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 8 of 56 Submission date: 2017-10-30

4.2 COMPOSITION Marketplace

Modern manufacturing does not only involve the processes of a single factory, but an intricate network of
suppliers, sub-manufacturers and service providers connected in global supply chains. COMPOSITION will
provide a digital automation framework for optimizing the value chain; the production processes of the single
factory. This single factory information management system will be extended to support a flexible network of
connected and interoperable factories in a collaboration ecosystem. Innovative services and practices
enabled by this ecosystem could optimize manufacturing and logistics processes and lead to faster
production cycles, increased productivity, less waste and more sustainable production.

The COMPOSITION collaborative ecosystem will be realized through an interoperable agent-based
marketplace where the stakeholders are represented by agents that can exchange information, negotiate
deals and find new collaboration opportunities and models. Instead of custom-built, ad-hoc integrations with
suppliers or sub-contractors, the goal of the agent-based marketplace is to provide automation of co-
ordination, negotiation and data sharing. There will be human intervention and supervision built in, but the
degree of autonomy of the agents will be sufficient to find and negotiate with previously unknown parties.
The definition of such a marketplace is simply that it is a set of intelligent agents interacting using a common
vocabulary through the same shared Broker, using the same shared platform services, i.e. Security Services,
Management Services, Matchmaker and so on (Figure 1 COMPOSITION Marketplace components).

How the COMPOSITION collaborative ecosystem product offering should be packaged is yet to be decided;
free of charge, licensed, on a subscription basis, or as open source software for self-hosting. However, three
distinct types of marketplaces have been identified: Open Marketplaces, Closed Marketplaces and Virtual
Marketplaces. These provide support for varying degrees of exclusivity in the configuration of a marketplace,
which has been identified in the requirements as a major factor in acceptance and adoption of such a
system.

An Open Marketplace is open to any stakeholder with valid COMPOSITION credentials; anyone who has
acquired valid credentials may enter their offers and requests and collaborate with any other stakeholder.
There may be several open marketplaces, possibly organized by the type of supply chain that is supported.
A stakeholder may participate in several marketplaces.

A Closed Marketplace is owned - and likely also operated - by one stakeholder and open only to a trusted
subset of other COMPOSITION stakeholders. It is a physically separate infrastructure from the Open
Marketplace, hosted as a separate platform with its own set of services and components. The Closed
Marketplace may be public, allowing join requests by agents in the Open Marketplace, or private, with
membership allowed by invitation only.

A Virtual Marketplace is a closed group of agents in the Open Marketplace that have chosen to collaborate
exclusively in the context of one or several negotiations. The Virtual Marketplace may exist only for a single
negotiation or be persistent over several negotiations, e.g. to support a specific business process or a
specially trusted group based on a formalized reputation and trust model.

4.3 Ontology and Rule-based Matchmaker

COMPOSITION’s Rule-based Matchmaker and Collaborative Manufacturing Services Ontology are two
extremely connected components. The Matchmaker is strongly correlated with the Collaborative
Manufacturing Services Ontology and its functionality depends exclusively on the Ontology store.

Ruled-based Matchmaker’s main goal is to match Agents’ offers and requests. Matchmaker supports both
syntactic and semantic matching in terms of manufacturing capabilities, in order to find the best possible
supplier to fulfill a request for a service, raw materials or products involved in the supply chain. Different
decision criteria for supplier selection according to several qualitative and quantitative factors are considered
by Matchmaker.

In order to be able to perform matching, the Ruled-based Matchmaker infers new knowledge by applying
semantic rules in the knowledge stored into the Collaborative Manufacturing Services Ontology. By applying
this set of rules the Matchmaker is able to extract useful conclusions from ontology and connect Agents
which are not explicitly connected. The matchmaking process will be analysed in more details at D6.9
COMPOSITION Brokering and Matchmaking components I (M20). Also some details about matchmaking
process and Ontology’s usage will be mentioned at Section 6 from the current report.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 9 of 56 Submission date: 2017-10-30

4.4 Ontology and Agents

Agents are implemented and operated by different organizations, in general different from the bodies
operating the COMPOSITION Marketplace or specifying the Collaborative Manufacturing Services Ontology.
Nevertheless, Agent’s core behaviour and internal aspects must necessarily reflect the classes, functions
and attributes defined in the common ontology, so to enable interoperable behaviour.

Due to the “open” and potentially evolving nature of the marketplace, suitable techniques must be employed
to ensure that the agent’s implementation and the data models linked with the Ontology remain aligned.

While it is not realistic to force agent’s developers to follow “imposed” development practices to keep their
agents under development aligned with COMPOSITION’s evolving ontology, two different methodologies will
be suggested:

- bottom-up linking e.g. providing guidelines to map the internal classes of developed agents towards the
high-level ontology

- code-generation e.g. incorporating classes generated automatically from the ontology in the agent’s
implementation

In both cases, dedicated packages of the agent’s code-base will be defined to contain data-model-related
classes, so to ensure insulation between such models and the core implementation of the agent, therefore
simplifying backward compatibility and subsequent updates of agent’s implementation when the ontology
evolves.

During the further phases of the project, both methodologies will be experimented throughout the
development of the reference implementations of the agents foreseen for inclusion in deliverable D6.3 –
Composition Marketplace I (M20)

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 10 of 56 Submission date: 2017-10-30

5 State Of The Art Analysis

This section is a thorough analysis of Ontology field, languages, building methodologies and tools.

5.1 Semantic Modelling

In a general sense, semantics is the study of meanings of the message behind the words. “Semantic” in the
context of data means “from the user’s perspective”. It is the data in context-where the meaning is.
Information is also often defined as the data in context. Semantic therefore, while not synonymous with
information, carries with it the same sense of data at work, or data in the worker’s hands. The semantic data
model is a method of structuring data in order to represent it in a specific logical way. It is a conceptual data
model that includes semantic information that adds a basic meaning to the data and the relationships that lie
between them. This approach to data modelling and data organization contributes to easy development of
application programs and also easy maintenance of data consistency when data is updated.

5.1.1 Definitions

In computer and information science, ontology is a technical term denoting an artifact that is designed to
enable the modelling of knowledge. One of the most well-known definitions was presented by Studer and
colleagues [Studer et al., 1998]: “An ontology is a formal, explicit specification of a shared conceptualization”.
The definition explains the ontology as an approach of an abstract model of some incident in the world with
relevant concepts of that incident. Concepts and constrains are defined in an accurate way. The ontology
should be machine-readable as well as generally accepted.

Ontology can be viewed as a level of abstraction of data models intended for modelling knowledge about
individuals, their properties, and their association to other individuals. Ontologies are typically specified in
languages that allow abstraction away from data structures and implementation strategies. In practice, the
languages of ontologies are closer in expressive power to first-order logic than languages used to model
databases. For this reason, ontologies are said to be at the "semantic" level, whereas database schemas
are models of data at the "logical" or "physical" level.

A strong advantage regarding ontologies is that they are independent from lower level data models and used
for integrating heterogeneous databases, enabling interoperability among disparate systems, and specifying
interfaces to independent, knowledge-based services. In the technology stack of the Semantic Web
standards, ontologies are called out as a definitive layer. A multitude of standard languages and a variety of
tools have been built for creating and working with ontologies.

5.1.2 Components

Gruber (Gruber, 1993a) proposed modelling ontologies using frames and first order logic. He identified five
kinds of components: classes, relations, functions, formal axioms and instances.

Classes represent concepts, which are taken in a broad sense. For instance, in the traveling domain,
concepts are: locations (cities, villages, etc.), lodgings (hotels, camping, etc.) and means of transport
(planes, trains, cars, ferries, motorbikes and ships). Classes in the ontology are usually organized in
taxonomies through which inheritance mechanisms can be applied. We can represent a taxonomy of
entertainment places (theater, cinema, concert, etc.) or travel packages (economy travel, business travel,
etc.). Classes can represent abstract concepts (intentions, beliefs, feelings, etc.) or specific concepts
(people, computers, tables, etc.).

Relations represent a type of connection between concepts of the domain. They are formally defined as any

subset of a product of n sets, that is: R ⊂ C1 x C2 x ... x Cn. Ontologies usually contain binary relations. The
first argument is known as the domain of the relation, and the second argument is the range. For instance,
the binary relation Subclass-Of is used for building the class taxonomy. Examples of classifications are: a
Four-Star-Hotel is a subclass of a Hotel, a Hotel is a subclass of Lodging, and a Flight is a subclass of
Travel, which is identified by the flight-number.

Functions are a special case of relations in which the n-th element of the relation is unique for the n-1

preceding elements. This is usually expressed as: F: C1 x C2 x ... x Cn-1 ⇒ Cn. An example of a function is
Pays, which obtains the price of a room after applying a discount. The lambda-body expression on the
definition is written in KIF and denotes the value of the function in terms of its arguments.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 11 of 56 Submission date: 2017-10-30

Formal axioms are a priori assertions always assumed to be true. They are normally used to represent
knowledge that cannot be formally defined by the other components. In addition, formal axioms are used to
verify the consistency of the ontology itself or the consistency of the knowledge stored in a knowledge base.
Formal axioms are very useful to infer new knowledge. An axiom in the traveling domain would be that it is
not possible to travel from the USA to Europe by train.

Instances are used to represent elements or individuals in ontology. They form the ground or atomic level of
the ontology. An example of instance of the traveling domain concept is the flight that arrives at Seattle on
February 8, 2002 and costs 300 (US Dollars, Euros, or any other currency).

5.2 Ontology Languages

Ontology languages are formal languages used to construct ontologies. They allow the encoding of
knowledge about specific domains and often include reasoning rules that support the processing of that
knowledge. The Selection of an Ontology Language is one of the key decisions to take in the ontology
development process. There are many ontology implementation languages and general Knowledge
Representation (KR) languages and systems that have been used for implementing ontologies. One must
firstly decide what is needed regarding expressiveness and reasoning in order to come to a conclusion about
which languages satisfy these requirements.

There are several steps in the implementation of different ontology components in a language taking into
account the Knowledge Representation modelling underlying the language. The first step is to describe how
concepts are built and then how concept attributes are defined. Usually there are two kinds of attributes
distinguished: instance attributes which describe concept instances and can take their values in those
instances and class attributes which describe the concept and take their values in it. Next step is the attribute
constraint specification and then the creation of concept taxonomies.

Relations are very important components in ontology modelling as they describe the relationships that can
be established between concepts, and consequently, between the instances of those concepts. Depending
on the language, relations should be given different names. Afterwards, functions are described, in case they
can be defined in the language. In many languages, functions are usually defined as special cases of
relations.

Upcoming is the definition of formal axioms. Formal axioms can appear embedded in other ontology
definitions or as independent definitions in the ontology. Next, instances are included along with comments
about how they can be created, how their attribute values can be filled and how a relation that holds between
instances can be represented in the language. Finally, other components that can be expressed in the
language, such as rules, procedures, ontology mappings, are presented. The remainder of this chapter
examines specific languages that are used in ontology modelling.

5.2.1 Traditional Ontology Languages

Ontolingua and KIF

Ontoligua is an ontology language based on KIF (Genesereth and Fikes, 1992; NCITS, 1998) and on the
Frame Ontology (Gruber, 1993a). KIF (Knowledge Interchange Format) development was designed to solve
the problem of language heterogeneity in knowledge representation, and to allow the interchange of
knowledge between diverse information systems. KIF is a prefix notation of first order predicate calculus with
some extensions. It permits the definition of objects, functions and relations with functional terms and
equality. KIF has declarative semantics and permits the representation of meta-knowledge, reifying functions
and relations, and non-monotonic reasoning rules.

LOOM

LOOM (MacGregor, 1991; LOOM tutorial, 1995) was being developed by the Information Science Institute
(ISI) of Southern California University. LOOM was not exactly built as a language for implementing
ontologies but as an environment for the construction of general-purpose expert systems and other
intelligent applications. LOOM is based on the description logics (DL) paradigm and is composed of the
“description” and the “assertional” sublanguages.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 12 of 56 Submission date: 2017-10-30

OKBC

OKBC (Chaudhri et al., 1998) is the acronym for Open Knowledge Base Connectivity. The objective of KBC
was to create a frame-based protocol to access knowledge bases stored in different knowledge
representation systems.

OCML

OCML (Motta, 1999) stands for Operational Conceptual Modeling Language. One of several pragmatic
considerations that were taken into account in its development was its compatibility with Ontolingua. OCML
can be considered as a kind of “operational Ontolingua” that provides theorem proving and function
evaluation facilities for its constructs.

FLogic

FLogic (Kifer et al., 1995) is the acronym of Frame Logic. FLogic was initially developed as an object
oriented approach to first order logic. It was specially used for deductive and object-oriented databases, and
was later adapted and used for implementing ontologies. FLogic integrates features from object-oriented
programming, frame-based KR languages and first order logic.

5.2.2 Ontology Mark-up Languages

SHOE

SHOE (Luke and Heflin, 2000) stands for Simple HTML Ontology Extension. SHOE was created as an
extension of HTML with the aim of incorporating machine-readable semantic knowledge in Web documents.
It provides specific tags for representing ontologies. As these tags are not defined in HTML, the information
inside them is not shown in standard Web browsers. There is also a slight variant of the SHOE syntax for
XML compatibility.

XOL

XOL (Karp et al., 1999) stands for XML-based Ontology exchange Language. The purpose of this language
was to provide a format for exchanging ontology definitions among a heterogeneous set of software
systems. Therefore, XOL was not intended for developing ontologies, it was created as an intermediate
language for transferring ontologies among different database systems, ontology-development tools, and
application programs.

RDF and RDF Schema

RDF (Lassila and Swick, 1999) stands for Resource Description Framework. It is being developed by the
W3C to create metadata for describing Web resources, and it has been already proposed as a W3C
recommendation. The RDF data model is equivalent to the semantic networks formalism and consists of
three object types: resources, properties and statements.

The RDF data model does not have mechanisms for defining the relationships between properties and
resources. This is the role of the RDF Vocabulary Description language (Brickley and Guha, 2003), also
known as RDF Schema or RDFS. RDF(S) is the term commonly used to refer to the combination of RDF and
RDFS. Thus, RDF(S) combines semantic networks with frames but it does not provide all the primitives that
are usually found in frame-based knowledge representation systems. In fact, neither RDF, nor RDFS, and
nor their combination in RDF(S) should be considered as ontology languages per se, but rather as general
languages for describing metadata in the Web. RDF(S) is widely used as a representation format in many
tools and projects, and there exists a huge amount of resources for RDF(S) handling, such as browsing,
editing, validating, querying, storing, etc. In the section about further readings, we provide several URLs
where updated information about RDF(S) resources can be found.

OIL

OIL (Horrocks et al., 2000; Fensel et al., 2001) stands for Ontology Interchange Language and Ontology
Inference Layer. Like the other languages previously presented, for example, SHOE and RDF(S), OIL was
built to express the semantics of Web resources. OIL was superseded by DAML+OIL, however, software is
still available to manage and reason with OIL ontologies.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 13 of 56 Submission date: 2017-10-30

DAML+OIL

DAML+OIL (Horrocks and van Harmelen, 2001) was developed by a joint committee from the USA and the
European Union (mainly OIL developers) in the context of the DARPA project DAML (DARPA Agent Markup
Language). The main purpose of this language is to allow semantic markup of Web resources.

OWL

OWL (Dean and Schreiber, 2003) is the result of the work of the W3C Web Ontology (WebOnt) Working
Group, which was formed in November 2001. This language derives from and supersedes DAML+OIL. It
covers most of DAML+OIL features and renames most of its primitives. As the previous languages, OWL is
intended for publishing and sharing ontologies in the Web.

SPARQL

Even if it is not an ontology language, SPARQL [E. Prud’hommeaux et al, 2008] is mentioned here because
it supports querying the previous languages. SPARQL allows performing queries over RDF data and, since
both RDF-S and OWL are based in RDF, also over RDF-S and OWL ontologies. SPARQL can be used to
express queries across diverse data sources and its syntax is similar to SQL to facilitate its adoption.

Query in the Semantic Web context means technologies and protocols that can programmatically retrieve
information from the Web of Data. RDF provides the foundation for publishing and linking data, allowing
many technologies to embed data in documents, such as RDFa, or expose what is stored in databases, or
make it available as RDF files.

The SPARQL has been designed to send queries and receive results, e.g. through HTTP or SOAP, within
the Semantic Web, which is typically represented using RDF as a data format. This query language is based
on (triples) patterns that are similar to RDF triples, and the results of a SPARQL query will be the resources
for all triples that match those patterns. Thus, it provides a powerful tool that allows extracting complex
information (i.e., existing resource references and their relationships) and present them in different friendly
format (i.e. tables).

5.3 Methodologies for Building Ontologies

The goal of this section is to present the foremost methodologies used to build ontologies. The
methodologies that will be presented are METHONTOLOGY, On-To-Knowledge, DILIGENT and the most
recently developed, NeOn methodology.

METHONTOLOGY

This methodology was developed within the Ontology group at Universidad Politécnica de Madrid. It enables
the construction of ontologies at the knowledge level. METHONTOLOGY has its roots in the main activities
identified by the software development process (IEEE, 1996) and in knowledge engineering methodologies
(Gómez-Pérez et al., 1997; Waterman, 1986). This methodology includes the identification of the ontology
development process, a life cycle based on evolving prototypes, and techniques to carry out each activity in
the management, development-oriented, and support activities.

On-To-Knowledge

The aim of the On-To-Knowledge project (Staab et al., 2001) is to apply ontologies to electronically available
information for improving the quality of knowledge management in large and distributed organizations. A
methodology and tools were developed for intelligent access to large volumes of semi-structured and textual
information sources in intra-, extra-, and internet-based environments.

The methodology includes a structure for building ontologies to be used by the knowledge management
application. Therefore, the On-To-Knowledge methodology for building ontologies proposes to build the
ontology taking into account how the ontology will be used in further applications. Consequently, ontologies
developed are highly dependent of the application. Another important characteristic is that On-To-Knowledge
proposes ontology learning for reducing the efforts made to develop the ontology. The methodology also
includes the identification of goals to be achieved by knowledge management tools, and is based on an
analysis of usage scenarios (Staab et al., 2001). On-To-Knowledge is considered as a methodology because

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 14 of 56 Submission date: 2017-10-30

it has a set of techniques, methods, principles for each of its processes, and because it indicates the
relationships between such processes.

DILIGENT

DILIGENT is a methodology, which is intended to support domain experts in a distributed setting to engineer
and evolve ontologies. It comprises five main activities: build, local adaptation, analysis, revision and local
update. The process starts by having domain experts, users, knowledge engineers, and ontology engineers
build an initial ontology. DILIGENT focuses on distributed ontology development involving different
stakeholders, who have different purposes and needs and who usually are not at the same location.
Moreover, we do not require completeness of the initial shared ontology with respect to the domain.
DILIGENT is not constrained to a certain ontology formalism or language. The methodology covers the
whole range of possible ontologies, starting with simple taxonomies, vocabularies and topic hierarchies
(represented as instances of topic ontology) up to foundational ontologies with many axioms.

NeOn

NeOn aims to advance the state of the art in using ontologies for large-scale semantic applications in the
distributed organizations. Particularly, the methodology improves the capability to handle multiple networked
ontologies that exist in a particular context, are created collaboratively, and might be highly dynamic and
constantly evolving. It is a scenario-based methodology that supports different aspects of the ontology
development process, as well as the reuse and dynamic evolution of networked ontologies in distributed
environments, where knowledge is introduced by different people (domain experts, ontology practitioners) at
different stages of the ontology development process. This methodology has been used to build ontology
networks in different domains and areas and by people with diverse background.

5.4 Leading Tools for Building Ontologies

In order to ease the task of building ontologies and implementing them in ontology languages, a lot of tools
and building environments were created. There are interfaces that help users in the ontology development
process by performing some of the main activities, such as conceptualization, implementation, consistency
checking and documentation. An overview of the new generation ontology engineering environments is
presented hereafter.

Protégé

Protégé is an open platform oriented to the task of ontology and knowledge-based development. It is an
open source, standalone application (also available on-line through Web Protégé), with an extensible
architecture. The core of this environment is the ontology editor, and it holds a library of modules that can be
plugged, called plug-ins, to add more functions to the environment.

Protégé knowledge model is based on frames and first order logic. The main modelling components of
protégé are classes, slots, facets and instances. Classes are organized in class hierarchies where multiple
inheritances is permitted and slots can also be organized in slot hierarchies. The knowledge model allows
expressing constraints in the PAL language, which is a subset of KIF, and allows expressing metaclasses,
which are classes whose instances are also classes. Classes can be concrete or abstract. The former may
have direct instances while the latter cannot have them; instances of the class must be defined as instances
of any of its subclasses in the class taxonomy.

In terms of interoperability, once an ontology have been created in Protégé, there are many ways to access
Protégé ontologies from ontology-based applications. All the ontology terms can be accessed with the
Protégé Java API. Hence it is easy for ontology-based applications to access ontologies as well as use other
functions provided by different plug-ins.

Open Semantic Framework

Open Semantic Framework (OSF) is an integrated software stack using semantic technologies for
knowledge management. It has a layered architecture that combines existing open source software with
additional open source components. OSF is designed as an integrated content platform accessible via the
Web, which provides needed knowledge management capabilities to enterprises.

The OSF framework is made operational via ontologies that capture the domain or knowledge space,
matched with internal ontologies that guide OSF operations and data display. This design approach is known
as ODapps, for ontology-driven applications. Ontologies are, in essence, graph structures. Graphs are
among the most ubiquitous models of both natural and human-made systems. They can be used to model

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 15 of 56 Submission date: 2017-10-30

many types of relations and process dynamics multiple systems. Any problem of practical interest may be
represented by a graph. They are especially well suited to capture and manage knowledge domains.

Anzo

Anzo is software based on Semantic Web Technologies for data management and advanced analytics. The
Anzo software can be used for data integration, search, analysis, visualization, and interaction. The
collection of Anzo modules is also well-suited to building agile, real-time applications that integrate with
varied data sources, and allow for easy customization and evolution as business environments change
providing significant end-user self-service.

There are three products in the Anzo suite. The first, Anzo Data Collaboration Server is a semantic-
standards-compliant environment for connecting systems and storing/accessing data. Second is Anzo on the
Web, a Web visualization tool with which non-technical users can create mashed-up views of any data
accessible through the Anzo Data Collaboration Server. Anzo on the Web supports semantic lenses that
match themselves with data, automatically providing appropriate views to users depending on the type of
data they are working with. Last is Anzo for Excel, a plug-in for MS Excel that enables Excel spreadsheets to
be mapped to an ontology and the data within the spreadsheets to be stored as RDF in the Anzo Server. All
of the Anzo software products leverage semantic standards including RDF, SPARQL, RDFS, OWL, and
RDFa.

Furthermore, plenty state-of-the-art tools can be used in order to reduce complexity and time of the ontology
management process. The most re-known are mentioned by name below:

• Top Braid composer

• NeOn toolkit

• SWOOP

• Neologism

• Vitro

• Knoodl

• OWLGrEd

• Fluent Editor

• Semantic Turkey

• VocBench

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 16 of 56 Submission date: 2017-10-30

6 COMPOSITION Collaborative Manufacturing Services Ontology

This section consists of two sub-sections. The first one is a brief analysis of the well-known ontologies in
manufacturing and e-commerce domains which selected and imported to COMPOSITION’s Ontology. The
second part is a thorough analysis of COMPOSITION’s Collaborative Manufacturing Services Ontology. Both
the methodology has been followed for Ontology’s development and the Ontology’s specifications are
analysed.

6.1 Imported Ontologies

The manufacturing domain should be supported as the COMPOSITION Ontology should be able to
represent manufacturing services and resources. For this reason the hereinafter presented ontologies MSDL
and MASON are imported to the COMPOSITION Ontology as they are manufacturing domain specific and
they offer a large variety of classes and properties about this domain. On the other hand, the
COMPOSITION Ontology should be able to support collaboration mechanism between business entities. It
should be able to describe relations and transactions between supply and demand entities which participate
in Marketplace. This need lead us to import the GoodRelations Language ontology which is one of the most
well-known and widely used ontologies in e-commerce domain.

6.1.1 MSDL

The Manufacturing Service Description Language or MSDL, (Ameri, 2006), is an OWL-based ontology
developed for formal representation of manufacturing services. PLM Alliance research group at the
University of Michigan started MSDL development and the first version released at 2005. Currently it is
maintained and extended under supervision of Farhad Ameri in the INFONEER Research Group at Texas
State University.

MSDL provides sufficient expressivity and extensibility for manufacturing knowledge modelling. MSDL is
particularly suitable for description of manufacturing capabilities of SMEs. MSDL describes manufacturing
capability into different level of abstraction (shop-level, supplier-level, machine-level, process-level, and
device-level) and it is designed to enable automated supplier discovery in distributed environments with
focus on mechanical machining services.

Figure 2: Core Classes of MSDL (Ameri, 2006)

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 17 of 56 Submission date: 2017-10-30

MSDL has two basic parts, MSDL core and MSDL extension. MSDL core is a static part which contains the
basic classes for the manufacturing domain description and it is public available as part of many related
public reports by the authors. The core classes are presented to Figure 2. MSDL extension is the dynamic
part which includes sub-classes and instances built by users. This means that a specific industry is able to
build its ontology based on MSDL core part by creating an extension as a dynamic part dedicated to its
special domain needs.

6.1.2 MASON

MASON (MAnufacturing’s Semantics ONtology) is a manufacturing ontology, aimed to draft a common
semantic net in the manufacturing domain. MASON was first proposed by Lemaignan in MASON: A Proposal
for an Ontology of Manufacturing Domain (Lemaignan, 2006). The proposed ontology is written in Web
Ontology Language (OWL). The MASON OWL file is public available.

MASON ontology is built over three main concepts:

 Entities which aim to provide concepts for specifying an abstract view of a product

 Operations relate to processes linked to the manufacturing domain and cover manufacturing,
logistic, human and launching operations

 Resources represents the whole set of manufacturing linked resources, tools, human resources, and
geographic resources like factories and workshops

The Figure 3 presents an overview of MASON main classes and sub-classes, and the object properties
which connect them:

Figure 3: MASON main classes and properties (Lemaignan, 2006)

As depicted in the figure MASON achieves to semantically connect all of its main concepts using object
properties. More precisely it is able to connect resources with the operations in a way that it becomes clear,
which human resource executes an operation and what materials and machines are required for this
execution. Also it connects operations and resources with the entities they produce. An entity is connected
with raw materials, tools, and manufacturing processes which induces costs to this entity.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 18 of 56 Submission date: 2017-10-30

6.1.3 GoodRelations Language

GoodRelations Language by Martin Hepp (GoodRelations, 2011) is a standardized ontology or vocabulary
for products, company data, prices and stores. Nowadays it is one of the most popular ontologies in e-
commerce. It can be embedded at web pages and can be processed by many users. In this way increases
the visibility of companies’ services and products in search engines and other relevant applications.

GoodRelations Language goal is to define data structures for e-commerce that are:

 Industry-neutral in a way to be suitable for many kind of services and goods

 Syntax-neutral. This means that it should support a large variety of popular syntax such as
RDF/XML, RDFa and JSON

 Valid across the different stages of the value chain. It has to be valid from raw materials to after-
sales supporting services

Figure 4: GoodRelations Language main classes

The above figure illustrates the main classes of GoodRelations Language in a graph format produced by
Protégé tool. The most important of these classes that lead GoodRelations Language to reach its goals are:

 BusinessEntity: For a company or individual representation

 Offering: For an offer to sell, or repair something, or to express interest for something

 ProductOrService: For the description of a product or a service

 Location: For the description of a store location from which an offer is available

By combining these basic classes with the other classes and properties it allows, GoodRelations Language
to offer a wide vocabulary which is suitable to describe almost any kind of e-commerce transactions.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 19 of 56 Submission date: 2017-10-30

6.2 COMPOSITION Ontology

6.2.1 Methodology

As mentioned in previous sections, Collaborative Manufacturing Services Ontology and Language should be
able to describe both the manufacturing and e-commerce domain. In order to achieve this, well-known
ontologies from each of these domains will be imported and re-engineered.

From the presented methodologies in section 5.3 – Methodologies for Building Ontologies of this report, the
NeOn methodology is selected as the most appropriate one, to cover the needs of the COMPOSITION
Ontology’s design process. Methodologies such as DILIGENT, METHODOLOGY and On-to-Knowledge are
highly respected and were been used for years from researchers and developers in ontologies design but in
cases of a single ontology development from specifications to implementation. In the case of COMPOSITION
we have to combine two different domains, to associate some of intra-factory elements with the Marketplace
and to create a domain which will be capable to express and match offers and requests based on
manufacturing services and capabilities. Therefore, a methodology which supports existing knowledge re-
usage, re-engineering and offers guidelines in order to build new ontologies is more related to
COMPOSITION targets. This led us to choose the NeOn Methodology over the other methodologies which
do not support this kind of design guidelines. More details about the NeOn Methodology are provided in the
following sub-section.

Regarding the tools which were presented at the section 5.4 - Leading Tools for Building Ontologies, as a
part of our literature review, we have selected Protégé as our main tool for Ontology’s implementation. It
supports OWL 2.0 and RDF and offers a friendly user interface environment. Protégé is an open-source
standalone application compatible with the COMPOSITION project’s needs for open and free tools. Protégé
supports reasoners which infer logical consequences from a set of axioms and a wide variety of plugins
which offers functionalities related to ontology querying, graphical representation and documentation. Some
pictures of Protégé environment will be presented in Section 8.

6.2.1.1 NeOn Methodology

The selected methodology for the construction of the Collaborative Manufacturing Services Ontology is the
NeOn methodology as already mentioned. The NeOn Methodology (M. C. Suárez-Figueroa, 2010) proposes
a variety of different pathways to develop ontologies. These pathways are classified by nine proposed
scenarios which manage to cover the most commonly needs occurred during ontology design phase.

The aforementioned nine scenarios for ontology and ontology networks building are the following:

Scenario 1: From Specification to Implementation is about ontology development from scratch without any
previous knowledge reuse.

Scenario 2: Reusing and re-engineering non-ontological resources unfolds those cases where non-
ontological resources were analysed and used in order to build the new ontology

Scenario 3: Reusing ontological resources covers the case of reusing ready ontological resources.

Scenario 4: Reusing and re-engineering ontological resources refers not only in ontological resources reuse.
These resources been engineered again.

Scenario 5: Reusing and merging ontological resources cover the case in which the developers choose more
than one of ontological resource to use.

Scenario 6: Reusing, merging, and re-engineering ontological resources covers the case that developers not
only choose and merge ontological resources but they also re-engineer them.

Scenario 7: Reusing ontology design patterns. Here, developers access repositories in order to reuse design
patterns.

Scenario 8: Restructuring ontological resources is related to cases developers restructure the ontological
resources to be integrated in the building ontology network.

Scenario 9: Localizing ontological resources, here the ontology developers adapt ontology to other
languages and create a multilingual ontology.

Except the above scenarios the following three valuable components are also provided by NeOn
methodology:

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 20 of 56 Submission date: 2017-10-30

 The NeOn Glossary of processes and activities. This glossary identifies and defines the processes
and activities involved in ontology’s construction. It tries to address the lack of a standard in
Ontology Engineering.

 Two ontology network life cycle models. These models specify how to organize the processes and
activities based on NeOn Glossary into phases.

 A set of methodological guidelines for the processes and activities included in the NeOn Glossary
are provided.

Figure 5: Set of nine scenarios for building ontologies and ontology networks (M.C. Sua´rez-Figueroa, 2012)

For the COMPOSITION Ontology’s design the three ontologies should be imported, combined and re-
engineered in order to eliminate duplicate information and create a new coherent ontology. As depicted in
previous figures and from the aforementioned brief analysis of nine scenarios for building ontologies,
Scenario 6 Reusing, merging, and re-engineering ontological resources is the one which is completely
related to COMPOSITION Ontology’s purposes and specifications.

In more details, in Scenario 6 the ontology developers should apply the following steps during the building
phase:

1. Select the best possible ontological resources to reuse based on their needs

2. Decide how to reuse the selected ontological resources

3. Perform:

a. Ontology aligning activity which targets in obtaining a set of alignments among the
selected resources

b. Ontology merging activity which merge the resources using the previous alignments in
order to avoid possible overlapping

4. Carry out the ontological resource re-engineering process. Here the resources should be
modified in order to be fully compatible with the design’s purposes.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 21 of 56 Submission date: 2017-10-30

5. Development of ontologies

a. Specify the requirements that the ontology should fulfil (use Ontology Requirements
Specification Document - ORSD)

b. Ontology implementation activity. Here developers start from structure description and
semi-computable models and finally implements a computable model using an ontology
language.

6.2.1.2 Collaborative Manufacturing Services Ontology and Methodology

This sub-section analyses and describes the design and implementation process of COMPOSITION’s
Collaborative Manufacturing Services Ontology. The above described NeOn methodology has been adopted
and followed. So, the ontology’s building phase is described in alignment with NeOn methodology’s
proposed building steps.

Selection of imported ontological resources

The first step was the selection of the best possible ontological resources to reuse based on COMPOSITION
project needs. As mentioned before, Collaborative Manufacturing Services Ontology should be able to
represent manufacturing services and resources. Based on literature review and project needs, MASON and
MSDL ontologies were selected as the most compatible for COMPOSITION’s purposes. They offer sufficient
expressivity and extensibility for manufacturing knowledge modelling and they draft a common semantic net
in manufacturing domain.

MSDL also provides classes and properties for supply chain description. But after evaluation MSDL
considered as unsuitable to cover all of COMPOSITION Collaborative Ecosystem’s requirements. Thus, the
use of GoodRelations Language aims to cover the requirements of the Collaborative Ecosystem.
GoodRelations Language is one of the most well-known and widely used ontologies in e-commerce domain
and offers a large variety of classes and properties in order to describe relations and transactions between
supply and demand entities. MSDL, MASON and GoodRelations ontologies are presented in more details at
section 6.1 of this report.

Decide how to reuse the selected ontological resources

As the COMPOSITION Collaborative Ecosystem aims to be a system capable of hosting a wide range of
companies specified in different sub-domains the core versions of selected ontologies decided to be
imported to the COMPOSITION Ontology. The proposed ontology intends to be a common vocabulary for
the description of supply and demand entities related to the manufacturing domain. This approach aims to
make the proposed ontology capable for the description of all Ecosystem participants instead of being an
ontology dedicated to one manufacturer or supplier. Thus, the imported core versions of the ontologies are
evaluated as the most suitable versions as they offer abstract classes for manufacturing and e-commerce
domains description.

More precisely, MASON ontology was selected exclusively for the manufacturing domain description and
GoodRelations Language for the description of supply or demand entities and their transactions. On the
other hand the use of MSDL is not so strict. Classes and properties of this ontology used for both of
domains. Also MSDL offers the central idea of how to connect e-commerce with manufacturing domain by its
structure examination.

Ontology aligning and merging activities

After the selection of ontological resources and the decision of the way they will be reused for
COMPOSITION purposes two main overlappings have been detected:

 MSDL and MASON have overlapping and duplicate structures within manufacturing domain

 MSDL and GoodRelations Language have overlapping and duplicate structures in e-commerce
domain

In the following tables the overlapping is presented in class level. Also the selected class in the final merged
version is indicated. In the most of the cases MASON or GoodRelations was selected over MSDL as they
are specific in only one domain and they offer better expressivity for these domains.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 22 of 56 Submission date: 2017-10-30

Table 2: MSDL and MASON overlapping classes’ alignment

MSDL Ontology MASON Ontology COMPOSITION Ontology

Process represents a
manufacturing process which is
offered by a Service

Operation covers manufacturing,
logistic, human and launching
operations-processes

Operation. COMPOSITION
Ontology followed the MASON
approach. This class describes
processes related to
manufacturing but it also
provides some
operations/processes that
support this domain. Moreover,
this class provides more relations
(properties) between
operations/processes and
connected resources than MSDL
does.

MfgResource represents
machine-tools and geographic
resources)

Resource represents linked
resources, like machine-tools,
tools, human resources, and
geographic resources like plants
and workshops)

Resource class from MASON
was adopted by COMPOSITION
Ontology because it offers more
resources’ descriptions such as
human resources. Also it
describes more machine-tools.

Material class covers the
materials related to
manufacturing processes

Raw Material covers the list of
materials which are machined by
tools and they are related to
operations/processes

Raw Material is the selected
class. As Operation and
Resource classes are selected
from MASON ontology the Raw
Material class seems to be the
best choice as it is strongly
connected with them. Moreover it
provides a larger list of materials
in comparison with Material class
from MSDL

Geometric Shape covers the
shape of the parts which are
accepted from machining
processes

Geometric Entity represents the
shape of entities can be
processed by operations and
tools

Geometric Entity is the selected
class. As Operation and
Resource classes are selected
from MASON ontology the
Geometric Entity class seems to
be the best choice as it is
strongly connected with them.

Table 3: MSDL and GoodRelations Language overlapping classes’ alignment

MSDL Ontology GoodRelations Language COMPOSITION Ontology

Service class defines a service
that a stakeholder supports/offer
s. This services is connected with
manufacturing process and
resources such as materials and
tools

ProductOrService class
represents a product or a service
which is included in an offer or in
a request

Service from MSDL was adopted
by COMPOSITION Ontology. We
need to connect a Service with
manufacturing processes and
resources to an offer/request.
MSDL provides these
connections as object properties.
Actually, processes and
resources will be derived from
MASON ontology although
properties from MSDL can be
applied here as they describe
similar concepts

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 23 of 56 Submission date: 2017-10-30

Supplier class represents an
agent who offers a manufacturing
service

BusinessEntity class describes
an agent who makes or seeks an
offer

Keep BusinessEntity class as
part of COMPOSTITION
Ontology because it is connected
with offers and requests. These
are two very important concepts
for Marketplace and they are
missing from MSDL core version

Customer class represents an
agent who seeks a
manufacturing service

BusinessEntity class describes
an agent who makes or seeks an
offer

Keep BusinessEntity class as
part of COMPOSTITION
Ontology because it is connected
with offers and requests. These
are two very important concepts
for Marketplace and they are
missing from MSDL core version

RFQ is not MSDL-core class but
an extension. Although, the case
to use this class was examined in
order to decide if it is a better
way to represent an offer for a
service

Offer describes an
announcement for the services
which a Business Entity provides
or the services this Business
Entity is looking for

Offer class from GoodRelations
is finally adopted by
COMPOSITION Ontology
because it provides a large set of
properties and connections to
other classes and it is able to
describe better the offer as this
class was derived for an e-
commerce specific ontology.

Advertisement is not MSDL-core
class but an extension. Although,
the case to use this class was
examined in order to decide if it is
a better way to represent a
request for a service

Offer describes an
announcement for the services
which a Business Entity provides
or the services this Business
Entity is looking for

Offer class from GoodRelations
is finally adopted by
COMPOSITION Ontology
because it provides a large set of
properties and connections to
other classes and it is able to
describe better the request as
this class was derived for an e-
commerce specific ontology. It is
the same class that described
above. It is called Offer and it is
distinguished is it is actually an
offer or a request by object
properties.(A Business Entity
offers or seeks for an Offer)

Ontological resources’ re-engineering process

As soon as aligning and merging activities have been completed, the ontological resources should be
modified in order to be fully connected to each other and be compatible with the design’s purposes. Many
classes from imported ontological resources have been rejected during the previous process in which the
overlapping parts have been erased. This process left some classes unconnected and the ontology
inconsistent.

In order to create a coherent ontology version which is aligned with COMPOSITION project’s requirements
the ontological resources, need to be re-engineered. Object properties should be changed as they should be
able to cover and connect new concepts after merging activities. The classes represent the domain or the
range of some properties is possible to have been replaced by classes of an overlapping resource so these
properties should be deleted or they should point now in a new domain or range. Moreover, new classes,
new sub-classes and new properties should be added to cover COMPOSITION Ecosystem requirements.
The basic goals of the re-engineering process were the following:

 Connect a Service(MSDL) with corresponding Operations(MASON)

 Connect a Service(MSDL) with an Offer(GoodRelations)

 Connect a Service(MSDL) with a Business Entity(GoodRelations)

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 24 of 56 Submission date: 2017-10-30

 Create a Generic Terms catalogue which enables the use of same terms for similar concepts

 Associate concepts with Generic Terms

 Extend Services to be able to support waste management concepts as they are part of
COMPOSITION project

 Extend Operations and resources in order to be able to support waste management concepts

 Create concepts helpful to COMPOSITION Matchmaker

Development of ontology

The last stage of design and implementation process was the development of the ontology. First the
requirements were specified based on Ecosystem’s needs and D2.2 Initial requirements specification. Then
the ontology was implemented using Protégé tool.

The requirements of the Collaborative Manufacturing Services Ontology modelled to the following Ontology
Requirements Specification Document (ORSD) table as it proposed by NeOn methodology:

Table 4: ORSD of COMPOSITION Collaborative Manufacturing Services Ontology

 ONTOLOGY REQUIREMENTS SPECIFICATION DOCUMENT

1 Purpose

 The purpose of creating the Collaborative Manufacturing Services Ontology is to be used as a knowledge
base able to support flexible specification and execution of manufacturing collaboration schemes

2 Scope

 The scope of the Collaborative Manufacturing Services Ontology is to enable both the description of
supply/demand entities participating in the Ecosystem and the description of manufacturing services’
capabilities and resources for entities participating in the Ecosystem

3 Implementation Language

 The Collaborative Manufacturing Services Ontology will be implemented in the OWL language using the
Protégé tool

4 Intended End-Users

 User 1: Marketplace Agents

 Supplier Agent

 Requester Agent

User 2:

 Matchmaker

5 Intended Uses

 Use 1: Keep information and data about agents. An agent represents a business entity at the Marketplace.
Data about a business entity, its resources and services are stored to the ontology.

Use 2: Provide data about agents and their resources and services

Use 3: Describe offers and requests during transactions and bidding processes in the Marketplace

Use 4: Used by Matchmaker. Matchmaker infers new knowledge by applying semantic rules to ontology

6 Ontology Requirements

 a. Non- Functional Requirements

 1. Ontology should be a knowledge base for the Ecosystem
2. Ontology should describe manufacturing domain
3. Ontology should describe supply/demand entities
4. Ontology should be updated by agents and generally be available to them
5. Ontology should be correlated with Matchmaker
6. Ontology should be implemented in ontology language
7. Ontology should be compatible with Marketplace’s definition

 b. Functional Requirements

 1. How a business entity will be described into the Ecosystem? The Ontology should contain and

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 25 of 56 Submission date: 2017-10-30

describe concepts of the e-commerce domain in correlation with services, operations, resources,
of manufacturing domain.

2. How a supplier or requester will be able to express their offers or demands? The COMPOSITION
Ontology should have concepts for the description of offers and requests. Also it should connect
these information with the corresponding business entity

3. How an agent can update knowledge base’s information? The Ontology should be able to be
queried from agents with SPARQL queries. This requirement is also connected with Ontology API

4. Should the ontology help Matchmaker to infer knew knowledge? COMPOSITION Ontology should
offer classes or properties that will be helpful to Matchmaker. These concepts will be filled by
Matchmaker’s rules and will provide the new knowledge

5. Should the ontology represent all the knowledge from IIMS to Marketplace? Ontology should offer
concepts and relations only for data necessary to the Marketplace. There is no need to hold data
from sensors for example.

After the definition of basic requirements of Collaborative Manufacturing Services Ontology the ontology was
implemented using Protégé tool:

 A new empty ontology OWL file was created using Protégé and named COMPOSTION_v01

 MSDL, MASON, GoodRelations imported using Protégé

 Based on work in aligning and merging activities the overlapping concepts were deleted using the
interface of the tool

 Based on project’s requirements new classes, sub-classes and properties were added. Also others
were modified

Figure 6: COMPOSITION Ontology’s Class Overview

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 26 of 56 Submission date: 2017-10-30

6.2.2 Ontology Specifications

In this sub-section the specifications of the new created ontology are described. The main classes of the
aforementioned ontology are presented. Moreover some basic object and data properties are presented. A
full documentation of COMPOSITION Collaborative Manufacturing Ontology is provided alongside with this
report. The documentation was exported using OWLDoc plugin of Protégé tool.

For each class we define:

 Class name: the name of the class which is described

 Description: a short description for this class

 Class hierarchy: we provide a graph with the sub-classes(if any exists) of mentioned class

 Object properties : we provide a table with main object properties of the class

 Data properties : we provide a table with main data properties of the class

Business entity class

The “Business entity” class and its sub-classes represent an Ecosystem Agent who has a service (e.g.
manufacturing service) and provides or seeks an offer. Every agent who is associated with the Marketplace
has this type. The figure below presents sub-classes of “Business entity” class. The following tables present
basic object and data properties, respectively.

Figure 7: "Business entity" class and sub-classes

Table 5: Object Properties of "Business entity" class

Object Property Description Range

offers Refers to the offers provided by a business
entity

Offer

seeksOffer Refers to the offers requested by a
business entity

Offer

hasService Refers to the services provided by a
business entity

Service

matchesWith Refers to a business entity which is
matched with another business entity for a
specific term

Business entity

hasPOS Refers to the position of a business entity Location

Table 6: Data Properties of "Business entity" class

Data Property Description Type

legalName The legal name of a business entity Literal

hasID The agent(business entity) ID within the
Marketplace

String

hasRating The business entity’s rating within the
Marketplace

Integer

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 27 of 56 Submission date: 2017-10-30

Business entity type class

The “Business entity type” class represents the legal form, the size and the position of a business entity in
value chain. It is used to specify eligible customers for an offer. There are no sub-classes for this class. Also
there are no object and data properties. We create only individuals of this class which consist the range of
the object property, named eligibleCustomerTypes from class “Offer”.

Capability class

The “Capability” class and its sub-classes represent the capability of a service. It describes the capability in
stock size, shape, weight or material from a specific service.

Figure 8: "Capability" class and sub-classes

Table 7: Data Properties of "Capability" class

Data Property Description Type

hasUnit The unit of measurement of a capability
value

String

hasWeight The weight of stock Float

Dates and Times class

The “Dates and Times” class represents the days that a business entity has opening hours. Also it can
represent the day of delivery or the day of availability of a service. This class also supports the description of
opening hours of a business entity. So it has two sub-classes: Days of the week and Opening hours
specification. The main properties of these sub-classes are presented in the following tables.

Figure 9: "Dates and Times" class and sub-classes

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 28 of 56 Submission date: 2017-10-30

Table 8: Object Properties of "Dates and Times" class

Object Property Description Range

hasNext Refers to next day of the week Day of the week

hasPrevious Refers to previous day of the week Day of the week

hasOpeningHoursDayOfWeek Specifies the day of the week to which
opening hours is related

Day of the week

Table 9: Data Properties of "Dates and Times" class

Data Property Description Type

closes The closing hour of a specific location of
business entity on a given day of the week

Time

opens The opening hour of a specific location of
business entity on a given day of the week

Time

Delivery method class

The “Delivery method” class and its sub-class define the available delivery options for a service or product.

Figure 10: "Delivery method" class and sub-classes

“Delivery method” instances are used only as the range for other object properties.

Entity class

The “Entity” class and its sub-classes represent an entity as a result of a manufacturing process and
describe its geometric flaw and entity, assembly entity and raw material. The sub-classes are presented in
the next figure.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 29 of 56 Submission date: 2017-10-30

Figure 11: "Entity" class and sub-classes

The next tables contain some of the basic object properties of “Entity” class and its sub-classes:

Table 10: Object Properties of "Entity" class

Object Property Description Range

hasPrice Refers to the price of an entity Unit price specification

hasShape Refers to the shape of a geometric flaw Shape

isMachinableWithTool Refers to the tool which process a raw
material

Tool

isMachinableByProcess Refers to the operation in which an entity is
processed

Operation

isMadeOf Refers to the material that a part is made of Raw material

Table 11: Data Properties of "Entity" class

Data Property Description Type

hasVolume A finished part has volume float

hasRugosity The rugosity of a geometric flaw float

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 30 of 56 Submission date: 2017-10-30

Generic Term class

The “Generic Term” class and its sub-classes define common operations, materials and tools. This will
enable the use of same terms for similar concepts. The vendor-specific concepts will be mapped with
corresponding terms of the common “Generic term” class’ instances.

Figure 12: "Generic term" class and sub-classes

The “Generic term” class is not the domain of any object property. It is used as a common dictionary and it is
the range of the properties that map other operations, materials and tools to the concepts of this dictionary.
Moreover there are no data properties correlated with this class.

This class is a core concept of the Matchmaker component’s functionality. Every business entity use its own
terms to describe one of its offered services. But every one of these vendor specific terms will be mapped
with a common generic term. In this way, on the one hand every business entity will be able to participate in
the Marketplace and advertise its services, products etc. with its own terms. On the other hand the
Matchmaker will be able to match similar concepts in order to set the Marketplace capable to relate offers
and requests among stakeholders or to find possible solutions for some Marketplace participants. The
following figure describes in a very simple and abstract way, how the vendor specific operations for scrap
metal management of three different business entities is mapped to the same concept.

Figure 13: Mapping of vendor specific concepts

Offer class

The “Offer” class represents a public announcement of a business entity that provides or seeks a certain
service or product. This is a key class for the description of offers and requests of business entities which are
involved into COMPOSITION Ecosystem. The “Offer” class has not any sub-classes. Its basic object
properties are presented at the table below.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 31 of 56 Submission date: 2017-10-30

Table 12: Object Properties of "Offer" class

Object Property Description Range

includes Refers to the service or product which is
provided by an offer

Service

acceptedPaymentMethods Refers to the available payment methods
for a certain offer

Payment method

addOn Points to other offers which are linked with
a basic offer

Offer

availableAtOrFrom Refers to the location where the offered
service or product is available

Geographic resource

availableDeliveryMethods Refers to the available delivery methods of
a certain offer

Delivery method

eligibleCustomerTypes Refers to the eligible types of customers for
a certain offer

Business entity type

eligibleTransactionVolume Indicates the minimum purchasing volume Price specification

hasPriceSpecifification Links an offer to price specifications Price specification

hasWarrantyPromise Links an offer with a warranty promise for a
product or service by business entity

Warranty promise

deliveryLeadTime Refers to the delivery time of the offered
service

Quantitative value

eligibleQuantity Specifies the quantities for which an offer is
valid

Quantitative value

offerProvidedBy Points to the business entity which provides
or seeks an offer

Business entity

Except the object properties some of main data properties of class “Offer” are also presented in the following
table.

Table 13: Data Properties of "Offer" class

Data Property Description Type

validFrom The beginning of the validity of an offer dateTime

validThrough The end of the validity of an offer dateTime

eligibleRegions The geo-political regions where an offer is
available

string

hasOfferID The identity number of an offer inside the
Marketplace

string

Operation class

The “Operation” class and its sub-classes represent the processes of a service. Especially the manufacturing
processes. But supporting operations related to human or launching processes are represented as well.
Moreover, this class offers the representation of waste management processes which are strongly related
with the COMPOSITION project. The figure below presents sub-classes of “Operation” class. The following
tables present basic object and data properties, respectively.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 32 of 56 Submission date: 2017-10-30

Figure 14: "Operation" class and sub-classes

Table 14: Object Properties of "Operation" class

Object Property Description Range

induces Refers to the price cost that induces the
execution of an operation

Price specification

isExecutedBy Refers to the human resource that executes
an operation

Human resource

mappedToCommonTerm A specific operation is mapped to a generic
term

Generic term

allowedProcessFor Refers to material which is valid for a
manufacturing operation

Raw material

requiresTool Refers to the tool that is required to a
manufacturing operation in order to execute
a process related to a raw material

Tool

requiresMachine Refers to the machine resource that is
required to a manufacturing operation in
order to execute a process

Machine resource

previousOperation Points to a previous operation Operation

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 33 of 56 Submission date: 2017-10-30

Table 15: Data Properties of "Operation" class

Data Property Description Type

hasDuration The duration of an operation possitiveInteger

hasDelay The delay of an operation possitiveInteger

isContinuous Describe if an operation is a continuous
process

boolean

Payment method class

The “Payment method” class describes the available procedures for transferring the requested amount for a
purchase. It contains only a sub-class which is related to credit cards as a payment method.

Figure 15: "Payment method" class and sub-classes

The individuals of this class and its sub-class are well-known payments methods that are commonly used in
transactions such as cash, bank transfer, VISA, PayPal etc. The only purpose of this class is to create this
kind of individuals and they will be used as the range of properties of other classes such as “Offer” and
“Price specification”. As a result there was no need to construct properties with domain the “Payment
method” class.

Price specification class

The “Price specification” class and its sub-classes specify the price of a unit, additional delivery costs and
additional costs related to a payment method. The figure below presents sub-classes of “Price specification”
class. The following tables present basic object and data properties, respectively.

Figure 16: "Price specification" class and sub-classes

Table 16: Object Properties of "Price specification" class

Object Property Description Range

appliesToPaymentMethod Refers to the available payment methods Payment method

appliesToDeliveryMethod Refers to the delivery method which
induces this cost

Delivery method

isInducedBy Refers to the operation which adds costs by
its execution

Operation

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 34 of 56 Submission date: 2017-10-30

Table 17: Data Properties of "Price specification" class

Data Property Description Type

hasCurrency The currency related to a price (e.g. EUR) string

hasCurrencyValue The amount of money for a price or
payment charge

float

hasMaxCurrencyValue The upper bound of the amount of money
for a price or payment charge

float

hasMinCurrencyValue The lower bound of the amount of money
for a price or payment charge

float

valueAddedTaxIncluded Specifies if the value-added-tax is included
in the price

boolean

Quantitative value class

The “Quantitative value” class and its sub-classes are used as numerical intervals that represent the range
of a certain property. Their individuals are mainly used as the range of other classes’ object properties
related to quantity measurements. So, we did not adopt any object properties which have this class and its
sub-classes as domain. The sub-classes and main data properties related to “Quantitative value” class are
presented below.

Figure 17: "Quantitative value" class and sub-classes

Table 18: Data Properties of "Quantitative value" class

Data Property Description Type

hasValue The property is a single point value Literal

hasMinValue The property captures the lower limit of a
value

Literal

hasMaxValue The property captures the upper limit of a
value

Literal

hasValueFloat A quantitative property is a single point float
value

float

hasMinValueFloat The property captures the lower limit of a
float value

float

hasMaxValueFloat The property captures the upper limit of a
float value

float

hasValueInteger A quantitative property is a single point
integer value

int

hasMinValueInteger The property captures the lower limit of an
integer value

int

hasMaxValueInteger The property captures the upper limit of an
integer value

int

hasUnitOfMeasurement The unit of measurement of a quantitative
value

string

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 35 of 56 Submission date: 2017-10-30

Resource class

The “Resource” class and its sub-classes represent the total set of linked resources of a business entity.
They are able to describe resources such as buildings and sites, human resources, truck resources,
machines and tools. The figure below presents sub-classes of “Resource” class.

Figure 18: "Resource" class and sub-classes

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 36 of 56 Submission date: 2017-10-30

The following tables present some of basic object properties of “Resource” class and its sub-classes,
respectively.

Table 19: Object Properties of "Resource" class

Object Property Description Range

contains Refers to the material resource which is
included in a geographical resource

Material resource

includes Refers to a geographical resource which
is included in another geographical
resource

Geographical resource

enablesRealisationOf Refers to an operation which requires a
machine resource

Machine resource

execute Refers to an operation which is executed
by a human resource

Human resource

usesTool Refers to the tool that is used by a
machine resource

Tool

requiredToolFor Refers to the tool that is required to a
manufacturing operation in order to
execute a process

Manufacturing operation

toolUsableOn Refers to a raw material in which a tool is
used

Raw material

toolMappedToCommonTerm A specific tool is mapped to a tool which is
described in generic terms

Tools

Table 20: Data Properties of "Resource" class

Data Property Description Type

resourceName The name of a resource string

resourceID The ID of a resource string

description Short description of a resource Literal

operatingRate The operating rate for a machine resource float

Service class

The “Service” class and its sub-classes conceptualize all operations and processes related to a product in an
abstract level. A service includes operations which are related with resources. It is the general concept of
what service or product offers a business entity. The figure below presents the sub-classes of “Service”
class.

Figure 19: "Service" class and sub-classes

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 37 of 56 Submission date: 2017-10-30

As this class describes processes in a more abstract level is not the domain in any data property. It is
connected with processes and their own data properties. The basic object properties of class “Service” are
the following:

Table 21: Object Properties of "Service" class

Object Property Description Range

hasManufacturer Links a service or product to the business
entity that produces it

Business entity

hasCapability Refers to the capability of an offered
service

Capability

hasSupportingService Links a service with a supporting service Supporting service

isSupportedBy Refers to a system that supports a service Supporting system

hasOperation Refers to the process/operation which is
actually executed in this service

Operation

seeksOperation Refers to the process/operation which is
actually executed in this service and is
requested by another business entity’s
service

Operation

Supporting service class

The “Supporting service” class and its sub-classes represent services which are not basic services but are
related to the basic one and support them. They are actually from a different domain than the main services
of a business entity, but they are valuable for a company’s activities and processes. As described before for
“Service” class, it describes processes in a more abstract level and it is not the domain in any data property.
It is connected with processes and their own data properties. It is the same for the “Supporting service”
class. The sub-classes and main object properties related to “Supporting service” class are presented below.

Figure 20: "Supporting service" class and sub-classes

Table 22: Object Properties of "Supporting service" class

Object Property Description Range

supports Links a supporting service to the main
service it supports

Service

hasRelatedOperation Links a supporting service with a human or
logistic operation

Human operation and
Logistic operation

isSupportedBy Refers to a system supports supporting
service

Supporting system

Supporting system class

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 38 of 56 Submission date: 2017-10-30

The “Supporting system” class and its sub-classes represent some systems which support a business
entity’s services. The figure below presents sub-classes of “Supporting system” class. The following tables
present basic object and data properties, respectively.

Figure 21: "Supporting system" class and sub-classes

Table 23: Object Properties of "Supporting system" class

Object Property Description Range

supportService Links a supporting system to the service it
supports

Service and Supporting
service

usedBy Refers to the human resource that uses a
supporting system

Human resource

isLocatedIn Links a supporting system to a
geographical resource where the system is
contained

Geographical resource

Table 24: Data Properties of "Supporting system" class

Data Property Description Type

systemName The name of a system string

systemID The ID of a system string

description Short description of a system Literal

Warranty class

The “Warranty” class and its sub-classes represent the duration and the scope of free services that will be
provided to a customer in case of a possible malfunction or problem. The figure below presents sub-classes
of the “Warranty” class. The following tables present basic object and data properties, respectively.

Figure 22: "Warranty" class and sub-classes

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 39 of 56 Submission date: 2017-10-30

Table 25: Object Properties of "Warranty" class

Object Property Description Range

hasWarrantyScope Refers to warranty scope of a warranty
promise

Warranty scope

warrantyPromiseOf Refers to the offer which is related with a
warranty promise

Offer

Table 26: Data Properties of "Warranty" class

Data Property Description Type

durationOfWarrantyInMonths Specifies the duration of a warranty
promise in months

int

description Description of a warranty which comes
alongside with an offer

Literal

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 40 of 56 Submission date: 2017-10-30

7 COMPOSITION Ontology API

As described in the executive summary and introductory sections besides the Collaborative Manufacturing
Services Ontology, a first version of an API has been implemented and will be presented in this report. This
API provides a basic set of interfaces/services. The Marketplace components are able to access and extend
the Ontology using this API. In this section some key components of Ontology API’s implementation and its
supported interfaces are presented.

7.1 Methodology and Implementation Technologies

The first version of Ontology API has been developed in Java and it is offered through RESTful web
services. Its development was built upon Apache Jena API. In advance of the description of the Ontology
API’s implementation, we will offer a brief analysis of Apache Jena which is the key component of
COMPOSITION Ontology API and offers all the necessary functionality to create, connect and modify an
ontology store.

7.1.1 Apache Jena

Apache Jena is an open source Semantic Web framework for Java that has been extensively used in a wide
variety of semantic web applications and demonstrators. The main component of this framework is an API
that provides data extraction from RDF graphs as well as writing to them. The graphs are defined as an
abstract model. A model can collect data from files, databases, URLs or a combination of these. Jena
provides a programmatic environment for RDF, RDFS and OWL, SPARQL, GRDDL, and includes a rule-
based inference engine. The figure below represents Jena framework’s architecture. Subsequently, the
different parts that compose Jena’s architecture are presented together with the interaction between them.

Figure 23: Apache Jena’s framework architecture (Apache Jena, 2017)

The RDF API - the core RDF API in Jena

RDF can be better comprehended if it is represented in the form of node and arc diagrams, namely in RDF
graphs. Each relationship points only to one direction. Part of the RDF graphs is resources. A resource is
some entity. It could be a web resource or it could be a concrete physical thing. It could also be an abstract
idea. Resources are named by a Uniform Resource Identifier (URI). Resources have attributes called
properties and lastly, properties have data values called literals.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 41 of 56 Submission date: 2017-10-30

Jena is a Java API which can be used to create and manipulate RDF graphs. The interfaces representing
resources, properties and literals are called Resource, Property and Literal respectively. In Jena, a graph is
called a model and is represented by the Model interface.

The basic concepts of RDF containers in Jena are three:

• graph, a mathematical view of the directed relations between nodes in a connected structure

• Model, a rich Java API with many convenience methods for Java application developers

• Graph, a simpler Java API intended for extending Jena's functionality.

The most important of these concepts is Model, thus, it is going to be further analyzed. Each arc in an RDF
Model is called a statement. Each statement asserts a fact about a resource. A statement is called a triple
since it contains three distinct parts: the subject, which is the resource from which the arc leaves,
the predicate, which is the property that labels the arc and the object, which is the resource or literal pointed
to by the arc. The Statement interface provides accessor methods to the subject predicate and object of a
statement.

Ontology API

Jena allows a programmer to specify, in an open, meaningful way the concepts and relationships that
collectively characterize some domain. The advantage of ontology is that it is an explicit, first-class
description; it can be published and reused for different purposes.

There is a multitude of different ontology languages available for modeling ontology information on the
semantic web. They range from the most expressive, OWL to the weakest, RDFS. Jena Ontology API aims
to provide a coherent programming interface for ontology application development. The Ontology API is
independent of the language used: the Java class names are not specific to the underlying language.

In order for distinction between various representations to be clear, each of the ontology languages has a
profile, which lists the permitted constructs and the names of the classes and properties. The profile is bound
to an ontology model, which is an extended version of Jena's Model class. The base Model allows access to
the statements in a collection of RDF data. Jena ontology interface provides support for the kinds of
constructs expected to be in ontology: classes (in a class hierarchy), properties (in a property hierarchy) and
individuals.

SPARQL API

SPARQL is a query language and a protocol for accessing RDF designed. As a query language, SPARQL is
"data-oriented" in that it only queries the information held in the models and does not infer in the query
language itself. Jena model creates triples on-demand in order to give the impression that they already
exist, including OWL reasoning. SPARQL takes the description of the application demands, in the form of a
query, and returns that information, in the form of a set of bindings or an RDF graph.

Interference API

The Jena inference subsystem is designed to allow a range of inference engines or reasoners to be plugged
into Jena. Such engines are used to derive additional RDF assertions which are entailed from some base
RDF together with any optional ontology information and the axioms and rules associated with the reasoner.

Store API

Two individual parts of the Store API are TDB and SDB, as shown in Figure 5.

TDB is a component of Jena for RDF storage and query. It is a fast persistent triple store that stores directly
to disk and supports the full range of Jena APIs. TDB can be used as a high performance RDF store on a
single machine. A TDB store can be accessed and managed with the provided command line scripts and via
the Jena API. When accessed using transactions, a TDB dataset is protected against corruption, unexpected
process terminations and system crashes.

SDB uses an SQL database for the storage and query of RDF data. Many databases are supported, both
Open Source and proprietary. An SDB store can be accessed and managed with the provided command line
scripts and via the Jena API. Use of SDB for new applications is not recommended. This component is
"maintenance only". However, TDB is faster, more scalable and better supported than SDB.

https://jena.apache.org/tutorials/rdf_api.html#glos-Statement
https://jena.apache.org/tutorials/rdf_api.html#glos-Subject
https://jena.apache.org/tutorials/rdf_api.html#glos-Predicate
https://jena.apache.org/tutorials/rdf_api.html#glos-Object

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 42 of 56 Submission date: 2017-10-30

7.1.2 Implementation Details

The Ontology API is designed for the purposes of the COMPOSITION project. It is the component which
enables the access of some Marketplace components into knowledge base. As described at section 4 both
Agents and Rule-based Matchmaker components should be able to connect with Collaborative
Manufacturing Services Ontology which is the knowledge base of COMPOSITION Ecosystem. So, this
component is implemented to cover these needs and to offer the expected functionality.

Requirements

Based on COMPOSITION project use cases and requirements, and on current version of COMPOSITION
system’s proposed architecture the following main requirements were set for Ontology API implementation:

 The API should be connected with COMPOSITION’s Collaborative Manufacturing Services Ontology

 The API should be offer the following services

o Add instances to ontology

o Read instances from ontology

o Remove instances from ontology

 The API should be able to connect with other COMPOSITION components in order to offers the
previous services

 The connection should be based on communication protocols and formats accepted from
COMPOSITION system’s architecture

 It should be well designed and be compatible with project’s quality control

 It should be designed in a way to be easily extended in order to capture the future project’s
requirements

Technologies and Tools

The technologies which are used for Ontology API’s development are described in this sub-section. Their
selection is indicated by the two basic factors:

 Address the requirements were described above

 Use open and free technologies and tools as the project mention to do in DoA

The main selected technologies are the following:

Java was selected as the implementation language. It is a general purpose, object oriented programming
language. Java is one of the most popular programming languages in use, especially for client server web
applications.

Web Services as defined by World Wide Web Consortium is a system designed to support interoperable
Machine to Machine interaction over a network. Web services are server applications which can process and
exchange data. They are selected as a perfect match to represent the required services.

REST or Representational State Transfer was selected as the architectural style of web services. REST
offers better performance, modifiability and scalability to enable web services to work better on the Web. The
REST architecture style is a client/server architecture where clients and servers exchange representations of
resources by using a standardized interface and protocol. Resources are accessed using Uniform Resource
Identifiers (URIs) which are the typical links on the Web.

HTTP stands for HyperText Transfer Protocol and was the selected protocol to be used by the RESTful API.
This application protocol is used to link pages of hypertext and it is a way to transfer files. HTTP is the
foundation of data communication for the Web.

JSON or JavaScript Object Notation was the selected syntax format for exchanging messages. JSON is a
text format that is completely language independent but uses conventions that are familiar to programmers.
Also it is easy for machines to parse and generate this format. These properties make JSON an ideal format
for data-exchange.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 43 of 56 Submission date: 2017-10-30

Apache Jena was selected as the Java framework API to support COMPOSITION’s Ontology API. As
mentioned before it is a free and open source tool which supports OWL and RDF languages and offers
querying and storing capabilities. All this, consist Jena framework as the perfect tool for our implementation.

SPARQL was selected as the query language. It is a semantic query language able to manipulate and
retrieve data stored in RDF format. It is standardized of the World Wide Web Consortium, and is recognized
as one of the key technologies of the semantic web.

Eclipse IDE is a well-known Java Integrated Development Environment. It is the most widely used Java IDE
and contains a basic workspace and large variety of plug-ins. The Eclipse IDE for Java EE Developers was
the selected package. It offers tools for Java EE and Web applications development and includes many
features such as Eclipse Git Team Provider, Maven Integration for Eclipse etc.

Apache Tomcat was the selected web server environment. It is an open-source Java Servlet Container
developed by the Apache Software Foundation. It provides an HTTP web server environment in which Java
code can run.

Implementation

The implementation of the COMPOSITION Ontology API was based in the previous mentioned technologies
and tools. The target of the implementation was the development of software which will be able to fulfil the
previous page’s requirements.

The implementation’s architecture was defined in order to be able to support the following processes:

 The OWL files from Collaborative Manufacturing Services Ontology should be stored in a permanent
store

 A COMPOSITION component sends its request via HTTP

 The Ontology API uses Jena API to access the permanent store

 Then a SPARQL query is applied to the store based on component’s request

 The Ontology API sends back to the component an HTTP response

The next figure presents a high level overview of the proposed architecture design.

Figure 24: COMPOSITION Ontology API’s high level architecture overview

The key steps and designing approaches during the development phase were the following:

 It was created as Maven project in Eclipse IDE

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 44 of 56 Submission date: 2017-10-30

 Maven was used as the build tool to configure and package project’s dependencies such as Jena
library, Jersey library etc.

 The implementation was divided in four main packages:

Table 27 Ontology API's main packages description

Package Description

Ontology package This package contains classes and
function related to Ontology management.
Functionalities related to store creation
and connection, and SPARQL queries
execution are located in this package

JSON package This package contains class and
functions related to JSON messages
handling.

REST package This package contains classes and
functions related to RESTful web
services. All web services
implementations are located in this
package

Utilities package This package’s class and functions offers
supporting functionalities to other
packages e.g. read files functions

 The major development activity was in the Ontology management package.

o The OWL files which consist the Collaborative Manufacturing Services Ontology were stored
in memory as OntModel using Jena API

o The OntModel stored in a permanent store. Two cases were examined based on Jena API.
The first was the usage of SDB store which is a SQL database store. The second was the
usage of TDB component for storing. The second approach was selected. As native triple
store the TDB is faster, more scalable and better supported than SDB store. The SDB store
is backed by SQL, so queries from SPARQL have to “turn” into SQL queries. This adds
complexity and it is not as efficient as a native triple store.

o All the queries are applied in the Model which is stored in the tuple space. Every creation or
deletion of individuals takes place at this Model. This means that the original OWL files are
not modified.

 A first set of SPARQL queries was created. All the queries are located in a common directory as
.sparql files and they were not created as Strings inside the source code in order to be easier to
modify and extend them. The next table describes a very simple SPARQL query example which
returns all the companies of the Marketplace

 A first set of web services/interfaces was created. Every service as soon as it receives a request,
calls the Ontology manager to handle the request. The Ontology manager makes the connection
with the permanent store and applies a SPARQL query based on request. Then the query’s result is
send back to web services to handle the response.

 During the development process, the necessary functionalities for JSON messages handling and
other activities such as files’ reading and writing were created in the corresponding classes.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 45 of 56 Submission date: 2017-10-30

Table 28: SPARQL query example

Get All Companies query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX v1: <http://purl.org/goodrelations/v1#>

SELECT ?company
WHERE {
 ?x rdfs: subClassOf v1: BusinessEntity.
 ?company rdf:type ?x
 }

7.2 Supported Interfaces

The main focus on Ontology API’s first version was the definition of requirements, the analysis and the
selection of necessary technologies and tools, and the creation of a first working prototype. However a first
set of offered interfaces has been already developed. They are related with classes which describe high
level concepts such as business entities and services. The supported web services catalogue will be
extended and be presented in the second and last part of this deliverable which comes at M30. There will be
interfaces related to manufacturing processes, raw materials and resources which are missing now. Of
course some of the current interfaces will be updated in order to meet project’s requirements. The current
supported interfaces are described above.

Table 29: COMPOSITION Ontology API's services

Service name Type Description Input Output

initializeDBWithOntology GET Initialize the store with Collaborative
Manufacturing Services Ontology

- JSON format
message for
successful
operation

getMarketplaceCompanies GET Returns all the companies which
participate in COMPOSITION
Marketplace

- JSON format output
contains the
Marketplace’s
companies

getMarketplaceServices GET Returns all the services that offered
in COMPOSITION Marketplace

- JSON format output
contains the
Marketplace’s
available services

getCompanyDetails GET Returns company details such as
name, system rating and supported
services

-
(query parameter
in URI with
company’s agent
ID)

JSON format output
contains the
company’s details

getServicesFromCompany GET Returns all the services offered from
a specific company

-
(query parameter
in URI with
company’s agent
ID)

JSON format output
contains the
company’s details

setMarketplaceCompany POST Store a new company at
COMPOSITION Marketplace

JSON format input
contains
company’s name,
id, rating and
services

JSON format
message for
successful
operation

setMarketplaceService POST Store a new service related with a JSON format input JSON format

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 46 of 56 Submission date: 2017-10-30

company at COMPOSITION
Marketplace

contains the new
service and the
company’s agent
ID

message for
successful
operation

deleteCompany GET Delete a company and all its
corresponded individuals from
COMPOSITION Marketplace

-
(query parameter
in URI with
company’s agent
ID)

JSON format
message for
successful
operation

deleteService GET Delete a company’s service from
COMPOSITION Marketplace

-
(query parameter
in URI with
company’s agent
ID and service’s
name)

JSON format
message for
successful
operation

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 47 of 56 Submission date: 2017-10-30

8 COMPOSITION Ontology’s Quality Control and Usage Instructions

8.1 Quality Control

As this deliverable is part I and comes in an early stage of the project the implemented software are some
initial versions and first prototypes which are far from their final form. The work in these first months was
more focused on research and analysis of related work, technologies, tools, methodologies and the
architecture’s design. However a quality control plan has been followed during the development processes.
This plan alongside with the methodology was followed are factors that indicate the quality of the current
implemented versions.

8.1.1 Collaborative Manufacturing Services Ontology

The quality of Collaborative Manufacturing Services Ontology will be evaluated in the second deliverable,
D6.8 Collaborative manufacturing services ontology and language II at M30. Part two of this deliverable will
be its last version which will contain a full list of individuals and properties. Only then we will be able to define
if the ontology will be a knowledge base able to cover and describe all the necessary means and concepts
required by the project. This is the most important factor which indicates a knowledge base’s quality.
However the steps that followed for building the first version of Collaborative Manufacturing Services
Ontology reflect some of its quality and they are mentioned below.

 A thorough analysis of ontology languages and tools has been presented in Section 5

 Selection of OWL 2.0 as ontology language and Protégé as the implementation tool after the
evaluation of previous mentioned analysis

 Selection was done after an analysis and based on project’s needs, use cases and requirements the
domain that the ontology should describe

 Import well-known and widely used ontologies of domains of manufacturing and e-commerce. This
ensures quality and enriches ontology with the demanded classes, properties and structures for
these domains’ description

 A thorough analysis of ontology building methodologies and the building of Collaborative
Manufacturing Services Ontology following NeOn methodology (Sections 5 and 6)

 Evaluation of the developed ontology using the open source tool, OntOlogy Pitfall Scanner (OOPS,
2017) to check for crucial errors. This tool analyses the RDF code and offers warnings for a large
variety of possible pitfalls. The produced warnings were manually inspected in order to determine
which of them correspond to actual bugs that require fix, and which are just false alarms (i.e. false
positives) After a first evaluation we focused on the crucial pitfalls that could affect the ontology’s
consistency, reasoning, and applicability:

o Some multiple definitions of domains or ranges in properties

o Some wrong definitions of inverse relationships

These pitfalls were handled. Also possible important pitfalls about missing domain or range in
properties, untyped properties and classes are handled too. On the other hand a good number of the
produced alerts were false positives, and thus they did not require any corrective action. They were
related in possible wrong equivalent classes. They are not considered as real threats as the tool tried
to check the equality of some classes of the new ontology with the original classes of imported
ontologies as it found them online using their URIs. However these classes had been re-engineered
in the current ontology and the comparison with the original ones has no meaning as they were
never used.

Besides the previous steps that indicate the quality of current ontology, another evidence of ontology’s
quality was its demonstration at Review 1 at month 11. It was embedded at Matchmaker’s demo and offered
all necessary concepts and information to Matchmaker in order to be able to apply rules and perform
matching. The conclusions from this demo related to the ontology were that the ontology offers the means
and the descriptions of Marketplace’s business entities, offers, requests, services, operations and some
quantity values in an efficient way. These descriptions were enough for the Matchmaker component to match

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 48 of 56 Submission date: 2017-10-30

business entities based on their services and operations, and find the best offer to fulfil a request based on
factors such as prices, quantities and ratings.

8.1.2 Ontology API

During the implementation phase of COMPOSITION Ontology API’s first version the quality control was
focused on general software quality criteria, the overall COMPOSITION system architecture’s compatibility
and the deliverable D1.1 Project Quality Control Plan I of COMPOSITION project. More precisely the quality
plan consists of the following factors:

 Identification of the Ontology API requirements

 Analysis of existing technologies and adoption of the best suitable with the COMPOSTITION
system’s architecture. Use of REST web services and JSON format for messages exchange as both
technologies have defined as supported by COMPOSITION architecture at D2.3-The
COMPOSITION architecture specification I. These will ensure Ontology API’s compatibility with
other project’s components.

 Use of software tools which were proposed at D1.1 Project Quality Control Plan I and support quality
of software:

o Use of Eclipse IDE as the development environment

o Use of Git for control versioning (actually EGit plugin from Eclipse IDE)

o Use of Maven as build tool for dependency management and build of source code

o Use of Docker containers. The creation of a Docker image for an application uploaded to
Apache Tomcat server as is Ontology API is an easy process. The use of Docker
containers allow for simple configuration and execution of components without deep
knowledge of build environments and dependencies

 Test procedures were applied. For software quality assurance both static and dynamic analysis
techniques applied:

Static analysis

In static analysis the PMD tool (PMD, 2017) was used. It is an open source tool which offers source
code analysis. It is able to detect possible bugs, empty statements, unused variables and methods,
duplicate code, classes with high cyclomatic complexity etc. by offering built-in sets of rules. The tool
categorizes the possible problems as violations distributed in 5 categories based on priority: block,
critical, urgent, important and warning

During Ontology API development process the code was checked for the rules sets which described
at the next table.

Table 30: Static analysis' rules set

Rules set Description

Basic A collection of good practices which
everyone should follow

Basic POM Rules related with dependency management

Braces Contains a collection of braces rules

Code size Ruleset contains a collection of rules that
find code size related problems

Complexity Contains a collection of rules related to
code’s complexity

Controversial Contains rules that, for whatever reason, are
considered controversial.

Design A collection of rules that find questionable
designs

Empty code A collection of rules that find blocks of code
where nothing is done

Import statements Ruleset to deal with different problems that

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 49 of 56 Submission date: 2017-10-30

can occur with a class' import statements

J2EE Rules related to J2EE

JUnit Rules related to problems that can occur
with JUnit tests

Naming Contains a collection of rules about names -
too long, too short etc.

Optimization Ruleset deals with different optimizations
that generally apply to performance best
practices

Security code
guidelines

Contains rules which check the security
guidelines

Strict Exceptions Contains strict guidelines about throwing and
catching exceptions

String &
StringBuffer

Contains rules related with manipulation of
the class String or StringBuffer

Style Ruleset related to name conventions

Unnecessary Ruleset that find unnecessary blocks

Unused code Contains rules that find unused code

About 300 rules were used and the analysis results were evaluated during the development face and
the most important were handled. At the current version of code there are no block, critical, important
and warning violations. There are only few urgent violations which are related to excessively long
variable names, variables with short names, multi occurrences of some string literals etc. These
violations are considered as false positives.

Dynamic analysis

In dynamic analysis, tests in runtime have been executed. Generally in dynamic analysis Unit tests,
Integration tests and System tests should be executed. However the project components are not yet
integrated and there is no prototype of the complete system. So only a set of unit tests have been
applied in order to test the correct functionality of the supported web services.

We built automated tests in Test source code package which was created by Maven. The TestCase
class from JUnit was extended and member functions were added. Every function represents a test of
a supported web service. The tests are able to be executed without deploying the project at Apache
Tomcat and using an external HTTP client. We used Eclipse Jetty server which provides a Web server
and javax servlet container. So, the test cases deployed and executed using Jetty. This provided us
fast execution and testing of the source code without the need to deploy the project to an external
server in order to test every change in the code.

As we mentioned before, a test for every supported web service of Table 29 has been created. Then
we call every function which contained a test and check if we got the expected output at Eclipse’s
console. The tests were called separately or in combination. For example we had called a test to
check if we can get all the companies. After we called a service to delete a company and then called
again a service to get all companies, in order to decide if the deletion was executed properly. We
executed plenty of these combinations related the following scenarios:

o Check the initialization of the store with Collaborative Manufacturing Services Ontology

o Check the connectivity to the store

o Check the capability to retrieve all companies and services of the store

o Check the capability to retrieve company’s details from the store

o Check the capability to retrieve a company’s services from the store

o Delete the correct company or service from the store based on ID

o Check if after the deletion of a company, all the details and services of a company have been
deleted too

o Check if after the deletion of a service its connections with a company have been deleted too

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 50 of 56 Submission date: 2017-10-30

o Applying a delete action for an ID which is not contained at the store does not affect the store

o Check the capability to save a service or company at the store

After the development of the first version Ontology API, it was deployed in Apache Tomcat container.
Then all the available web services and the previous test cases were executed using Postman Rest
Client (Postman, 2017).

8.2 Usage instructions for Collaborative Manufacturing Services Ontology

Using OWLDoc

A user can explore Collaborative Manufacturing Services Ontology in a web browser by using the offered
OWLDoc:

1. Download the Collaborative_Manufacturing_Services_Ontology_files.tar file and unzip it to a location
of your choice.

2. Navigate to Collaborative Manufacturing Services Ontology I -> Documentation - OWLDoc

3. Open the extracted file and select the file named index

4. Then open this file with a double click. A web browser window will launched where the user will be
able to explore ontology’s details

Using Protégé tool

In this section, we present instructions in order to open and properly use the current version of the
Collaborative Manufacturing Services Ontology through the Protégé tool:

1. Download the Collaborative_Manufacturing_Services_Ontology_files.tar file and unzip it to a location
of your choice.

2. Download, install and launch Protégé tool (preferred versions 4.2, 4.3 and 5.2)

3. Select File at the top line menu and then select Open at the sub-menu has just been appeared

4. At the new window, navigate to the extracted file from Step 1, Collaborative Manufacturing Services
Ontology I -> Ontology - Files and choose COMPOSITIONv01.owl. Then press Open button

5. Protégé will load the ontology that is contained in the owl file. Protégé will also import the three
imported ontologies. Check that the other three OWL files are also located in the extracted file from
Step 1. After this step, the user is ready to visualize the whole Ontology

Figure 25: Class hierarchy view

http://www.composition-project.eu/download/1790/
http://www.composition-project.eu/download/1790/

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 51 of 56 Submission date: 2017-10-30

9 Next Steps

The work at Task 6.4 Collaborative Manufacturing Services Ontology and Language will be mainly focused
at procedures related to:

 Collaborative Manufacturing Services Ontology enrichment with more instances in order to be able
to describe all the needed information related to COMPOSITION use cases. First we will start to
create more instances about offers and requests descriptions as scenarios related to scrap metal
management and bidding processes have been selected as top priority scenarios for the next
months of the project. After that, enrichment with instances focused to manufacturing domain in
order to describe scenarios related to raw material provision and detection of possible suppliers. The
Matchmaker component will use the detailed manufacturing domain descriptions in order to extract
conclusions about possible suppliers based on tools and materials that a manufacturer uses.

 Possible extension of Collaborative Manufacturing Services Ontology with new classes and
properties in order to cover the needs of all related use cases of the project. As described in the
previous step, we will start from offers and requests descriptions and later with more manufacturing
specific concepts.

 Further extension of COMPOSITION Ontology API with more supported web services in order to be
able to manipulate all supported classes and concepts as described in Collaborative Manufacturing
Services Ontology.

 Examination of the case to support classes’ and instances’ creation (not only instances) from other
components via Ontology API. Development of this functionality if this case is finally adopted.

 Research and development of functionality which provides to Agents with generated classes from
Ontology; if this approach is finally selected.

 Modifications to implementation in order to be fully compatible with project’s security requirements
and the implemented Security Framework from WP4

 Creation and deployment of a Docker image for Ontology API

The results of the previous mentioned procedures will be reflected at next versions of both Collaborative
Manufacturing Services Ontology and COMPOSITION Ontology API. Finally all the work will be done in Task
6.4 will be presented in D6.8 Collaborative manufacturing services ontology and language II in M30.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 52 of 56 Submission date: 2017-10-30

10 Conclusions

In conclusion, this deliverable describes the effort spent from M5 to M14 and represents the current status of
Task 6.4-Collaborative Manufacturing Services Ontology and Language of WP6. Moreover, this report
documents the delivered COMPOSITION Ontology. The complete work of Task 6.4 will be presented in D6.8
Collaborative manufacturing services ontology and language II in M30.

A first version of Collaborative Manufacturing Services Ontology has been implemented and presented after
a thorough analysis of Ontology languages, methodologies and tools. Moreover ontologies from the domains
of manufacturing and e-commerce were studied and MASON, MSDL and GoodRelations Language were
selected to be imported to COMPOSITION Ontology. By using these ontologies and by following NeOn
methodology a new ontology was created in OWL language using Protégé tool. The implemented
Collaborative Manufacturing Services Ontology is able to describe both the supply/demand entities and the
manufacturing domain’s services and resources.

A first working prototype of Ontology API has also been implemented. After consideration of project’s
requirements and architecture, and after an analysis of available technologies and tools, a first version of
Ontology API is developed in Java and it is offered through RESTful web services. It provides an initial set of
services which offers retrieving and storing functionalities from and to ontology store as well.

The outcome of this deliverable mainly affects the WP6 and its components such as the Agents and the
Matchmaker. Especially the Matchmaker’s functionality is completely depended from Collaborative
Manufacturing Services Ontology as the Matchmaker performs matching by applying rules to the ontology.
This deliverable is also connected with WP3 and its modelling tasks as the ontology illustrates some intra-
factory information such as manufacturing operations and resources, to the Marketplace.

Finally, as it is perceived, the first steps of Task 6.4 are presented in this deliverable. First versions of
Ontology and its corresponding API have already been implemented and presented. However, the work has
been done should be further extended, as it described at Chapter 9 - Next Steps, in order to create a
complete knowledge base able to meet all the Marketplace’s requirements and an Ontology API which offers
a wide catalogue of supported services.

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 53 of 56 Submission date: 2017-10-30

11 List of Figures and Tables

11.1 Figures

Figure 1: COMPOSITION Marketplace components .. 7
Figure 2: Core Classes of MSDL (Ameri, 2006) .. 16
Figure 3: MASON main classes and properties (Lemaignan, 2006) ... 17
Figure 4: GoodRelations Language main classes ... 18
Figure 5: Set of nine scenarios for building ontologies and ontology networks (M.C. Sua´rez-Figueroa, 2012)
 ... 20
Figure 6: COMPOSITION Ontology’s Class Overview ... 25
Figure 7: "Business entity" class and sub-classes .. 26
Figure 8: "Capability" class and sub-classes ... 27
Figure 9: "Dates and Times" class and sub-classes ... 27
Figure 10: "Delivery method" class and sub-classes .. 28
Figure 11: "Entity" class and sub-classes .. 29
Figure 12: "Generic term" class and sub-classes .. 30
Figure 13: Mapping of vendor specific concepts ... 30
Figure 14: "Operation" class and sub-classes ... 32
Figure 15: "Payment method" class and sub-classes ... 33
Figure 16: "Price specification" class and sub-classes ... 33
Figure 17: "Quantitative value" class and sub-classes .. 34
Figure 18: "Resource" class and sub-classes ... 35
Figure 19: "Service" class and sub-classes ... 36
Figure 20: "Supporting service" class and sub-classes ... 37
Figure 21: "Supporting system" class and sub-classes ... 38
Figure 22: "Warranty" class and sub-classes .. 38
Figure 23: Apache Jena’s framework architecture (Apache Jena, 2017) ... 40
Figure 24: COMPOSITION Ontology API’s high level architecture overview ... 43
Figure 25: Class hierarchy view .. 50

11.2 Tables

Table 1: Abbreviations and acronyms are used in this deliverable .. 5
Table 2: MSDL and MASON overlapping classes’ alignment ... 22
Table 3: MSDL and GoodRelations Language overlapping classes’ alignment ... 22
Table 4: ORSD of COMPOSITION Collaborative Manufacturing Services Ontology 24
Table 5: Object Properties of "Business entity" class .. 26
Table 6: Data Properties of "Business entity" class .. 26
Table 7: Data Properties of "Capability" class ... 27
Table 8: Object Properties of "Dates and Times" class ... 28
Table 9: Data Properties of "Dates and Times" class ... 28
Table 10: Object Properties of "Entity" class ... 29
Table 11: Data Properties of "Entity" class .. 29
Table 12: Object Properties of "Offer" class .. 31
Table 13: Data Properties of "Offer" class ... 31
Table 14: Object Properties of "Operation" class .. 32
Table 15: Data Properties of "Operation" class ... 33
Table 16: Object Properties of "Price specification" class ... 33
Table 17: Data Properties of "Price specification" class .. 34
Table 18: Data Properties of "Quantitative value" class .. 34
Table 19: Object Properties of "Resource" class... 36
Table 20: Data Properties of "Resource" class ... 36
Table 21: Object Properties of "Service" class .. 37
Table 22: Object Properties of "Supporting service" class .. 37
Table 23: Object Properties of "Supporting system" class .. 38
Table 24: Data Properties of "Supporting system" class ... 38

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 54 of 56 Submission date: 2017-10-30

Table 25: Object Properties of "Warranty" class ... 39
Table 26: Data Properties of "Warranty" class .. 39
Table 27 Ontology API's main packages description .. 44
Table 28: SPARQL query example ... 45
Table 29: COMPOSITION Ontology API's services .. 45
Table 30: Static analysis' rules set .. 48

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 55 of 56 Submission date: 2017-10-30

12 References

(COMPOSITION, 2016)GRANT AGREEMENT 723145 — COMPOSITION: Annex 1 Research and
innovation action

(Ameri, 2006) Manufacturing Service Description Language
https://www.researchgate.net/publication/267486591_An_Upper_Ontology_for_Man
ufacturing_Service_Description

(Lemaignan, 2006) Manufacturing’s Semantics Ontology or MASON is a manufacturing ontology, aimed
to provide a common semantic net in manufacturing domain.
http://ieeexplore.ieee.org/document/1633441/

(GoodRelations, 2017) GoodRelations Language, The Web Vocabulary for E-commerce
http://www.heppnetz.de/projects/goodrelations/

(Studer et al, 1998) Studer, R., Benjamins, V. R., & Fensel, D. (1998). “Knowledge engineering:
principles and methods”, Page(s): 161-197.

(Gruber, 1993) Gruber, T. R. (1993). “A translation approach to portable ontology specifications.
Knowledge acquisition”, Page(s): 199-220.

(Genesereth and Fikes, 1992) Genesereth, M. R., & Fikes, R. E. (1992). “Knowledge interchange format-
version 3.0: reference manual.” Computer Science Department, Stanford University,
Technical Report Logic-9201, June 1992.

(MacGregor, 1992) MacGregor, R, 1991. “The Evolving Technology of Classification-Based Knowledge
Representation Systems. In Principles of Semantic Networks: Explorations in the
Representation of Knowledge”, edited by J. Sowa. San Mateo, CA: Morgan
Kaufmann., San Mateo, California.

(Chaudhri et al., 1998) Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., & Rice, J. P. (1998). “OKBC: A
programmatic foundation for knowledge base interoperability”. In Innovative
Applications of Artificial Intelligence Conference, Page(s): 600-607.

(Motta, 1999) Domingue, J., Motta, E., & Garcia, O. C. (1999). “Knowledge modelling in webonto
and ocml: A user guide.”, Knowledge Media Institute, The Open University.

(Kifer et al., 1995) Kifer, M., Lausen, G., & Wu, J. (1995). “Logical foundations of object-oriented and
frame-based languages.”, Journal of the ACM (JACM), 42(4), Page(s): 741-843.

(Luke and Heflin, 2000) Heflin, J., Hendler, J. A., & Luke, S. (2003). “SHOE: A Blueprint for the Semantic
Web. Spinning the Semantic Web”, Page(s): 1-19.

(Karp et al., 1999) Karp, P. D., Chaudhri, V. K., & Thomere, J. (1999). “XOL: An XML-based ontology
exchange language.”, Pangea Systems Inc., Artificial Intelligence Center.

(Lassila and Swick, 1999) Lassila, O., & Swick, R. R. (1999). ”Resource description framework (RDF) model
and syntax specification.”

(Brickley and Guha, 2003) Brickley, D., & Guha, R. V. (2003). “Resource description framework (rdf) schema
specification 1.0: Rdf schema.”, W3C working Draft.

(Fensel et al., 2001) Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., & Patel-Schneider,
P. F. (2001). “OIL: An ontology infrastructure for the semantic web.”, IEEE intelligent
systems, Page(s): 38-45.

(Dean and Schreiber, 2003) Dean, M., Schreiber, G., van Harmelen, F., Hendler, J., Horrocks,
I.,McGuinness. (2003). “OWL web ontology language reference.”

(E. Prud’hommeaux et al, 2008) Prud’hommeaux, E., Seaborne, A.. (2008). “SPARQL query Language for
RDF”, W3C Recommendation, January 15, 2008.

(Gómez-Pérez et al., 1997) Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). “Methontology:
from ontological art towards ontological engineering.”

(Waterman, 1986) Waterman, D. A. (1986). “A guide to expert systems. Addison-Wesley.”

COMPOSITION D6.7 Collaborative manufacturing services ontology and language I

Document version: 1.0 Page 56 of 56 Submission date: 2017-10-30

(M. C. Suárez-Figueroa, 2010) NeOn Methodology for Building Ontology Networks:
 Specification, Scheduling and Reuse

(Staab et al., 2001) Maedche, A., & Staab, S. (2001). “Ontology learning for the semantic web.”, IEEE
Intelligent systems, Page(s): 72-79.

(OOPS, 2017) OntOlogy Pitfall Scanner! http://oops.linkeddata.es/index.jsp

(PMD, 2017) PMD: An extensible cross-language static code analyser. https://pmd.github.io/

(Postman, 2017) Postman web site: https://www.getpostman.com/

(Apache Jena, 2017) A free and open source Java framework for building Semantic Web and Linked Data

applications http://jena.apache.org/index.html

